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Abstract. In this paper, we further study the convex combinations
Dα(G) of Tr(G) andD(G), defined asDα(G) = αTr(G)+(1−α)D(G), 0 ≤
α ≤ 1, where D(G) and Tr(G) denote the distance matrix and diagonal
matrix of the vertex transmissions of a simple connected graph G, respec-
tively. We obtain some upper and lower bounds for the spectral radius
of the generalized distance matrix, in terms of various graph parame-
ters and characterize the extremal graphs. We also obtain a lower bound
for the generalized distance spectral radius of a graph with given edge
connectivity, in terms of the order n, the edge connectivity r and the pa-
rameter α. Further, we obtain a lower bound for the generalized distance
spectral radius of a tree, in terms of the order n, the diameter d and
the parameter α. We characterize the extremal graphs for some values of
diameter d.
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1 Introduction

In this paper, we consider only connected, undirected, simple and finite graphs.
A graph is denoted by G = (V(G), E(G)), where V(G) = {v1, v2, . . . , vn} is its
vertex set and E(G) is its edge set. The order of G is the number n = |V(G)|
and its size is the numberm = |E(G)|. The set of vertices adjacent to v ∈ V(G),
denoted by N(v), refers to the neighborhood of v. The degree of v, denoted by
dG(v) (we simply write dv if it is clear from the context) means the cardinality
of N(v). A graph is called regular if each of its vertex has the same degree.
The distance between two vertices u, v ∈ V(G), denoted by duv, is defined as
the length of a shortest path between u and v in G. The diameter of G is the
maximum distance between any two vertices of G. The distance matrix of G,
denoted by D(G) is defined as D(G) = (duv)u,v∈V(G). We direct the interested
reader to consult the survey [6] for some spectral properties of the distance
matrix of graphs. The transmission TrG(v) of a vertex v is defined as the sum
of the distances from v to all other vertices in G, that is, TrG(v) =

∑
u∈V(G)

duv. A

graph G is said to be k-transmission regular if TrG(v) = k, for each v ∈ V(G).
The transmission of a graph G, denoted by W(G), is the sum of distances

between all unordered pairs of vertices in G. Clearly, W(G) = 1
2

∑
v∈V(G)

TrG(v).

For any vertex vi ∈ V(G), the transmission TrG(vi) is called the transmission
degree, shortly denoted by Tri and the sequence {Tr1, Tr2, . . . , Trn} is called the
transmission degree sequence of the graph G. The second transmission degree

of vi, denoted by Ti is given by Ti =

n∑
j=1

dijTrj.

Let Tr(G) = diag(Tr1, Tr2, . . . , Trn) be the diagonal matrix of vertex trans-
missions of G. M. Aouchiche and P. Hansen [7, 8, 9] introduced the Laplacian
and the signless Laplacian for the distance matrix of a connected graph. The
matrix DL(G) = Tr(G) − D(G) is called the distance Laplacian matrix of G,
while the matrix DQ(G) = Tr(G) +D(G) is called the distance signless Lapla-
cian matrix of G. The spectral properties of D(G), DL(G) and DQ(G) have
attracted much more attention of the researchers and a large number of papers
have been published regarding their spectral properties, like spectral radius,
second largest eigenvalue, smallest eigenvalue, etc. For some recent works we
refer to [1, 6, 7, 8, 9, 15, 16, 18] and the references therein.
In [11], Cui et al. introduced the generalized distance matrix Dα(G) de-

fined as Dα(G) = αTr(G) + (1 − α)D(G), for 0 ≤ α ≤ 1. Since D0(G) =
D(G), 2D 1

2
(G) = DQ(G), D1(G) = Tr(G) and Dα(G) − Dβ(G) = (α −
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β)DL(G), any result regarding the spectral properties of generalized distance
matrix, has its counterpart for each of these particular graph matrices, and
these counterparts follow immediately from a single proof. In fact, this ma-
trix reduces to merging the distance spectral and distance signless Laplacian
spectral theories. Since the matrix Dα(G) is real symmetric, all its eigenvalues
are real. Therefore, we can arrange them as ∂1 ≥ ∂2 ≥ · · · ≥ ∂n. The largest
eigenvalue ∂1 of the matrix Dα(G) is called the generalized distance spectral
radius of G (From now onwards, we will denote ∂1(G) by ∂(G)). As Dα(G)
is non-negative and irreducible, by the Perron-Frobenius theorem, ∂(G) is a
simple (with multiplicity one) eigenvalue and there is a unique positive unit
eigenvector X corresponding to ∂(G), which is called the generalized distance
Perron vector of G.
A column vector X = (x1, x2, . . . , xn)

