

DOI: 10.47745/ausm-2024-0022

Inequalities for rational functions with poles in the Half plane

G. M. Sofi

Department of Mathematics, Central University of Kashmir, 191201 India email: gmsofi@cukashmir.ac.in W. M. Shah

Department of Mathematics, Central University of Kashmir, 191201 India

email: wali@cukashmir.ac.in

Abstract. In this paper we prove certain Bernstein-type inequalities for rational functions with poles in the right half plane. We also deduce some estimates for the maximum modulus of polar derivative of a polynomial on the imaginary axis in terms of the modulus of the polynomial.

1 Introduction

Let \mathcal{P}_n denote the class of all complex polynomials $p(z) := \sum_{j=0}^n c_j z^j$ of degree at most n. For every $p \in \mathcal{P}_n$, the following inequality is due to Bernstein [4]:

$$\max_{|z|=1}|p'(z)| \leq \max_{|z|=1}|p(z)|.$$

It was conjectured by Erdös and proved by Lax [6] that if all the zeros of p lie outside the open unit disk, then

$$\max_{|z|=1} |p'(z)| \le \frac{n}{2} \max_{|z|=1} |p(z)|.$$

Later Turán [11] proved that if all the zeros of $\mathfrak p$ lie inside the closed unit disk, then

$$\max_{|z|=1} |p'(z)| \ge \frac{n}{2} \max_{|z|=1} |p(z)|.$$

There have been many refinements and generalisations of the results of Lax and Turan (see [9], [10]). Li, Mohapatra and Rodriguez [7] extended the above inequalities to rational functions r with poles outside the closed unit disk and proved the following results:

Theorem 1 Suppose $r(z) = \frac{p(z)}{\prod_{j=1}^{n}(z-a_j)}$, where $p \in \mathcal{P}_n$ and $|a_j| > 1$, for all $1 \le j \le n$. Then for |z| = 1

$$|\mathbf{r}'(z)| \le |\mathbf{B}'(z)| \max_{|z|=1} |\mathbf{r}(z)|.$$
 (1)

where $B(z) = \prod_{j=1}^n \left(\frac{1-\overline{a_j}z}{z-a_j} \right)$ is the Blashke Product for unit disk.

They also proved:

Theorem 2 Suppose $r(z) = \frac{p(z)}{\prod_{j=1}^{n}(z-a_j)}$, where $p \in \mathcal{P}_n$ and $|a_j| > 1$, for all $1 \le j \le n$ and all the zeroes of r lie outside open unit disk. Then for |z| = 1

$$|\mathbf{r}'(z)| \le \frac{1}{2} |\mathbf{B}'(z)| \max_{|z|=1} |\mathbf{r}(z)|.$$
 (2)

 $\begin{array}{l} \textbf{Theorem 3} \; \; \textit{Suppose} \; r(z) = \frac{p(z)}{\prod_{j=1}^n (z-\alpha_j)}, \; \textit{where} \; p \in \mathcal{P}_n \; \textit{and} \; |\alpha_j| > 1, \; \textit{for all} \\ 1 \leq j \leq n \, \textit{and all the zeroes of} \; r \; \textit{lie inside closed unit disk. Then for} \; |z| = 1 \end{array}$

$$|\mathbf{r}'(z)| \ge \frac{1}{2}(|\mathbf{B}'(z)| - (\mathbf{n} - \mathbf{m}) \max_{|z|=1} |\mathbf{r}(z)|).$$
 (3)

where m is the number of zeros of r.

Following the paper by Li, Mohapatra and Rodriguez [7], there have been many generalizations of Theorems 1, 2 and 3 (For details see [2], [3], [5], [8]). In all the cases, it is assumed that the poles of the rational function r are either inside or outside of the unit circle in the complex plane. In this paper, instead of assuming that the poles of r are inside/outside unit circle we consider the case

when the poles are in the left/right half of the complex plane and derive the corresponding inequalities on the imaginary axis. So we derive these estimates on a line which is an unbounded set unlike the boundary of a disk. Further, we obtain certain estimates of the maximum modulus of the polar derivative $D_{\zeta}p(z)$ of a polynomial p(z) in terms of the maximum modulus of p(z) on the imaginary axis. We start with the following notations and definitions:

Let $\mathbb{I}:=\{z\in\mathbb{C}:\ \Re(z)=0\}$, $\mathbb{I}^+:=\{z\in\mathbb{C}:\ \Re(z)>0\}$ and $\mathbb{I}^-:=\{z\in\mathbb{C}:\ \Re(z)<0\}$. For $a_{\mathfrak{j}}\in\mathbb{I}^+,\mathfrak{j}=1,2,\ldots,n,$ let

$$\begin{split} w(z) &:= \prod_{j=1}^n (z-\alpha_j), \\ \text{and} \qquad \mathcal{R}_n &= R_n(\alpha_1,\alpha_2,\ldots,\alpha_n) := \Big\{\frac{p(z)}{w(z)}: \quad p \in \mathcal{P}_n\Big\}. \end{split}$$

Thus \mathcal{R}_n is the set of all rational functions with poles a_1, a_2, \ldots, a_n in the open right half plane and with finite limit at ∞ . We define the corresponding Blashke product B(z) for the half plane

$$B(z) := \prod_{j=1}^{n} \left(\frac{z + \overline{a_j}}{z - a_j} \right).$$

Clearly $B(z) \in \mathcal{R}_n$.

