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Abstract. In this paper, we study the prime order Cayley graph as-
signed to the group Zn for different values of n. We specify some of
the graph theoretical properties such as chromatic and perfect matching
numbers. Furthermore, we determine the adjacency matrices and eigen-
values of the prime order Cayley graph associated with groups Zn and
D2n.

1 Introduction

The Cayley Graph was first considered for finite groups by Arthur Cayley in
1878. Let G be a group, and let S be a subset of G\{1G}. The Cayley graph
associated with (G, S) is denoted by Cay(G, S) and defined as the directed
graph with vertex set G and arc set {(a, b)|a, b ∈ G, ba−1 ∈ S}. The Cayley
graph may depend on the choice of a generating set, and it is connected if and
only if S generates G. If S = S−1, then the Cayley graph is undirected. In this
work, we restrict our attention only to the undirected Cayley graphs.
B. Tolue defined the prime and composite order Cayley graphs in [12], and

she discussed about some of their properties. For instance, the structure of
them for some certain groups was achieved.
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In this research, we determine the prime order Cayley graph assigned to Zn

for different values of n and study some of the graph theoretical properties
such as chromatic and perfect matching numbers. Moreover, we distinguish
the adjacency matrices of the prime order Cayley graphs associated to Zn and
D2n for a given n. We will verify for which n the prime order Cayley graphs
assigned to Zn and D2n have total perfect code. First we recall some basic
definitions and concepts.

Definition 1 Let G be a group and S be the set of non-identity prime order
elements of G. Consider the Cayley graph Cayp(G, S) associated to the group
G relative to S. We call it prime order Cayley graph.

The set of vertices and edges for the graph Γ is denoted by V(Γ) and E(Γ),
respectively. Throughout the article, the notation v1 ∼ v2 denotes that v1 is
adjacent to v2. For the definition of the adjacency matrix of Γ , which is denoted
by A(Γ), and more details in this area, one can refer to [2]. If A is an n × n

matrix over the field F, an eigenvalue of A in F is a scalar λ ∈ F such that
the matrix (A − λI) is not invertible. Any X such that AX = λX is called an
eigenvector of A associated with eigenvalue λ. The set of all eigenvalues is the
spectrum of A, and it is denoted by spec(A), and note that spec(A) = {λ ∈

C | det(λI − A) = 0} (see [1] for more details). The eigenvalues of a graph is
the eigenvalues of its adjacency matrix and the spectrum of the graph Γ is
denoted by spec(A(Γ)). Furthermore the spectrum of a disconnected graph is
simply the disjoint union of the spectra of its components. The spectrum of a
clique Kn is λ1 = n− 1, λ2 = ... = λn = −1 (see [5]).
A block matrix is a matrix that has been partitioned into sub-matrices

(“blocks”) of the same size. Early in this century Issai Schur compute the de-
terminant of block matrices. He considered a 2n×2nmatrixM and partitioned
it into four n× n blocks A,B,C and D as shown below

M =

(

A B

C D

)

.

If C and D commute (CD = DC), then det(M) = det(AD − BC) (see [8]).
When A = D and B = C, the following formula holds (even if A and B do not
commute)

M =

(

A B

B A

)

= det(A− B)det(A+ B).

Remark 1 [10] A block diagonal matrix is a block matrix which is square
such that the main diagonal blocks are square matrices and all off-diagonal
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blocks are zero matrices. If A is a block diagonal matrix with diagonal blocks
A1, . . . , An, then det(A) = det(A1)det(A2) . . . det(An).

Let Γ1 and Γ2 be graphs with vertex sets V(Γ1) and V(Γ2), respectively. The
Cartesian product of Γ1 and Γ2, denoted by Γ1 × Γ2, is the graph defined as
follows. The vertex set of Γ1 × Γ2 is V(Γ1) × V(Γ2). The vertices (v,w) and
(v

′

, w
′

) are adjacent if either v = v
′

and w,w
′

are adjacent in Γ2, or w = w
′

and v, v
′

are adjacent in Γ1.

Lemma 1 Let Γ1 and Γ2 be graphs with m and n vertices, respectively. If
λ1, λ2, ..., λm and µ1, µ2, ..., µn are the eigenvalues of Γ1 and Γ2, receptively,
then the eigenvalues of Γ1 × Γ2 are given by λi + µj, i = 1, . . . ,m j = 1, . . . , n.

The union Γ = Γ1 ∪ Γ2 of graphs Γ1 and Γ2 with disjoint point sets V1 and V2

and edge sets E1 and E2 is the graph with V = V1 ∪ V2 and E = E1 ∪ E2. This
operation is sometimes also known explicitly as the graph disjoint union (see
[9] for more details).
In section 2, we show that Cayp(Zps×qs

′ ) is isomorphic to disjoint union

of ps−1qs
′

−1 copies of Kp × Kq, where p, q are distinct prime numbers p < q

and s, s
′

are positive integers. Moreover, by the structure of Cayp(Zps×qs
′ ), we

present some new results about its perfect matching and total perfect code. We
discuss about the adjacency matrix of Cayp(Zn, S) for different values of n, in
section 3. Furthermore, we obtain the adjacency matrices of Cayp(Z

∏n
i=1 pi

, S)

and Cayp(Z∏n
i=1 p

αi
i
, S), where pi’s are distinct prime numbers p1 < p2 <

... < pn and αi’s are positive integers 1 ≤ i ≤ n. Finally, we determine the
adjacency matrices of Cayp(D2n, S) and Cayp(Q4n, S) for different values of
n. Furthermore, by use of the adjacency matrix, we clarify the structure of
Cayp(D2n, S) and Cayp(Q4n, S).