T ∈ Rn can be considered as a function
defined on V(G) which maps vertex vi to xi, i.e., X(vi) = xi for i = 1, 2, . . . , n.
Then,

XTDα(G)X = α

n∑
i=1

Tr(vi)x
2
i + 2(1− α)

∑
1≤i<j≤n

d(vi, vj)xixj,

and λ is an eigenvalue of Dα(G) corresponding to the eigenvector X if and only
if X ̸= 0 and,

λxvi = αTr(vi)xi + (1− α)

n∑
j=1

d(vi, vj)xj.

These equations are called the (λ, x)-eigenequations of G. For some spectral
properties of the generalized distance matrix of graphs, we direct the interested
reader to consult the papers [2, 3, 11, 12, 19, 20, 14].
The remainder of the paper is organized as follows. In Section 2, we obtain

some upper and lower bounds for the spectral radius of the matrix Dα(G),
involving different graph parameters, and characterize the extremal graphs.
In Section 3, we obtain a lower bound for the generalized distance spectral
radius of a tree, in terms of the order n, the diameter d and the parameter
α. We also characterize the extremal graphs for some values of diameter d.
Finally, in Section 4, we obtain a lower bound for the generalized distance
spectral radius of a graph with given edge connectivity, in terms of the order
n, the edge connectivity r and the parameter α.
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2 Bounds on the generalized distance spectral ra-
dius of graphs

In this section, we obtain upper and lower bounds for the generalized distance
spectral radius of a connected graph G, in terms of various graph parame-
ters associated with the structure of the graph. We characterize the extremal
graphs attaining these bounds.
We start by mentioning two previously known results that will be needed

in the sequel. The following lemmas can be found in [11].

Lemma 1 (See [11]) Let G be a connected graph of order n. Then,

∂(G) ≥ 2W(G)

n
,

with equality if and only if G is a transmission regular graph.

Lemma 2 (See [11]) Let G be a connected graph of order n and let 1
2 ≤ α ≤ 1.

If G′ is a connected graph obtained from G by deleting an edge, then for any
1 ≤ i ≤ n,

∂i(G
′) ≥ ∂i(G).

The following gives a lower bound for the generalized distance spectral radius
∂(G), in terms of the order n and the size m of the graph G.

Theorem 1 Let G be a connected graph of order n ≥ 2 and size m. Then

∂(G) ≥ 2(n− 1) −
2m

n
, (1)

with equality if and only if G ∼= Kn or G is a transmission regular graph with
diameter two.

Proof. We know that the transmission of each vertex v ∈ V(G) is

Tr(v) ≥ d(v) + 2(n− 1− d(v)) = 2n− d(v) − 2,

where d(v) denotes the degree of v in G, with equality if and only if the
maximal distance from v to other vertices in G is at most two. With this we
have

W(G) =
1

2

∑
v∈V(G)

TrG(v) ≥
1

2

∑
v∈V(G)

(2n− d(v) − 2) = n(n− 1) −m,
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with equality if and only if G is of diameter at most two. Using Lemma 1, and
the above observation, the result follows. Suppose equality holds in (1), then

equality holds in Lemma 1 and W(G) = m+ 2
(
n(n−1)

2 −m
)
= n(n− 1) −m.

Which is possible, if G is transmission regular and the diameter of G is at
most two, that is, G ∼= Kn or G is a transmission regular graph of diameter
two.
Conversely, if G ∼= Kn or G is a transmission regular graph of diameter two,

then it is easy to see that (1) is an equality. □

The following gives a lower bound for the generalized distance spectral radius
∂(G) of triangle-free and quadrangle-free graphs.

Corollary 1 Let G be a triangle-free and quadrangle-free connected graph of
order n ≥ 2 and size m. Then

∂(G) ≥ 3(n− 1) −
1

n

n∑
i=1

d2(vi) −
2m

n
, (2)

with equality if and only if G is a transmission regular graph and the diameter
of G is at most three.

Proof. For a connected graph G, which is triangle-free and quadrangle-free it
is shown in [21] that

W(G) ≥ 3n(n− 1)

2
−

1

2

n∑
i=1

d2(vi) −m,

with equality holding if and only if the diameter is at most three. Now, the
result follows from Lemma 1. □

The following gives an upper bound for the generalized distance spectral
radius ∂(G), in terms of the transmission degrees Tri, the second transmission
degrees Ti and the parameter α.

