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Abstract. We show the uniformly boundedness of the L1 norm of gen-
eral matrix transform kernel functions with respect to the Walsh-Paley
system. Special such matrix means are the well-known Cesàro, Riesz,
Bohner-Riesz means. Under some conditions, we verify that the kernels
KT
n =

∑n
k=1 tk,nDk, (where Dk is the kth Dirichlet kernel) satisfy∥∥KT

n

∥∥
1
≤ c.

As a result of this we prove that for any 1 ≤ p < ∞ and f ∈ Lp the Lp-
norm convergence

∑n
k=1 tk,nSk(f) → f holds. Besides, for each integrable

function f we have that these means converge to f almost everywhere.

1 Definitions and notations

We follow the standard notions of dyadic analysis introduced by F. Schipp,
W. R. Wade, P. Simon, and J. Pál [18] and others.
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Let P be the set of positive natural numbers and N := P ∪ {0}. Let denote
by Z2 the discrete cyclic group of order 2, the group operation is the modulo
2 addition. Let be every subset open. The normalized Haar measure µ on Z2

is given in the way that µ({0}) = µ({1}) = 1/2. G :=
∞
×
k=0

Z2, G is called the

Walsh group. The elements of Walsh group G are sequences of numbers 0 and
1, that is x = (x0, x1, . . . , xk, . . . ) with xk ∈ {0, 1} (k ∈ N).
The group operation on G is the coordinate-wise addition (denoted by +),

the normalized Haar measure µ is the product measure and the topology is
the product topology. Dyadic intervals are defined in the usual way

I0(x) := G, In(x) := {y ∈ G : y = (x0, . . . , xn−1, yn, yn+1, . . . )}

for x ∈ G,n ∈ P. They form a base for the neighbourhoods of G. Let 0 := (0 :
i ∈ N) ∈ G denote the null element of G and In := In(0) for n ∈ N.
Let Lp(G) denote the usual Lebesgue spaces on G (with the corresponding

norm ∥.∥p), where 1 ≤ p < ∞.
We introduce some concepts of Walsh-Fourier analysis. The Rademacher

functions are defined as

rk(x) := (−1)xk (x ∈ G, k ∈ N).

The Walsh-Paley functions are the product functions of the Rademacher func-
tions. Namely, each natural number n can be uniquely expressed in the number
system based 2, in the form

n =

∞∑
k=0

nk2
k, nk ∈ {0, 1} (k ∈ N),

where only a finite number of nk’s different from zero. Let the order of n > 0

be denoted by |n| := max{j ∈ N : nj ̸= 0}. Walsh-Paley functions are w0 := 1

and for n ≥ 1

wn(x) :=

∞∏
k=0

rnk

k (x) = (−1)
∑|n|

k=0 nkxk .

Let Pn be the collection of Walsh polynomials of order less than n, that is,
functions of the form

P(x) =

n−1∑
k=0

akwk(x),

where n ∈ P and {ak} is a sequence of complex numbers.
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It is known [11, 18] that the system (wn, n ∈ N) is a character system of
(G,+). The nth Fourier-coefficient, the nth partial sum of the Fourier series
and the nth Dirichlet kernel is defined by

f̂(n) :=

∫
G

fwndµ, Sn(f) :=

n−1∑
k=0

f̂(k)wk, σn(f) :=
1

n

n∑
k=1

Sk(f),

Dn :=

n−1∑
k=0

wk, D0 := 0.

Fejér kernels are defined as the arithmetical means of Dirichlet kernels, that
is,

Kn :=
1

n

n∑
k=1

Dk.