2 The prime order Cayley graph associated to the

group Z
ps×qs

′

In this part, we will study the prime order Cayley graph of the group Z
ps×qs

′ ,

where p, q are distinct prime numbers and s, s
′

are positive integers. We com-
pute chromatic and perfect matching numbers of Cayp(Zn, S). Moreover, we
determine total perfect code and perfect matching sets of it for different values
of n say, pα, pq, 2q, 2αq and 3αq, where p, q are distinct prime numbers and
α is a positive integer.



38 A. Asrari, B. Tolue

Theorem 1 The prime order Cayley graph associated to the group Z
ps×qs

′ is

isomorphic to disjoint union of ps−1qs
′

−1 copies of Kp × Kq, where p, q are
distinct prime numbers p < q and s, s

′

are positive integers.

Proof. We check first the component of Cayp(Zps×qs
′ , S) which contains zero.

The form of the connection between the vertices, implies that the vertex zero
is joined to all vertices of prime orders. We classify these vertices, to provide
better understanding. Let x be a vertex of order q. Then we have

q = |x| =
ps × qs

′

gcd(ps × qs
′

, x)
, x = lps × qs

′

−1, 1 ≤ l ≤ q− 1.

So there exist q−1 vertices of order q and all of them are joined to the vertex
zero. Moreover, if x1, x2 are two vertices of order q, then they are adjacent to
one another because

|x1 − x2| =
ps × qs

′

gcd(ps × qs
′

, x1 − x2)
= q,

xi = lip
s × qs

′

−1, 1 ≤ i ≤ 2, 1 ≤ l1, l2 ≤ q− 1.

So the vertex zero and all the q− 1 vertices of order q construct a clique Kq.
Now we know there exist vertices of order p and all of them are joined to zero.
We name one of them y1. Obviously y1 is joined to the vertex zero. Moreover,
y1 is adjacent to all the vertices xi + y1, 1 ≤ i ≤ q− 1 and the vertices xi + y1

are joined to xj+y1, where 1 ≤ i, j ≤ q−1. Therefore y1 together with all the
q− 1 vertices in the form xi + y1, 1 ≤ i ≤ q− 1 make a clique Kq. Clearly, all
the vertices in the first Kq including the vertex zero and all the vertices in the
second Kq including y1 are joined to each other one by one, that is 0 ∼ y1 and
xi ∼ xi + y1, where 1 ≤ i ≤ q − 1. Still there exist some elements of order p

which are joined to the vertex zero. We consider an arbitrary vertex of order
p, say, yw and we have

p = |yw| =
ps × qs

′

gcd(ps × qs
′

, yw)
yw = lps−1qs

′

, 1 ≤ l ≤ p− 1.

So the set {0, yw | 1 ≤ w ≤ p − 1} together with the set {xi, xi + yw | 1 ≤ w ≤

p−1} create a clique Kp. By the group order and the number of vertices in each

component, we obtain the number of component which is ps×qs
′

pq = ps−1qs
′

−1.

Hence we have ps−1qs
′

−1 components that are isomorphic to Kp × Kq. □
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It is not hard to conclude that Cayp(Z32×5, S) is formed by three iso-
morphic components. We will explain the structure of one of these compo-
nents. It is clear that S = {9, 15, 18, 27, 30, 36}, and each set {0, 9, 18, 27, 36},
{3, 12, 21, 30, 39} and {6, 15, 24, 33, 42} form a clique K5. Since zero is joined to
the vertices with prime order and the vertices 15 and 30 have prime order 3.
So the vertex 0 is adjacent to the vertices 15 and 30. Furthermore, vertex 15 is
adjacent to 30. Vertex 9 is adjacent to the vertices 9+15 = 24 and 9+30 = 39.
Moreover, 24 ∼ 39. Similarly, we can check the connection between the other
elements. Hence Cayp(Z32×5, S) is a graph with three isomorphic components.
For which one its components has been drawn in Figure 1.
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Figure 1:

The m×n rook graph is the Cartesian product Km×Kn of complete graphs.
The graph Km×Kn has mn vertices and mn(m+n)/2−mn edges (see [4]). By
the Theorem 1, we observe that each component of Cayp(Zps×qs

′ , S) is a rook

graph. So each component of Cayp(Zps×qs
′ , S) has pq(p+q)/2−pq edges and

we have ps−1qs
′

−1 components. Therefore this graph has psqs
′

(p+q)/2−psqs
′

edges.
We refer the reader to [3], for the definitions of k-colorable graph Γ and the

chromatic number, χ(Γ). Note that χ(Cayp(Zps×qs
′ , S)) = q, where p, q are

distinct prime numbers and p < q. Since each component of Cayp(Zps×qs
′ , S)

is isomorphic to Kp×Kq and by the fact that the chromatic number of a rook
graph is max(p, q), the assertion is clear.