Theorem 2 Let G be a connected graph of order n ≥ 2 and let α ∈ [0, 1).
Let {Tr1, Tr2, . . . , Trn} be the transmission degree sequence and {T1, T2, . . . , Tn}
be the second transmission degree sequence of the graph G. Then

∂(G) ≤ 1

2
max

1≤i̸=j≤n

{
α(Tri + Trj) +

√
α2(Tri − Trj)2 + 4(1− α)2

(
Ti

Tri

)(
Tj

Trj

)}
. (3)

Moreover, if 1
2 ≤ α < 1, the equality holds if and only if G is a transmission

regular graph.
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Proof. Let Tr = Tr(G) be the diagonal matrix of vertex transmissions of the
connected graph G, then the matrix Tr−1 exists. Since the matrices Dα(G)
and Tr−1Dα(G)Tr are similar and similar matrices have same spectrum, it
follows that ∂(G) is the spectral radius of the matrix Tr−1Dα(G)Tr. Let X =
(x1, x2, . . . , xn)

T be an eigenvector of Tr−1Dα(G)Tr corresponding to ∂(G). Sup-
pose xs = max{xi| i = 1, 2, . . . , n} and xt = max{xi| xi ̸= xs, i = 1, 2, . . . , n}.

Now, the (i, j)-th entry of Tr−1Dα(G)Tr is αTri if i = j and
Trj
Tri

(1 − α)dij if
i ̸= j. We have

Tr−1Dα(G)TrX = ∂(G)X. (4)

From the s-th equation of (4), we have

(∂(G) − αTrs)xs =

n∑
i=1

Tri
Trs

(1− α)dsixi

≤ (1− α)xt
Trs

n∑
i=1

dsiTri =
(1− α)Ts

Trs
xt. (5)

Similarly, from the t-th equation of (4), we have

(∂(G) − αTrt)xt =

n∑
i=1

Tri
Trt

(1− α)dtixi

≤ (1− α)xs
Trt

n∑
i=1

dtiTri =
(1− α)Tt

Trt
xs. (6)

Combining (5) and (6) we get,

(∂(G) − αTrs)(∂(G) − αTrt)xsxt ≤
(1− α)Ts

Trs

(1− α)Tt
Trt

xtxs,

which implies that

∂2(G) − α(Trs + Trt)∂(G) + α2TrsTrt −

(
(1− α)Ts

Trs

)(
(1− α)Tt

Trt

)
≤ 0.

Thus, we have

∂(G) ≤ 1

2

(
α(Trs + Trt) +

√
α2(Trs − Trt)2 + 4(1− α)2

(
Ts

Trs

)(
Tt

Trt

))
.
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From this the result follows. Assume that G is a k-transmission regular graph.
Then Tri = k, Ti = k2 for all i = 1, 2, . . . , n, and ∂(G) = k. It is now easy to
see that equality in (3) holds.
Conversely, suppose that equality holds in (3), then all the inequalities in

the above argument must hold as equalities. In particular, from (5) and (6),

we have x1 = x2 = · · · = xn. Hence, ∂(G) = αTr1 +
(1−α)T1

Tr1
= αTr2 +

(1−α)T2
Tr2

=

· · · = αTrn+
(1−α)Tn

Trn
. Let Trmax and Trmin denote the maximum and minimum

vertex transmission, respectively. Without loss of generality, assume that Tri =

Trmax and Trj = Trmin. Therefore, αTrmax +
(1−α)Ti
Trmax

= αTrmin +
(1−α)Tj
Trmin

. Since
Ti ≥ TrmaxTrmin and Tj ≤ TrmaxTrmin, we have

αTrmax + (1− α)Trmin ≤ αTrmax +
(1− α)Ti
Trmax

= αTrmin +
(1− α)Tj
Trmin

≤ (1− α)Trmax + αTrmin,

which implies that Trmax = Trmin for 1
2 ≤ α < 1. Hence, G is a transmission

regular graph. This completes the proof. □

The following gives a lower bound for the generalized distance spectral radius
∂(G), in terms of the transmission degrees Tri, the second transmission degrees
Ti and the parameter α.

Theorem 3 Let G be a connected graph of order n ≥ 2 and let α ∈ [0, 1).
Let {Tr1, Tr2, . . . , Trn} be the transmission degree sequence and {T1, T2, . . . , Tn}

be the second transmission degree sequence of the graph G. Then

∂(G) ≥ 1

2
min

1≤i̸=j≤n

{
α(Tri + Trj) +

√
α2(Tri − Trj)2 + 4(1− α)2

(
Ti
Tri

)(
Tj

Trj

)}
.