Let T := (ti,j)
∞
i,j=1 be a doubly infinite matrix of numbers. It is always

supposed that matrix T is triangular. Let us define the nth matrix transform
mean (or linear mean) determined by the matrix T

σT
n(f) :=

n∑
k=1

tk,nSk(f),

where {tk,n : 1 ≤ k ≤ n, k ∈ P} be a finite sequence of non-negative numbers
for each n ∈ P.
It is a common generalisation of the partial sum of Fourier series (see Remark

2) and several well-known (e.g. Fejér, Cesàro, Nörlund, weighted, Riesz) means.
The approximation properties of these means with respect to Walsh system

was studied by several mathematicians. For example, including but not limited
to (in alphabetic order) Baramidze [1], Blahota [5], Gát [8], Goginava [9], Fridli
[7], Jastrebova [12], Oniani [10], Manchanda [7], Marcinkiewicz [13], Memić
[14], Móricz [15], Nagy [16], Paley [17], Pál [18], Persson [1], Rhoades [15],
Schipp [18], Siddiqi [7], Simon [18], Singh [1], Skvortsov [19], Tephnadze [1],
Toledo [5], Wade [18], Weisz [23], Yano [21], Walsh [22], Zygmund [13] and
several others. (Mentioned only one paper or book per authors.)
The nth matrix transform kernel (T kernel) is defined by

KT
n :=

n∑
k=1

tk,nDk.
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It is easily seen that

σT
n(f; x) =

∫
G

f(u)KT
n(u+ x)dµ(u).

This equality (and its analogous versions for special means) shows us the
necessity of observing kernel functions.
We introduce the notation ∆tk,n := tk,n − tk+1,n, where k ∈ {1, . . . , n} and

tn+1,n := 0.
For some other results on matrix transform means see e.g. [2], [3] and [4].
In the sequel, we summarise the main results of this paper. Let {tk,n : 1 ≤

k ≤ n} be a finite and monotone (not necessarily in the same sense for different
n’s) sequence of non-negative numbers such that

∑n
k=1 tk,n = 1. Then we prove

the almost everywhere convergence σT
n(f) → f for each integrable f and also

the norm convergence σT
n(f) → f for any f ∈ Lp(G) for each 1 ≤ p < ∞ and

also for continuous functions (that is, for functions in C(G)).

2 Auxiliary results

To prove Theorem 1 we need the following Lemmas.

Lemma 1 (Paley’s Lemma [18], p. 7.) For n ∈ N

D2n(x) =

{
2n, if x ∈ In,

0, if x /∈ In.

Lemma 2 ([18], p. 34.) For k, n ∈ N, k < 2n

D2n+k = D2n + rnDk.

Lemma 3 (Yano’s Lemma [21]) For n ∈ N

∥Kn∥1 ≤ 2.

In 2018 Toledo [20] improved this result, but for our proof the knowledge of
the exact supremum of ∥Kn∥1 is not necessary, just its boundedness.
In the next lemma, we give a decomposition of the kernels KT

n.

Lemma 4 Let n ∈ P. Then we have

KT
n =

|n|−1∑
j=0

2j−1∑
k=0

t2j+k,nD2j
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+

|n|−1∑
j=0

rj

2j−2∑
k=1

∆t2j+k,nkKk +

|n|−1∑
j=0

rjt2j+1−1,n(2
j − 1)K2j−1

+

n−2|n|∑
k=0

t2|n|+k,nD2|n| + r|n|

n−2|n|∑
k=1

∆t2|n|+k,nkKk

=:

5∑
j=1

Kj,n.

Proof. We write

KT
n =

|n|−1∑
j=0

2j+1−1∑
l=2j

tl,nDl +

n∑
l=2|n|

tl,nDl =: KA
n + KB

n.

Now, we apply Lemma 2 for the expressions KA
n and KB

n. We get

KA
n =

|n|−1∑
j=0

2j−1∑
k=0

t2j+k,nD2j+k

=

|n|−1∑
j=0

2j−1∑
k=0

t2j+k,nD2j +

|n|−1∑
j=0

rj

2j−1∑
k=1

t2j+k,nDk.

Using Abel-transform

2j−1∑
k=1

t2j+k,nDk =

2j−2∑
k=1

∆t2j+k,nkKk + t2j+1−1,n(2
j − 1)K2j−1.