Theorem 2 The number of triangles of Cayp(Zps×qs
′ , S) is equal to

ps−1qs
′

−1(q
(

p
3

)

+ p
(

q
3

)

).
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Proof. By the structure of Cayp(Zps×qs
′ , S), we know there exist ps−1qs

′

−1

components isomorphic to Kp × Kq. It is enough to compute the number of
triangles for one of these components. Since each component is isomorphic
to Kp × Kq, then the number of Kp and Kq in each component are q and p,
respectively. On the other hand, we know that there exist

(

p
3

)

and
(

q
3

)

triangles
in Kp and Kq, respectively. Thus each component has q

(

p
3

)

+ p
(

q
3

)

triangles.

Hence Cayp(Zps×qs
′ , S) has ps−1qs

′

−1(q
(

p
3

)

+ p
(

q
3

)

) triangles. □

Figure 2: Cayp(Z
22×3

, S) ∼= (K2 × K3) ∪ (K2 × K3)

The number of triangles in each component is 2
(

3
3

)

+ 3
(

2
3

)

= 2.
We denote the matching number of the graph Γ by υ(Γ) (for the details see

[3]). A perfect matching is a matching containing n
2 edges, meaning perfect

matching are only possible on graphs with an even number of vertices (see
[11]). In the next theorem we specify the perfect matching number and the
perfect matching set for Cayp(Zn, S), when n is determined.

Theorem 3 (i) The perfect matching number of the graph Cayp(Zpα , S) is
equal to pα−1, where p is a prime number and α is a positive integer.

(ii) The perfect matching number of the graph Cayp(Z2q, S) is equal to q.
Moreover, the perfect matching set has the form {{x, x + q} | x ∈ V(Γ)},
where q is a prime number and q > 2.

(iii) Cayp(Zpq, S) has no perfect matching. But it has a matching of the form
{i, q + i | 0 ≤ i ≤ q − 1}, where p, q are distinct prime numbers p < q

and p, q ̸= 2.

(iv) The perfect matching number of Cayp(Z2αq, S) is 2α−1q, where q is a
prime number and α is a positive integer.

Proof. (i) We know Cayp(Zpα , S) is isomorphic to the disjoint union of pα−1

complete components on p vertices. By the definition of the perfect matching
number, it is enough to take one edge from each component. Thus the perfect
matching number is pα−1.
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(ii) Cayp(Z2q, S) have two cliques on q vertices and there exist some edges
between these two complete graphs. Two vertices x, y of each clique, are joined
to each other, if their difference is equal to q. Moreover, each vertex that
belongs to the first Kq is joined to exactly one vertex that belongs to the
second. It is clear that the edges between these two complete graphs form a
perfect matching for Cayp(Z2q, S).
(iii) Γ = Cayp(Zpq, S) has p cliques on q vertices and there exist some edges
between these two cliques. Since the number of the components is odd, then we
have no perfect matching. The edges between these two cliques are {x, x+p | x ∈

V(Γ)} and {x, x+q | x ∈ V(Γ)}. Now we omit edges that have a vertex in common
and we obtain a matching {i, q+ i | 0 ≤ i ≤ q− 1}.
(iv) Note that Cayp(Z2αq, S) has 2α−1 components and each component is
isomorphic to P2×Kq. Consider the component which contains zero. The vertex
zero and all the q− 1 elements of order q, make a clique Kq. We denoted two
of these q− 1 vertices by x, y. The next Kq is consists of the vertex t of order
2 and x + t, y + t. In addition 0, x and y are joined to t, x + t and y + t,
respectively. In general, ith component of Cayp(Z2αq, S) has two cliques of
size q, and there exist some edge between them, where 1 ≤ i ≤ 2α − 1. In
fact the vertices i, x + i and y + i of the first clique are joined to the vertices
t + i, x + t + i and y + t + i of the second clique, respectively. So according
to our observation above, the perfect matching number for each component is
equal to q. Since we have 2α − 1 components that do not overlap, then the
perfect matching number is equal to q+ q+ ...+ q︸ ︷︷ ︸

2α−1

. □

A perfect code in a graph Γ = (V, E) is a subset C of V that is an independent
set such that every vertex in V\C is adjacent to exactly one vertex in C.
A total perfect code in Γ is a subset C of V such that every vertex of V is
adjacent to exactly one vertex in C (see [7]). In the following theorem, we will
specify the total perfect code for Cayp(Zn, S), when n is given.

Theorem 4 (i) If n = 2q, then one of the total perfect codes for Cayp(Z2q, S)

is the set {0, q}, where q is a prime number and q > 2.

(ii) If n = pq, then Cayp(Zpq, S) has no total perfect code, where p, q are
prime numbers p < q and p, q ̸= 2.

(iii) If n = pα, then Cayp(Zpα , S) has no total perfect code. But it has a
perfect code which is equal to the set {0, 1, ..., pα−1 − 1}, where p is a
prime number and α is a positive integer.
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Proof. By the structure of prime order Cayley graph and total perfect code
definition, the proof is clear. □

In the next theorem, we discuss Cayp(Zn, S) planarity.

Theorem 5 The graph Cayp(Zn, S) is planar if and only if n = 1, 2, 3, 2α×3β,
where α,β are positive integers and α,β ≥ 1.