Moreover, if 1
2 ≤ α < 1, the equality holds if and only if G is a transmission

regular graph.

Proof. Let X = (x1, x2, . . . , xn)
T be an eigenvector of Tr−1Dα(G)Tr corre-

sponding to ∂(G). Suppose xs = min{xi| i = 1, 2, . . . , n} and xt = min{xi| xi ̸=
xs, i = 1, 2, . . . , n}. The rest of the proof is similar to that of Theorem 2 and
is therefore omitted. □

The following lemma can be found in [17].

Lemma 3 If A is an n×n non-negative matrix with the spectral radius λ(A)
and row sums r1, r2, . . . , rn, then min1≤i≤n ri ≤ λ(A) ≤ max1≤i≤n ri. More-
over, if A is irreducible, then one of the equalities holds if and only if the row
sums of A are all equal.
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The following gives an upper bound for the generalized distance spectral
radius ∂(G), in terms of the maximum transmission degree Trmax, the second
maximum transmission degree Tmax and the parameter α.

Theorem 4 Let G be a connected graph of order n ≥ 2 and let α ∈ [0, 1).
Let Trmax and Tmax be respectively the maximum transmission degree and the
second maximum transmission degree of the graph G. Then

∂(G) ≤ αTrmax +
√
α2Tr2max + 4(1− α)Tmax

2
,

Moreover, the equality holds if and only if G is a transmission regular graph.

Proof. For a graph matrix M, let rvi(M) be the sum of the entries in the row
corresponding to the vertex vi, for 1 ≤ i ≤ n. We have Dα(G) = αTr(G) +
(1 − α)D(G), by a simple calculation, it can be seen that rvi(Dα(G)) = Tri
and rvi(D(G)Tr) = rvi(D

2(G)) =
∑n

j=1 dijTrj = Ti. Then

rvi(D
2
α(G)) = rvi

(
αTr(G) + (1− α)D(G)

)2

= rvi

(
α2Tr2+α(1−α)TrD(G)+α(1−α)D(G)Tr+ (1−α)2D2(G)

)
= rvi

(
αTr(αTr+ (1− α)D(G))

)
+ rvi

(
α(1− α)D(G)Tr

)
+ rvi

(
(1− α)2D2(G)

)
= αTrirvi(Dα(G)) + (1− α)Ti

≤ αTrmaxrvi(Dα(G)) + (1− α)Tmax.

So, we have

rvi

(
D2

α(G) − αTrmaxDα(G)
)
≤ (1− α)Tmax.

Using Lemma 3, we get

∂2(G) − αTrmax∂(G) − (1− α)Tmax ≤ 0,

from this the result now follows. In order to get the equality, all inequalities in
the above argument should be equalities. That is, Tri = Trmax and Ti = Tmax

holds for any vertex vi. So, by Lemma 3, it follows that G is a transmission
regular graph.
Conversely, if G is transmission regular, then it is easy to check that the

equality holds. □
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The following gives a lower bound for the generalized distance spectral radius
∂(G), in terms of the minimum transmission degree Trmin, the second minimum
transmission degree Tmin and the parameter α.

Theorem 5 Let G be a connected graph of order n ≥ 2 and let α ∈ [0, 1).
Let Trmin and Tmin be respectively the minimum transmission degree and the
second minimum transmission degree of the graph G. Then

∂(G) ≥
αTrmin +

√
α2Tr2min + 4(1− α)Tmin

2
.

Equality holds if and only if G is transmission regular.

Proof. Proceeding similar to Theorem 4, we arrive at

rvi(D
2
α(G)) = αTrirvi(Dα(G)) + (1− α)Ti

≥ αTrminrvi(Dα(G)) + (1− α)Tmin. (7)

Since (7) is true for all vi, in particular it is true for vmin, where vmin is the
vertex corresponding the row with minimum row sum. Therefore, from (7), we
get

rvmin

(
D2

α(G) − αTrminDα(G)
)
− (1− α)Tmin ≥ 0.

Now, using Lemma 3, we get

∂2(G) − αTrmin∂(G) − (1− α)Tmin ≥ 0,

from this the result now follows. The equality case be discussed similarly as
in Theorem 4. □

The following gives a lower bound for the generalized distance spectral radius
∂(G), in terms of the order n, the maximum degree ∆ and the parameter α.