Similarly,

KB
n =

n−2|n|∑
k=0

t2|n|+k,nD2|n|+k

=

n−2|n|∑
k=0

t2|n|+k,nD2|n| + r|n|

n−2|n|∑
k=1

t2|n|+k,nDk.

Using tn+1,n = 0 and Abel-transform again we obtain

n−2|n|∑
k=1

t2|n|+k,nDk =

n−2|n|−1∑
k=1

∆t2|n|+k,nkKk + tn,n(n− 2|n|)Kn−2|n|
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=

n−2|n|∑
k=1

∆t2|n|+k,nkKk.

It completes the proof of Lemma 4. □

3 Boundedness of the L1 norm of matrix transform
kernel

Theorem 1 For every n ∈ P, {tk,n : 1 ≤ k ≤ n} be a finite sequence of
non-negative numbers such that

n∑
k=1

tk,n = O(1) (1)

is satisfied.
a) If the finite sequence {tk,n : 1 ≤ k ≤ n} is non-decreasing as a function of

k for all fixed n and the condition

tn,n = O

(
1

n

)
(2)

is satisfied, or
b) if the finite sequence {tk,n : 1 ≤ k ≤ n} is non-increasing as a function of

k for all fixed n,
then the L1-norm of the T kernel is bounded uniformly. Namely,∥∥∥KT

n

∥∥∥
1
≤ c

holds.

Proof. During our proofs c denotes a positive constant, which may vary at
different appearances.
We use Lemma 4 ∥∥∥KT

n

∥∥∥
1

=

∫
G

∣∣∣KT
n(x)

∣∣∣dµ(x)
≤

5∑
j=1

∫
G

|Kj,n(x)|dµ(x)
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=:

5∑
j=1

Ij,n.

Using Lemma 1 for the expressions I1,n and I4,n, we obtain

I1,n ≤
|n|−1∑
j=0

2j−1∑
k=0

t2j+k,n

∫
G

|D2j(x)|dµ(x)

=

|n|−1∑
j=0

2j−1∑
k=0

t2j+k,n

=

2|n|−1∑
k=1

tk,n ≤ c

and also using Condition (1)

I4,n ≤
n∑

k=2|n|

tk,n

∫
G

|D2|n|(x)|dµ(x)

=

n∑
k=2|n|

tk,n ≤ c.

Applying Lemma 3 we get

I2,n ≤
|n|−1∑
j=0

2j−2∑
k=1

|∆t2j+k,n|k

∫
G

|rj(x)Kk(x)|dµ(x)

=

|n|−1∑
j=0

2j−2∑
k=1

|∆t2j+k,n|k∥Kk∥1

≤ 2

|n|−1∑
j=0

2j−2∑
k=1

|∆t2j+k,n|k.

We write in case a)

2j−2∑
k=1

|∆t2j+k,n|k =

2j−2∑
k=1

(t2j+k+1,n − t2j+k,n)k
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= (2j − 2)t2j+1−1,n −

2j−2∑
k=1

t2j+k,n

≤ 2jt2j+1−1,n

and

I2,n ≤ 2

|n|−1∑
j=0

2jt2j+1−1,n

≤ 2ntn,n ≤ c.

We have in case b)

2j−2∑
k=1

|∆t2j+k,n|k =

2j−2∑
k=1

t2j+k,n − (2j − 2)t2j+1−1,n

≤
2j−2∑
k=1

t2j+k,n

and

I2,n ≤ 2

|n|−1∑
j=0

2j−2∑
k=1

t2j+k,n

≤ 2

2|n|−2∑
k=1

tk,n ≤ c.

We estimate the expression I3,n. Lemma 3 yields

I3,n ≤
|n|−1∑
j=0

2jt2j+1−1,n

∫
G

|rj(x)K2j−1(x)|dµ(x)

=

|n|−1∑
j=0

2jt2j+1−1,n ∥K2j−1∥1

≤ 2

|n|−1∑
j=0

2jt2j+1−1,n.
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So, in case a) we have got the same inequality, as in I2,n case a)

I3,n ≤ 2

|n|−1∑
j=0

2jt2j+1−1,n ≤ c.