Proof. If n = 1, 2, 3, 4, then by the Figure 3, it is clear that Cayp(Zn, S) is
planar. If n = 2α×3β, we know that Cayp(Z2α×3β , S) is isomorphic to disjoint

Cayp(Z1, S) Cayp(Z4, S)Cayp(Z3, S)Cayp(Z2, S)

Figure 3:

union of 2α−1× 3β−1 copies of K2×K3. So it is enough to discuss about one of
its components. Clearly K2×K3 has neither K5 nor K3,3 subdivision. Therefore
it is planar. Now, suppose that Cayp(Zn, S) be a planar graph. If 5 devides n,
then we obtain the number of elements of order 5 in Zn,

x ∈ Zn, 5 = |x| =
n

gcd(x, n)
=

5w

gcd(x, 5w)
.

Therefore gcd(x, 5w) = wl, 1 ≤ l ≤ 4. These 4 elements are of order 5, so
they belong to S and together with 0, form a clique K5. Thus in this case,
Cayp(Zn, S) can not be a planar graph. Hence 5 does not divide n. Moreover,
if m > 5 and m divides n, again we can find a clique Km, which contains a K5

subdivision. Therefore the only prime numbers that can be divisors of n are
2 and 3. □

3 The adjacency matrix of Cayp(Zn, S)

In this section, we compute the adjacency matrix of the prime order Cayley
graph assigned to Zn for different values of n. Moreover, we will calculate its
determinant and eigenvalues. Let us start with this necessary definition.

Definition 2 A circulant matrix is fully specified by one vector c, which ap-
pears as the first row (or column) of C. The remaining rows (and columns,
respectively) of C are each cyclic permutations of the vector c with offset equal
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to the row (or column) index, if lines are indexed from 1 to n (see [6]). The cor-
responding eigenvalues are given by λj = c1+c2ωj+c3ωj

2+ ...+cnωj
n−1,ωj =

e
2πj

n , j = 0, 1, ..., n− 1. Therefore the determinant of a circulant matrix can be
computed as

det(C) =
n−1∏

j=0

(c1 + c2ωj + c3ωj
2 + ...+ cnωj

n−1).

The following proposition will pave the way for proof of the next theorems in
this section.

Proposition 1 The adjacency matrix of Cayp(Zpq, S) is circulant, where p, q
are distinct prime numbers.

Proof. Obviously, S = {p, 2p, ..., (q− 1)p, q, ..., (p− 1)q}. By the structure of
the prime order Cayley graph, we know that the vertex zero is joined to all
elements belong to S. Hence in the first row, all entries in the (1, kp+ 1), 1 ≤

k ≤ q−1 and (1, k
′

q+1), 1 ≤ k
′

≤ p−1 positions, are equal to one. The next
vertex, i.e. vertex 1 differs with zero one unit. Therefore its corresponding row
can be determined by shifting the entries in the row corresponding to zero,
one unit to the right. Since the vertex i differs with the vertex zero, i unit,
then the row corresponding to the vertex i can be specified by shifting entries
in the row corresponding to zero, i unit to the right. □

In the next theorem the notation ⌈M⌉

⌊m⌋
stands for the multiplication of m prime

numbers belong to M, where M is the set of all the prime numbers, which
divide

∏n
i=1 pi and pi’s are distinct prime numbers and p1 < p2 < ... < pn

(1 ≤ m ≤ n).

Theorem 6 (i) In the jth row of the adjacency matrix of Cayp(Z
∏n

i=1 pi
, S),

the columns ⌈M⌉

⌊n−1⌋
l+ j, 1 ≤ j ≤

∏n
i=1 pi, 1 ≤ l ≤ pi − 1 are equal to one,

where pi’s are distinct prime numbers and p1 < p2 < ... < pn.

(ii) In the jth row of the adjacency matrix of Cayp(Z∏n
i=1 p

αi
i
, S), the columns

⌈M⌉

⌊n−1⌋
pαk−1
k l + j, 1 ≤ l ≤ pk − 1 are equal to one, where pi’s are prime

numbers p1 < p2 < ... < pn and αi’s are positive integers 1 ≤ i ≤ n.

Proof. (i) First note that

S = {x ∈ Z∏n
i=1 pi

| |x| = pi =

∏n
i=1 pi

gcd(x,
∏n

i=1 pi)
}
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= {x ∈ Z∏n
i=1 pi

| x =
⌈M⌉

⌊n− 1⌋
l , 1 ≤ l ≤ pi − 1},

where pi is a prime number that does not appear in the multiplication ⌈M⌉

⌊n−1⌋
.

Clearly, the vertex zero is joined to all vertices in S. Thus the pi − 1 columns
⌈M⌉

⌊n−1⌋
l, 1 ≤ l ≤ pi − 1 in the first row are equal to one. Therefore, the number

of ones in the first row will be
∑n

i=1(pi − 1). Since, the adjacency matrix
of Cayp(Z

∏n
i=1 pi

, S) is circulant, we can write the next rows from the first
one. For instance, the second row, corresponding to vertex one is obtained by
shifting all entries of the first row, one unit to the right. Hence the columns
⌈M⌉

⌊n−1⌋
l+ 1, 1 ≤ l ≤ pi − 1 are equal to one. Continuing this way, the columns

⌈M⌉

⌊n−1⌋
l+ j, 1 ≤ j ≤

∏n
i=1 pi, 1 ≤ l ≤ pi − 1 in the jth row are equal to one.