Theorem 6 Let G be a connected graph of order n ≥ 2 and let α ∈ [0, 1). If
∆ = ∆(G) is the maximum degree of the graph G, then

∂(G) ≥ α(2n− ∆− 2) +
√
α2(2n− ∆− 2)2 + 4(1− α)(2n− 2− ∆)2

2
, (8)

with equality if and only if G is a regular graph with diameter less than or
equal to 2.
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Proof. Let G be a connected graph of order n and let di = d(vi) be the
degree of the vertex vi, for 1 ≤ i ≤ n. It is well known that Tri = Tr(vi) ≥
di + 2(n− 1− di) = 2n− 2− di, for all 1 ≤ i ≤ n, with equality if and only if
G is a degree regular graph of diameter less than or equal to 2. Similar to the
Theorem 4, we have

rvi(D
2
α(G)) = αTrirvi(Dα(G)) + (1− α)Ti

≥ αTrirvi(Dα(G)) + (1− α)(2n− dj − 2)

n∑
j=1

dij

≥ α(2n− di − 2)rvi(Dα(G)) + (1− α)(2n− 2− ∆)2

≥ α(2n− ∆− 2)rvi(Dα(G)) + (1− α)(2n− 2− ∆)2,

where we have used the fact that Tri ≥ 2n − 2 − di ≥ 2n − 2 − ∆. Thus it
follows that for each vi ∈ V(G), we have

rvi((Dα)
2) ≥ rvi(α(2n− ∆− 2)Dα) + (1− α)(2n− 2− ∆)2. (9)

Since (9) is true for all vi, in particular it is true for vmin, where vmin is the
vertex corresponding the row with minimum row sum. So, from (9), we get

rvmin

(
D2

α(G) − α(2n− 2− ∆)Dα(G)
)
− (1− α)(2n− 2− ∆)2 ≥ 0.

Now, using Lemma 3, it follows that

∂2(G) − α(2n− ∆− 2)∂(G) − (1− α)(2n− 2− ∆)2 ≥ 0,

which gives that

∂(G) ≥ α(2n− ∆− 2) +
√
α2(2n− ∆− 2)2 + 4(1− α)(2n− ∆− 2)2

2
.

This proves the first part of the proof.
Suppose that equality holds in inequality (8), then all the inequalities hold as

equalities in the above argument. Since the equality holds in Tri ≥ 2n−2−di ≥
2n − 2 − ∆ if G is ∆-regular graph of diameter less than or equal to 2 and
equality holds in Lemma 3 if G is a transmission regular graph. It follows that
equality holds in (8) if G is ∆-regular graph of diameter less than or equal to 2.

Conversely, it is easily seen that ∂(G) =
α(2n−∆−2)+

√
α2(2n−∆−2)2+4(1−α)(2n−2−∆)2

2

if G is a regular graph with diameter less than or equal to 2. □

We conclude this section with the following remark.
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Remark 1 As mentioned in the introduction that D0(G) = D(G) and 2D 1
2
(G) =

DQ(G), it follows that from the bounds obtained in this section for ∂(G), we
can obtain the corresponding bounds for the distance spectral radius ρD1 (G)

and the distance signless Laplacian spectral radius ρQ1 (G) by taking α = 0 and
α = 1

2 , respectively.

3 Lower bounds for the generalized distance spec-
tral radius of a tree

In this section, we obtain a lower bound for the generalized distance spectral
radius ∂(G) of a tree, in terms of the order n, diameter d and the parameter α.

The following gives the generalized distance spectrum of the complete bi-
partite graph Kr,s, where r+ s = n, and can be found in [20].

Lemma 4 The generalized distance spectrum of complete bipartite graph Kr,s

consists of eigenvalue α(2r + s) − 2 with multiplicity r − 1, the eigenvalue
α(2s + r) − 2 with multiplicity s − 1 and the remaining two eigenvalues as

x1, x2, where x1, x2 =
α(s+r)+2(s+r)−4±

√
(r2+s2)(α−2)2+2rs(α2−2)

2 .

Suppose a graph G has a special kind of symmetry so that its associated
matrix is written in the form

M =


X β · · · β β

βt B · · · C C
...

... · · ·
...

...
βt C · · · B C

βt C · · · C B

 , (10)

where X ∈ Rt×t, β ∈ Rt×s and B,C ∈ Rs×s, such that n = t + cs, where c is
the number of copies of B. Then the spectrum of this matrix can be obtained
as the union of the spectrum of smaller matrices using the following technique
given in [13]. In the statement of the following lemma, σ[k](Y) indicates the
multi-set formed by k copies of the spectrum of Y, denoted by σ(Y).