We have in case b)

I3,n ≤ 2

|n|−1∑
j=0

2jt2j+1−1,n

≤ 2

2|n|−1∑
k=1

tk,n ≤ c.

Now, we estimate the expression I5,n. Lemma 3 yields again

I5,n ≤
n−2|n|∑
k=1

∣∣∆t2|n|+k,n

∣∣k ∫
G

|r|n|(x)Kk(x)|dµ(x)

=

n−2|n|∑
k=1

∣∣∆t2|n|+k,n

∣∣k∥Kk∥1

≤ 2

n−2|n|∑
k=1

∣∣∆t2|n|+k,n

∣∣k.
We get in case a)

n−2|n|∑
k=1

∣∣∆t2|n|+k,n

∣∣k =

n−2|n|−1∑
k=1

(t2|n|+k+1,n − t2|n|+k,n)k+ tn,n(n− 2|n|)

= tn,n(n− 2|n| − 1) −

n−2|n|−1∑
k=1

t2|n|+k,n + tn,n(n− 2|n|)

≤ 2ntn,n

and using Condition (2)

I5,n ≤ 4ntn,n ≤ c.

We have in case b)

n−2|n|∑
k=1

∣∣∆t2|n|+k,n

∣∣k =

n−2|n|∑
k=1

t2|n|+k,n
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=

n∑
k=2|n|+1

tk,n

and using Condition (1)

I5,n ≤ 2

n∑
k=2|n|

tk,n ≤ c.

This completes the proof of our Theorem 1. □

Corollary 1 Suppose that f ∈ Lp(G) for some 1 ≤ p < ∞ and for every
n ∈ P, {tk,n : 1 ≤ k ≤ n} be a finite sequence of non-negative numbers such
that

n∑
k=1

tk,n = 1

is satisfied.
a) If the finite sequence {tk,n : 1 ≤ k ≤ n} is non-decreasing as a function of

k for all fixed n and the condition

tn,n = O

(
1

n

)
is satisfied, or
b) if the finite sequence {tk,n : 1 ≤ k ≤ n} is non-increasing as a function of

k for all fixed n and we also have

lim
n→∞ tk,n = 0 (3)

for any fixed k,
then we have the Lp-norm convergence σT

n(f) → f.

Proof. We remark, that in the non-decreasing situation (case a) Condition
(3) trivially holds. The proof is a straightforward consequence of Theorem 1
and the usual density argument. That is, the set of Walsh polynomials is dense
in Lp(G) for each 1 ≤ p < ∞. Besides, for any Walsh polynomial P we have
Sn(P) = P for sufficiently large n. Say for n ≥ k0. Then, using Condition
(3) we have σT

n(P) =
∑k0−1

k=1 tk,nSk(P) +
∑n

k=k0
tk,nP → P in norm and also

everywhere. □
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4 Almost everywhere convergence

Norm convergence results for Walsh-Paley and more general systems on matrix
transform means are known, see e.g. [2], [3] and [4]. These results even give
the rate of approximation.
Now let us speak about almost everywhere convergence.

Theorem 2 Let f ∈ L1(G). Let the members of the finite sequences {tk,n :
0 ≤ k ≤ n} be non-negative numbers. Let {tk,n : 1 ≤ k ≤ n} be a finite and
monotone (not necessarily in the same sense for different n’s) sequence of
non-negative numbers such that

lim
n→∞ tk,n = 0 (4)

for any fixed k. Besides,

n∑
k=1

tk,n = 1 (5)

and

tn,n = O

(
1

n

)
. (6)

If n → ∞, then
σT
n(f) → f

almost everywhere.

Proof. Using Abel transformation

n∑
k=1

tk,nSk(f) =

n−1∑
k=1

∆tk,nkσk(f) + tn,nnσn(f).