(ii) We know that M = {pαi

i | 1 ≤ i ≤ n}. So the set S is as

S = {x ∈ Z∏n
i=1 pi

| |x| = pi =

∏n
i=1 p

αi

i

gcd(x,
∏n

i=1 p
αi

i )
, 1 ≤ l ≤ pk}

= {x ∈ Z∏n
i=1 p

αi
i

| x =
⌈M⌉

⌊n− 1⌋
pαk−1
k l , 1 ≤ l ≤ pk − 1},

where pk is a prime number that does not appear in ⌈M⌉

⌊n−1⌋
. It is clear that

vertex zero is joined to all vertices in S. Thus the columns ⌈M⌉

⌊n−1⌋
p
αk−1

k l+1, 1 ≤

l ≤ pk − 1, in the first row are equal to one. Since the adjacency matrix of
Cayp(Z∏n

i=1 p
αi
i
, S) is circulant, then the jth row corresponding to vertex j− 1

is obtained by shifting the entries in the first row j unit to the right. So the
columns ⌈M⌉

⌊n−1⌋
pαk−1
k l+ j, 1 ≤ l ≤ pk − 1 in the jth row are equal to one. □

Now, consider Cayp(Z30, S). In order to obtain its adjacency matrix, it is
enough to find out vertices of prime order which are adjacent to zero. By
this process, we can present the first row of the adjacency matrix. By use of
the proof of Theorem 6 the position of such vertices are (1,

⌈M⌉

⌊2⌋
l + 1), where

M = {2, 3, 5} and 1 ≤ l ≤ p− 1 for all p ∈ M. Therefore, the columns ⌈M⌉

⌊2⌋
l+ 1

are 1 and the rest columns are 0, in the first row. Consequently,

Columns 1 .. 7 .. 11 .. 19 .. 21 .. 25 ..

First row 0 0 . . . 0 1 0 . . . 0 1 0 . . . 0 1 0 . . . 0 1 0 . . . 0 1 0 . . . 0

shows the first row.

Theorem 7 The spectrum of the graph Cayp(Zps×qs
′ , S) is the set

{p+ q− 2, q− 2, p− 2,−2}.
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Proof. We remind that the graph Cayp(Zps×qs
′ , S) is isomorphic to disjoint

union of ps−1qs
′

−1 copies of Kp×Kq. Moreover, the spectrum of a disconnected
graph is the disjoint union of the spectra of its components. So we need to find
the spectrum of one of its components. Each component has the form Kp×Kq

and by Proposition 1 we have spec(A(Kp × Kq)) = {λ + µ | λ ∈ spec(Kp), µ ∈

spec(Kq)}. On the other hand, the spectrum of the graph Kp and Kq are λ1 =

p − 1, λ2 = ... = λp = −1 and µ1 = q − 1, µ2 = ... = µq = −1, respectively.
Hence the spectrum of A(Kp × Kq) is λ

′

1 = p+ q− 2, λ
′

2 = q− 2, λ
′

3 = p− 2,
λ

′

4 = −2 with multiplicity 1, p− 1, q− 1 and (p− 1)(q− 1), respectively. □

Corollary 1 The determinant of the adjacency matrix of Cayp(Zps×qs
′ , S) is

((p+ q− 2)(q− 2)p−1(p− 2)q−1(−2)(p−1)(q−1))p
s−1qs

′

−1

.

Proof. By the structure of Cayp(Zps×qs
′ , S), we label the vertices, such that

the adjacency matrix has the following form

A(Cayp(Zps×qs
′ , S)) =











B1 0 . . . 0

0 B2 . . . 0
...

...
. . .

...
0 0 . . . B

ps−1qs
′
−1











where Bi = A(Kp × Kq), 1 ≤ i ≤ ps−1qs
′

−1. By the Theorem 7 we obtain
det(Bi) = det(A(Kp × Kq)) = (p+ q− 2)(q− 2)p−1(p− 2)q−1(−2)(p−1)(q−1).
Moreover, by Remark 1,

det(A(Cayp(Zps×qs
′ , S))) =

ps−1qs
′

−1
∏

i=1

det(Bi)

= ((p+ q− 2)(q− 2)p−1(p− 2)q−1(−2)(p−1)(q−1))p
s−1qs

′

−1

.

□

4 The prime order Cayley graph of groups D2n and

Q4n

In this section, we compute the adjacency matrices of the prime Cayley graphs
Cayp(D2n, S) and Cayp(Q4n, S) for different values of n. Furthermore, by
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use of the adjacency matrix, we clarify the structure of Cayp(D2n, S) and
Cayp(Q4n, S). Recall that D2n =< x, a |an = x2 = e, xax−1 = a−1 > is the
Dihedral group of order 2n. In general, the adjacency matrix of Cayp(D2n, S),
when n is given, has the form

A(Cayp(D2n, S)) =

(

B Jn
Jn B

)

,

where Jn is an n×n matrix of all ones and the rows and the columns of B are
indexed by the elements {e, a, a2, ..., an−1} of the group D2n. According to the
structure of A(D2n), it is enough to characterize the matrix B. We know that
B is a circulant matrix, so according to the definition of the circulant matrix,
we need to determine the first row of B.