Lemma 5 Let M be a matrix of the form given in (10), with c ≥ 1 copies of
the block B. Then

(i) σ[c−1](B− C) ⊆ σ(M);
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(ii) σ(M)\σ[c−1](B−C) = σ(M
′
) is the set of the remaining t+s eigenvalues

of M, where M
′
=

(
X

√
c.β√

c.βt B+ (c− 1)C

)
.

Let Ta,b, with a + b = n − 2 and a ≥ b ≥ 1 be the tree obtained by joining
an edge between the root vertices of stars K1,a and K1,b(the vertex of degree
greater than one in a star is called root vertex). It is clear that a tree with
diameter d = 3 is always of the form Ta,b. The following gives the generalized
distance spectrum of Ta,b.

Lemma 6 The generalized distance spectrum of Ta,b is

{α(h1 + 2) − 2[b−1], α(h2 + 2) − 2[a−1], x1, x2, x3, x4},

h1 = 2a+ 3b+ 1, h2 = 2b+ 3a+ 1,

where x1 ≥ x2 ≥ x3 ≥ x4 are the eigenvalues of the matrix

M2 =

α(2a + b + 1) 1 − α 2(1 − α)
√
a (1 − α)

√
b

1 − α α(2b + a + 1) (1 − α)
√
a 2(1 − α)

√
b

2(1 − α)
√
a (1 − α)

√
a αh1 + 2(1 − α)(a − 1) 3(1 − α)

√
ab

(1 − α)
√
b 2(1 − α)

√
b 3(1 − α)

√
ab αh2 + 2(1 − α)(b − 1)

.

Proof. Let V(K1,b) = {v1, u1, . . . , ub} and V(K1,a) = {v2, w1, . . . , wa}. Then,
the vertex set of Ta,b is V(Ta,b) = {v1, v2, u1, . . . , ub, w1, . . . , wa}. It is easy to
see that Tr(v1) = 2a + b + 1, Tr(v2) = 2b + a + 1, Tr(ui) = 2b + 3a + 1 = h2

and Tr(wj) = 2a + 3b + 1 = h1, for i = 1, 2, . . . , b and j = 1, 2, . . . , a. With
this labeling, the generalized distance matrix of Ta,b takes the form

Dα(Ta,b) =


X β β · · · β

βt αh1 2(1− α) · · · 2(1− α)
βt 2(1− α) αh1 · · · 2(1− α)
...

...
... · · ·

...
βt 2(1− α) 2(1− α) · · · αh1

 , where β =


2

1

3
...
3


and

X =


α(2a+ b+ 1) 1− α 1− α · · · 1− α

1− α α(2b+ a+ 1) 2(1− α) · · · 2(1− α)
1− α 2(1− α) αh2 · · · 2(1− α)

...
...

... · · ·
...

1− α 2(1− α) 2(1− α) · · · αh2

 .

Using Lemma 5 with B = [αh1], C = [2(1 − α)] and c = a, it follows that
σ(Dα(Ta,b)) = σ[a−1](B−C)∪σ(M1) = σ[a−1]([α(h1 + 2) − 2])∪σ(M1), where
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M1 =

(
X

√
aβ√

aβ αh1 + 2(1− α)(a− 1)

)
. Interchanging the third and last col-

umn of M1 and then third and last row of the resulting matrix, we obtain a
matrix similar to M1. In the resulting matrix taking

X =

α(2a+ b+ 1) 1− α 2(1− α)
√
a

1− α α(2b+ a+ 1) (1− α)
√
a

2(1− α)
√
a (1− α)

√
a αh1 + 2(1− α)(a− 1)

 ,

β =

 1− α

2(1− α)
3(1− α)

√
a

 ,

B = [αh2], C = [2(1 − α)] and c = b in Lemma 5. It follows that σ(M1) =
σ[b−1](B−C)∪σ(M2) = σ[b−1]([α(h2+2)−2])∪σ(M2), where M2 is the matrix
given in the statement. That completes the proof. □

The following gives a lower bound for the generalized distance spectral radius
of a tree, in terms of the order n, the diameter d and the parameter α.