Since

n−1∑
k=1

∆tk,nk =

n∑
k=1

tk,n − ntn,n,

from monotonicity, using (5) and (6) we get

n−1∑
k=1

|∆tk,nk| ≤
n∑

k=1

tk,n + ntn,n
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≤ 1+ c ≤ c.

So, using (6) again∣∣∣∣∣
n∑

k=1

tk,nSk(f)

∣∣∣∣∣ ≤
n−1∑
k=1

|∆tk,nk| sup
k∈{1,...,n−1}

|σk(f)|+ tn,nn|σn(f)|

≤ c sup
k∈{1,...,n−1}

|σk(f)|+ c|σn(f)|

≤ c sup
k∈{1,...,n}

|σk(f)|

≤ c sup
k∈P

|σk(f)|

= cσ∗(f),

where
σ∗(f) := sup

k∈P
|σk(f)|.

This inequality implies

sup
n∈P

∣∣∣∣∣
n∑

k=1

tk,nSk(f)

∣∣∣∣∣ ≤ cσ∗(f). (7)

It is known, that operator f → σ∗(f) is type of weak (1, 1), therefore (7)
inequality yields, that operator

f → sup
n∈P

∣∣∣∣∣
n∑

k=1

tk,nSk(f)

∣∣∣∣∣
is also type of weak (1, 1).
From this we obtain with the standard technique (using Condition (4))

lim
n→∞

n∑
k=1

tk,nSk(f) = f

convergence almost everywhere. □

5 Remarks

Remark 1 We mention, that assuming (1) is natural, because many well-
known means satisfy (5), namely

n∑
k=1

tk,n = 1
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equality, and it is a part of regularity conditions [24, page 74.].

Remark 2 In case a) in Theorem 1, if we omit Condition (2), then
∥∥KT

n

∥∥ ≤ c

is not true in every cases. For example,

tk,n :=

{
0, if 1 ≤ k < n,

1, if k = n.

Then σT
n(f) = Sn(f), so

∥∥KT
n

∥∥
1
= ∥Dn∥1 = Ln (the n-th Lebesgue constant),

and Fine ([6], p. 387-388) proved, that the average order of Ln is 1
4 log2 n,

which tends to infinity, as n → ∞, hence in this case lim supn→∞ ∥∥KT
n

∥∥
1
= ∞.

Remark 3 The proof of Theorem 2 is very general. We used only the following
properties of the system:

- week (1, 1) type of the operator σ∗,

- density of polynomials of the observed system in L1.

Remark 4 For the proof of Theorem 2 we supposed equality (5). It would
have been enough to use (1) for the proof of property week type (1, 1), but (4)
needs (5) of course.

Remark 5 In Corollary 1 (in case b)) and Theorem 2, if we omit Condition
(3) and (4), then convergence is not true in every cases. For example, if

tk,n :=

{
1, if k = 1,

0 otherwise,

then σT
n(f) = S1(f) and in general S1(f) ̸= f.

Acknowledgment

The authors would like to thank the anonymous reviewer for his/her help and
work.

References

[1] D. Baramidze, L. E. Persson, H. Singh and G. Tephnadze, Some new
results and inequalities for subsequences of Nörlund logarithmic means of
Walsh–Fourier series, J. Inequal. Appl., 30 (2022)



Norm and almost everywhere convergence of matrix transform . . . 257

[2] I. Blahota and K. Nagy, Approximation by Θ-means of Walsh-Fourier
series, Anal. Math., 44 (1) (2018), 57–71.

[3] I. Blahota and K. Nagy, Approximation by matrix transform of
Vilenkin–Fourier series, Publ. Math. Debrecen, 99, 1–2, (2021), 223–242.

[4] I. Blahota and K. Nagy, Approximation by Marcinkiewicz type matrix
transform of Vilenkin-Fourier series, Mediterr. J. Math., 19, 165, (2022)

[5] I. Blahota, G. Tephnadze and R. Toledo, Strong convergence theorem of
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