Proposition 2 The structure of the block B of the adjacency matrix of
Cayp(D2n, S), when n takes different values is as follows:

(i) If n = 2α, then in the first row of the block matrix B, the entry in the
(1, 2α−1 + 1) position is one and all the other entries are equal to zero,
where α is a positive integer and α > 1.

(ii) If n = pα, then in the first row of the block matrix B, all entries in the
(1, kpα−1+ 1) positions, 1 ≤ k ≤ p− 1 are equal to one and all the other
entries are equal to zero, where p is a prime number p > 2 and α is a
positive integer α > 1.

(iii) If n = 2q, then in the first row of the block matrix B, all entries in the
(1, 1+q) and (1, 2l+ 1) positions, 1 ≤ l ≤ q− 1 are equal to one and all
the other entries are equal to zero and we have q entries equal to one,
where q is a prime number q ̸= 2.

(iv) If n = 2qα, then in the first row of the block matrix B, all entries in the
(1, 1+ qα) and (1, 2qα−1l+ 1) positions, 1 ≤ l ≤ q− 1 are equal to one
and all the other entries are equal to zero and we have q entries equal to
one, where q is a prime number q ̸= 2 and α is a positive integer α ̸= 1.

(v) If n =
∏t

s=1 ps, then in the first row of the block matrix B, all entries
in the (1, l

∏t
s
′
=1,s̸=s

′ ps
′ + 1) positions, 1 ≤ l ≤ ps − 1 are equal to one

and all the other entries are equal to zero, where ps’s are prime numbers
and ps ̸= 2, 1 ≤ s ≤ t.
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(vi) If n =
∏t

s=1 p
αs
s , then in the first row of the block matrix B, all entries

in the (1, lpα1

1 ...p
αs−1

s−1 pαs−1
s p

αs+1
s ...pαt

t + 1) positions, 1 ≤ l ≤ ps − 1 are
equal to one and all the other entries are equal to zero, where ps’s are
prime numbers (ps ̸= 2, 1 ≤ s ≤ t) and αs’s are positive integers αs > 1.

(vii) If n = 2
∏t

s=1 p
αs
s , then in the first row of the block matrix B, all entries

in the (1,
∏t

s=1 p
αs
s + 1) and (1, l2pα1

1 ...p
αs−1

s−1 pαs−1
s p

αs+1
s ...pαt

t + 1) posi-
tions, 1 ≤ l ≤ ps − 1 are equal to one and all the other entries are equal
to zero, where ps’s are distinct prime numbers ps ̸= 2, 1 ≤ s ≤ t and
αs’s are positive integers αs > 1.

Proof. (i) We determine the first row of B. For this, we must specify that
e is joined to which powers of a. It is enough to find powers of a, namely
i, such that ai has prime order. We have 2 = |ai| = 2α

gcd(2α,i)
and therefore

gcd(2α, i) = 2α−1 which implies that i = k2α−1, 1 ≤ k < 2. Hence e is joined

to a2α−1

, and the (1, 2α−1 + 1)-entry of B is 1. The proof of (ii), (iii), (iv), (v)
and (vi) are similar to the proof of part (i). So the assertion is clear. □

Now by the above proposition, we can easily determine A(Cayp(D2n, S)) and
compute its determinant and eigenvalues, where n is the multiplication of
distinct prime numbers.

Theorem 8 Let n =
∏t

s=1 p
αs
s . Then we have the following results for A(Cayp

(D2n, S)), where ps’s are distinct prime numbers (ps ̸= 2, 1 ≤ s ≤ t).

(i) In the first row of B + Jn, we have 2 where e is joined to ai and all
the other entries are equal to 1, where i = lpα1

1 ...p
αs−1

s−1 pαs−1
s p

αs+1
s ...pαt

t ,
1 ≤ l ≤ ps − 1.

(ii) If [x1, x2, ..., xn] is the first row of A(Cayp(D2n, S)), then

λj = x1 + x2ωj + x3ωj
2 + ...+ xnωj

n−1,

where ωj = e
2πj

n , j = 0, 1, ..., n− 1. Moreover,

det(A(Cayp(D2n, S))) =

n−1∏

j=0

(x1 + x2ωj + x3ωj
2 + ...+ xnωj

n−1)

=

n−1∏

j=0

(
∑

ak ̸∼e

ωk
j +

∑

ak∼e

2ωk
j ).
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Proof. (i) By the argument before Proposition 2, A(Cayp(D2n, S)) has the
form

A(Cayp(D2n, S)) =

(

B Jn
Jn B

)

.

By the definitions of the prime order Cayley graph and D2n, clearly a is
joined to ps elements of D2n and the identity element e is joined to ai, where
i = lpα1

1 ...p
αs−1

s−1 pαs−1
s p

αs+1
s ...pαt

t , 1 ≤ l ≤ ps − 1.
(ii) By the Definition 2 and the discussion after it, the assertion is clear. □

In the following remark, we will classify Cayp(D2n, S) vertices. This vertex
classification is useful to obtain some facts about the structure of the graph
such as the chromatic number.