Theorem 7 Let T be a tree of order n ≥ 2 having diameter d. If d = 1, then

∂(T) = 1; if d = 2, then ∂(T) = (α+2)n−4+
√
ϕ

2 , ϕ = n2α2 − (n2 + 2 − 2n)4α +
4(n2 − 3n + 3); if d = 3, then ∂(T) = x1, where x1 is the largest eigenvalue
of the matrix M2 defined in Lemma 6. For d ≥ 4, let P = v1v2 . . . vdvd+1 be
a diametral path of G, such that there are a1, a2 pendent vertices at v2, vd,
respectively. Then

∂(T) ≥ max
a1,a2

{6n+ d(d− 7) + (a1 + a2)(d− 4) + 2+
√
θ

2

}
,

where θ = α2(a2 − a1)
2(d− 2)2 + 4(1− α)2d2.

Proof. If T is a tree of diameter d = 1, then T ∼= K2 and so ∂(T) = 1. If T is a
tree of diameter d = 2, then T ∼= K1,n−1 and so using Lemma 4, it follows that

∂(T) = (α+2)n−4+
√
ϕ

2 , where ϕ = n2α2 − (n2 + 2 − 2n)4α + 4(n2 − 3n + 3). If
T is a tree of diameter d = 3, then T ∼= Ta,b and so using Lemma 6, it follows
that ∂(T) = x1, where x1 is the largest eigenvalue of the matrix M2 defined
in Lemma 6. So, suppose that diameter of tree T is at least 4, then n ≥ 5.
Let v1v2 . . . vd+1 be a diametral path of T , and let a1 and a2 be the number of
pendent neighbors of v2 and vd, respectively. We have

Tr(v1) ≥ 2(a1 − 1) + 1+ 2+ . . .+ (d− 1) + da2 + 3(n− a1 − a2 − d+ 1)
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= 3n− a1 + a2(d− 3) − 3d+ 1+
d(d− 1)

2
.

Similarly,

Tr(vd+1) ≥ 3n− a2 + a1(d− 3) − 3d+ 1+
d(d− 1)

2
.

Let M be the principal submatrix of Dα(T) indexed by the vertices v1 and
vd+1. Then

M =

(
αTr(v1) (1− α)d
(1− α)d αTr(vd+1)

)
,

thus

∂(M) =
α(Tr(v1) + Tr(vd+1)) +

√
α2(Tr(v1) − Tr(vd+1))2 + 4(1 − α)2d2

2

≥
α(6n + d(d − 7) + (a1 + a2)(d − 4) + 2)) +

√
α2(a2 − a1)2(d − 2)2 + 4(1 − α)2d2

2
.

Now, by Interlacing Theorem [10], we have ∂(T) ≥ ∂(M). From this the result
follows. That completes the proof. □

The following observation follows from Theorem 7.

Corollary 2 Let T be a tree of order n having diameter d ≥ 4. Then

∂(T) ≥ 1

2

(
α(6n+ d2 − 9d+ 2) + 2d

)
.

Proof. Using a1, a2 ≥ 0 in Theorem 7, the result follows. □

Taking α = 0 in Theorem 7, we have the following observation, which gives
a lower bound for the distance spectral radius ρD(T) of a tree T .

Corollary 3 Let T be a tree of order n ≥ 2 having diameter d. If d = 1,
then ρD(T) = 1; if d = 2, then ρD(T) = n − 2 +

√
n2 − 3n+ 3; if d = 3, then

ρD(T) = x1, where x1 is the largest eigenvalue of the matrix M2 (with α = 0)
defined in Lemma 6. For d ≥ 4, let P = v1v2 . . . vdvd+1 be a diametral path of
G, such that there are a1, a2 pendent vertices at v2, vd, respectively. Then

ρD(T) ≥ max
a1,a2

{6n+ d(d− 5) + (a1 + a2)(d− 4) + 2

2

}
.

Taking α = 1
2 in Theorem 7 and using the fact 2∂(T) = ρ

Q
1 (T), we have

the following observation, which gives a lower bound for the distance signless
Laplacian spectral radius ρQ(T) of a tree T .
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Corollary 4 Let T be a tree of order n ≥ 2 having diameter d. If d = 1,

then ρQ(T) = 1; if d = 2, then ρQ(T) = 5n−8+
√
9n2−32n+32
2 ; if d = 3, then

ρQ(T) = 2x1, where x1 is the largest eigenvalue of the matrix M2 (with α = 1
2)

defined in Lemma 6. For d ≥ 4, let P = v1v2 . . . vdvd+1 be a diametral path of
G, such that there are a1, a2 pendent vertices at v2, vd, respectively. Then

ρQ(T) ≥ max
a1,a2

{
6n+ d(d− 7) + (a1 + a2)(d− 4) + 2+

√
t
}
,

where t = (a2−a1)
2

4 + 2d2 − 4d+ 4.