Remark 2 Consider Cayp(D2n, S).

(i) If n = 2α (α > 1), then the graph vertices is partitioned into the sets

A1 = {ai, a2α−1+i} and A2 = {aib, a2α−1+ib}, where 0 ≤ i < α. In each

of these two sets, we have ai ∼ a2α−1+i and aib ∼ a2α−1+ib, for every
0 ≤ i < α. Furthermore, each vertex of A1 is adjacent to each vertex A2.

(ii) If n = pα, p > 2, α ≥ 1, then the vertices is classified to the sets Ai =

{ai, ai+p, ai+2p, ..., ai+(p−1)p} and Bi = {aib, ai+pb, ai+2pb,

. . . , ai+(p−1)pb}, where 0 ≤ i < p. All the vertices in each Ai are adjacent
for 0 ≤ i < p. But there’s no connection between any two vertices of Ai

and Aj, where i ̸= j (0 ≤ i, j < p). Similarly, all the vertices in each Bi

are adjacent for 0 ≤ i < p. Moreover, there’s no connection between Bi

and Bj, for i ̸= j. Note that every vertex that belongs to Ai is adjacent
to every vertex in Bi, for 0 ≤ i < p.

(iii) If n = 2q, q ̸= 2, then the graph vertices is partitioned to A1 = {a2k |

0 ≤ k ≤ q − 1}, A2 = {a2k ′+1 | 0 ≤ k ′ ≤ q − 1} A3 = {a2l | 0 ≤ l ≤

q − 1}, A4 = {a2l ′+1 | 0 ≤ l ′ ≤ q − 1}. The vertices belonging to A1

form a clique Kq and similarly A2. Moreover, there is some connection
between A1 and A2. The vertices ai and aq+i are adjacent (0 ≤ i ≤

q − 1). All the vertices of A3 form a clique Kq and similarly for A4.
The connection between these two sets is between the vertices aib and
aq+ib (0 ≤ i ≤ q − 1). Note that each vertex in one of the sets A1 and
A2 is adjacent to each vertex in sets A3 and A4.

(iv) If n = 2qα, q > 2, α > 1, then the graph vertices is partitioned to

Ai = {ai, ai+2q, ai+2(2q), ..., ai+(q−1)2q},
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Bi = {aib, ai+2qb, ai+2(2q)b, ..., ai+(q−1)2qb},

0 ≤ i ≤ 2q− 1. For each i, all the vertices belonging to Ai are connected
and, for Bi, we have the same. Furthermore, there’s some connection
between some of Ai’s. The vertices at and at+qα

are adjacent for 0 ≤

t ≤ qα − 1. Similarly, there are some edges between some of the sets Bi.
The vertices at ′b and at ′+qα

b are adjacent for each 0 ≤ t ′ ≤ qα − 1.

a2b

b

ab

a3b

e

a2

a

a3

e

a

a2

b

ab

a2b

Figure 4: Cayp(D8, S) and Cayp(D6, S)

a3

a

a5

e

a4

a2

a2b

a4b

b

a3b

a5b

ab

Figure 5: Cayp(D12, S)

The line between two circles represents the edges connect all the vertices in
each component.

Note that in Figure 5, the line between two circles means that all the vertices
in the first circle are adjacent to all the vertices in the second. We create this
display for simplicity. In the next theorem, we compute the chromatic number
of Cayp(D2n, S) by using the Remark 2 and its notations.

Theorem 9 (i) The chromatic number of graph Cayp(D2n, S) is 4, where
n = 2α, α > 1.

(ii) The chromatic number of Cayp(D2n, S) is 2p, where n = pα, p > 1,

α > 1.
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(iii) The chromatic number of Cayp(D2n, S) is 2q, where n = 2q, q ̸= 2.

(iv) The chromatic number of Cayp(D2n, S) is 2q, where n = 2qα, q ̸= 2,

α ̸= 1.

Proof. (i) By Remark 2 and using its notations, we color the vertices of A1

first. For each i, we color ai and a2α−1+i with two distinct colors, say l1 and
l2, respectively. Since a2α−1+i ̸∼ aj, for i ̸= j (0 ≤ i, j < α), the vertices aj and

a2α−1+j which i ̸= j can be colored with l1 and l2, respectively. Similarly, we
can color the vertices of A2 with colors l3 and l4. Hence χ(Cayp(D2n, S)) = 4,
where n = 2α (α > 1).
(ii) For coloring the vertices of an arbitraryAi (0 ≤ i < p), we need p colors.
We can color the sets Aj which i ̸= j with these p colors. We have the same
for Bi’s. Since each vertex of Ai’s is adjacent to each vertex of Bi’s, we need
2p colors for coloring the graph.
(iii) We color the vertices of A1 with q colors namely l1, ..., lq. For each k (0 ≤

k ≤ q−1), a2k ∼ a2k+q. So if a2k has been colored with lt (1 ≤ t ≤ q), then we
can color a2k+1of the set A2 with lt. All the vertices in A1 and A2 are adjacent
to each vertex in A3 and A4. So we need q new colors for coloring A3 and A4.
We color A3 and A4 in the same way. Therefore, χ(Cayp(D2n, S)) = 2q, where
n = 2q (q ̸= 2).
(iv) The proof of this part is similar to the proof of part (iii). □

Now we determine the adjacency matrix of the prime order Cayley graph
associated with Q4n, for different values of n. The generalized quaternion
group of order 4n is defined as Q4n =< a, b |a2n = 1, an = b2, bab−1 =

a−1 > . In general, the adjacency matrix of Cayp(Q4n, S), when n is given,
has the following form

A(Cayp(Q4n, S)) =

(

B 0

0 B

)

,

where the columns of B are indexed by the elements {e, a, a2, ..., a2n−1} of the
groupQ4n. So it is enough to determine matrix B. Since B is a circulant matrix,
we only need to specify the first row of B.

Proposition 3 The structure of the block B of the adjacency matrix of
Cayp(Q4n, S) is as follows:

(i) In block B of A(Cayp(Q4n, S)), the entry in the (1, 2α + 1) position is
equal to one and all the other entries are equal to zero, where n = 2α,

where α > 1.
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(ii) In block B of A(Cayp(Q4n, S)), the entries in the (1, pα

+1) and (1, 2lpα−1+1) positions are equal to one and all the other entries
are equal to zero, where n = pα, where α > 1, p > 2, 1 ≤ l ≤ p− 1.

(iii) In block B of A(Cayp(Q4n, S)), the entries in the (1, 4l+1) and (1, 2q+1)

positions are equal to one and all the other entries are equal to zero,
where n = 2q, where q ̸= 2, 1 ≤ l ≤ q− 1.

(iv) In block B of A(Cayp(Q4n, S)), the entries in the (1, 2qα+1) and (1, 2qα−1

l + 1) positions are equal to one and all the other entries are equal to
zero, where n = 2qα, α > 1, q ̸= 2, 1 ≤ l ≤ q− 1.

(v) In block B of A(Cayp(Q4n, S)), the entries in the (1, n+1) and (1, 2
∏t

s=1

psl+ 1) positions are equal to one and all the other entries are equal to
zero, where n =

∏t
s=1 ps, where ps ̸= 2, 1 ≤ l ≤ ps ′ − 1).

Proof. For determining the first row of B, we must specify the powers of a
which e is joined to them. For case (i), we have 2 =| ai |= 2α+1

gcd(2α+1,i)
, therefore

gcd(2α+1, i) = 2α and i = 2αk (1 ≤ k < 2). So e is joined to a2α and the
(1, a2α + 1)-entry of B is 1. For the other cases, the proof is similar to case
(i). □

In the next theorem, we present the appearance of the graph Cayp(Q4n, S)

for different n’s.

Theorem 10 (i) The graph Cayp(Q4n, S) is the disjoint union of 2α+1

copies of the complete graphs K2, where n = 2α (α > 1).

(ii) The graph Cayp(Q4n, S) is the disjoint union of 2pα−1 copies of the
Cartesian product of K2 and Kp, where n = pα (α > 1, p > 2).

(iii) The graph Cayp(Q4n, S) is the disjoint union of 4n
2q copies of the Carte-

sian product of K2 and Kq, where n = 2qα (α ≥ 1 q ̸= 2).

Proof. (i) We know S = {a2α} and for each i (0 ≤ i ≤ 2α − 1), ai ∼ a2α+i and
aib ∼ a2α+ib. Since there is not any other connection between the vertices, we
have 2α+1 complete graphs K2.
(ii) Note that S = {apα , a2lpα−1

, 1 ≤ l ≤ p − 1} and for each i (0 ≤ i ≤

pα−1 − 1), ai ∼ apα+i, ai ∼ a2lpα−1+i, aib ∼ apα+ib and aib ∼ a2lpα−1+ib,

(1 ≤ l ≤ p− 1). The vertices ai and a2lpα−1+i, 1 ≤ l ≤ p− 1 form a complete

graph Kp. Furthermore, each Kp on the vertices ai and a2lpα−1+i is connected

to another Kp that is formed by the vertices ai+pα−1

and ai+(2l ′+1)pα−1

(0 ≤
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i ≤ pα−1 − 1, 1 ≤ l, l ′ ≤ p− 1). More precisely for 1 ≤ l ≤ [p2 ], a
i ∼ apα+i and

a2lpα−1+i ∼ a2lpα−1+i+pα and for 1 + [p2 ] ≤ l ≤ p − 1, a2lpα−1+i ∼ a2lpα−1+i−pα .
These vertices form the Cartesian product of two graphs K2 and Kp. We have

the same argument for the vertices aib and a2lpα−1+ib, 1 ≤ l ≤ p−1. All these
vertices form pα−1 copies of K2 × Kp. Hence we have 2pα−1 copies of K2 × Kp.
(iii) It is similar to proof of the case (ii). □

By Theorem 10, the structure of Cayp(Q4n, S) and the argument above the
Theorem 2, we have the following result.

Corollary 2 (i) χ(Cayp(Q4n, S)) = 2, where n = 2α (α > 1).

(ii) χ(Cayp(Q4n, S)) = pα−1, where n = pα (p > 2, α > 1).

(iii) χ(Cayp(Q4n, S)) = q, where n = 2qα (q ̸= 2, α ≥ 1).
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