4 Lower bounds for the generalized distance spec-
tral radius for a graph with given edge connectiv-
ity

In this section, we obtain a lower bound for the generalized distance spectral
radius ∂(G) for the family of graphs with fixed edge connectivity, in terms of
the order n and the parameter α.
The edge connectivity of a connected graph is the minimum number of edges

whose removal disconnects the graph. Let G(n, r) be the set of all connected
graphs of order n and edge connectivity r. It is clear that, G(n,n − 1) = Kn.
It is well known that ∂(Kn) = n− 1, therefore we will consider r ≤ n− 2.
The following gives a lower bound for the generalized distance spectral radius

of a graph belonging to the family G(n, r), in terms of the order n, the edge
connectivity r and the parameter α.

Theorem 8 Let G ∈ G(n, r) with 1 ≤ r ≤ n− 2 and 1
2 ≤ α ≤ 1. If the degree

of every vertex of G is greater than r, then

∂(G) ≥ α(4n− 2r− 2) +
√
4α2(n2 − n1)2 + 36(1− α)2

2
,

where n1 and n2 are the cardinalities of the components of graph obtained from
G by deleting r edges.

Proof. Let G ∈ G(n, r), then every vertex of G is of degree greater or equal
to r. Let us suppose that every vertex of G has degree at least r + 1. Let
Ec be an edge cut of G with r edges. Let G1 and G2 be the two components
of G − Ec (the graph obtained from G by deleting the edges from Ec). Let
ni = |V(Gi)| for i = 1, 2. We claim that min{n1, n2} ≥ r + 2. Suppose that



38 A. Alhevaz, M. Baghipur, H.A.Ganie, G.-X. Tian

min{n1, n2} ≤ r+1. Without loss of generality, we assume that n2 ≥ n1. Then
we have n1 ≤ r+ 1. If n1 = r+ 1, then there exists a vertex of G1 which is not
incident with any edge in Ec, and thus its degree in G is at most n1 − 1 = r,

which is a contradiction. On the other hand, if n1 ≤ r, then there exists a
vertex of G1 whose degree in G is at most n1 − 1+ r

n1
≤ (n1 − 1) r

n1
+ r

n1
= r,

again a contradiction. Therefore, we must have min{n1, n2} ≥ r + 2. Thus,
there exists a vertex u of G1 (v of G2, respectively) which is not adjacent to
any vertex of G2 (G1, respectively).
Let G′ be the graph obtained from G by adding all possible edges in G1 and

G2. Then G′ − Ec = Kn1
∪ Kn2

. Obviously, G′ ∈ G(n, r). Let t be the number
of vertices of G′ which are at a distance of 2 from u. Note that t ≤ r. Since
the diameter of G′ is 3, we have

TrG′(u) = n1 − 1+ 2t+ 3(n2 − t) = n1 + 3n2 − 1− t

≥ n1 + 3n2 − 1− r.

Similarly,

TrG′(v) ≥ n2 + 3n1 − 1− r.

Let M be the principal submatrix of Dα(G
′) indexed by u and v. Then

M =

(
αTrG′(u) 3(1− α)
3(1− α) αTrG′(v)

)
,

thus

∂(M) =
α(Tr(u) + Tr(v)) +

√
α2(Tr(u) − Tr(v))2 + 36(1− α)2

2

≥ α(4n− 2r− 2) +
√
4α2(n2 − n1)2 + 36(1− α)2

2
.

Now, using Lemma 2 and Interlacing Theorem [10], we have ∂(G) ≥ ∂(G′) ≥
∂(M). From this the result follows. □

The following observation follows from Theorem 8.

Corollary 5 Let G ∈ G(n, r) with 1 ≤ r ≤ n− 2 and 1
2 ≤ α ≤ 1. If the degree

of every vertex of G is greater than r, then

∂(G) ≥ α(2n− r− 1) + 3(1− α).
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Proof. Using (n2 − n1)
2 ≥ 0 in Theorem 8, the result follows. □

Taking α = 1
2 in Theorem 8 and using the fact 2∂(G) = ρ

Q
1 (G), we have

the following observation, which gives a lower bound for the distance signless
Laplacian spectral radius ρQ(G) of a graph G ∈ G(n, r).

Corollary 6 Let G ∈ G(n, r) with 1 ≤ r ≤ n−2. If the degree of every vertex
of G is greater than r, then

ρ
Q
1 (G) ≥ 2n− r− 1+

√
(n2 − n1)2 + 9,

where n1 and n2 are the cardinalities of the components of graph obtained from
G by deleting r edges.
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