We also define for $p(z) = \sum_{j=0}^{n} c_j z^j$, the *conjugate transpose*(reciprocal) p^* of p as

$$p^*(z):=(-1)^n\overline{p(-\overline{z})}=\overline{c_n}z^n-\overline{c_{n-1}}z^{n-1}+\cdots+(-1)^n\overline{c_0}.$$

 $\mathrm{For}\ r(z) = \frac{p(z)}{w(z)} \in \mathcal{R}_n, \, \mathrm{we}\ \mathrm{define}\ r^*(z) := B(z)\overline{r(-\overline{z})}. \, \mathrm{Note\ that\ if}\ r = \frac{p}{w} \in \mathcal{R}_n,$

then $r^* = \frac{p^*}{w}$ and hence $r^* \in \mathcal{R}_n$. Further, we define the polar derivative $D_{\zeta}p(z)$ of a polynomial p(z) with respect to ζ as

$$D_{\zeta}p(z) := np(z) - (z - \zeta)p'(z).$$

It is clear that $D_{\zeta}p(z)$ is a polynomial of degree at most n-1 and

$$\lim_{\zeta\to\infty}\left(\frac{\mathsf{D}_\zeta\mathsf{p}(z)}{\zeta}\right)=\mathsf{p}'(z).$$

For details regarding Bernstein-type inequalities for polar derivatives on unit circle (see [1], [12]).

2 Main results

In this paper we assume that all the poles a_j , j=1,2,...,n lie in open right half plane \mathbb{I}^+ . For the case when all the poles are in open left half plane \mathbb{I}^- , we obtain analogous results with suitable modifications. We first prove:

Theorem 4 Let i be the imaginary unit, then B(z) = i has exactly n simple roots, say t_1, t_2, \ldots, t_n and all lie on the imaginary axis \mathbb{I} . Further, if $r \in \mathcal{R}_n$ and $z \in \mathbb{I}$, then

$$r'(z)(B(z) - i) - B'(z)r(z) = (B(z) - i)^{2} \sum_{k=1}^{n} \frac{u_{k}r(t_{k})}{|z - t_{k}|^{2}},$$
(4)

where

$$\frac{1}{u_k} = B'(t_k) = i \sum_{i=1}^n \frac{2\Re(a_i)}{|t_k - a_i|^2}, 1 \le k \le n.$$
 (5)

Moreover for $z \in \mathbb{I}$

$$\frac{B'(z)}{B(z)} = \sum_{i=1}^{n} \frac{2\Re(a_i)}{|z - a_i|^2}.$$
 (6)

From Theorem 1 we can deduce the following:

Corollary 1 Let t_k , k = 1, 2, ..., n be as defined in Theorem 4 and s_k , k = 1, 2, ..., n be the roots of B(z) = -i, then for $z \in \mathbb{I}$

$$|\mathbf{r}'(z)| \le \frac{1}{2} |\mathbf{B}'(z)| [\max_{1 \le k \le n} |\mathbf{r}(\mathbf{t}_k)| + \max_{1 \le k \le n} |\mathbf{r}(\mathbf{s}_k)|]. \tag{7}$$

Corollary 1 immediately gives us the following:

Corollary 2 If $z \in \mathbb{I}$, then

$$\max_{z \in \mathbb{I}} |r'(z)| \le |B'(z)| \max_{z \in \mathbb{I}} |r(z)| \tag{8}$$

The inequality is sharp in the sense that the equality holds if we take $r(z) = \lambda B(z)$ for some $\lambda \in \mathbb{C}$.

This is the Bernstein-type inequality for \mathcal{R}_n , the rational functions with all the poles in open right half plane and is identical to Theorem 1.

Theorem 5 If $r \in \mathcal{R}_n$ and $z \in \mathbb{I}$, then

$$|(\mathbf{r}^*(z))'| - |\mathbf{r}'(z)| \le |\mathbf{B}'(z)||\mathbf{r}(z)|. \tag{9}$$

Theorem 6 Suppose $r \in \mathcal{R}_n$

(i) If r has all its zeros in the closed left half plane $\mathbb{I} \cup \mathbb{I}^-$, then for $z \in \mathbb{I}$

$$\Re\left(\frac{\mathbf{r}'(z)}{\mathbf{r}(z)}\right) \ge \frac{1}{2}|\mathbf{B}'(z)|. \tag{10}$$

(ii) If r has all its zeros in the closed right half plane $\mathbb{I} \cup \mathbb{I}^+$, then for $z \in \mathbb{I}$

$$\Re\left(\frac{\mathbf{r}'(z)}{\mathbf{r}(z)}\right) \le \frac{1}{2}|\mathbf{B}'(z)|. \tag{11}$$

The inequalities are sharp and the equality holds if all the zeros of $\mathfrak r$ lie on the imaginary axis $\mathbb I$.

If we set $a_1 = a_2 = \cdots = a_n = \alpha$ in Theorem 4, then we get the following estimates for the polar derivative of a polynomial $p \in \mathcal{P}_n$:

Theorem 7 If $p \in \mathcal{P}_n$ and $\alpha \in \mathbb{I}^+$, then there exists a $z_0 \in \mathbb{I}$ such that

$$|D_{\alpha}p(z)| \le 2n \left| \frac{z - \alpha}{z_0 - \alpha} \right|^n |p(z_0)| \quad for \ z \in \mathbb{I}.$$
 (12)

Theorem 8 If $p \in \mathcal{P}_n$, then for $\alpha \in \mathbb{I}^+$

$$|\mathsf{D}_{\alpha}\mathfrak{p}^*(z)| - |\mathsf{D}_{\alpha}\mathfrak{p}(z)| \le 2\mathfrak{n}|\mathsf{P}(z)| \quad \text{for } z \in \mathbb{I}. \tag{13}$$

Theorem 9 Suppose $p \in \mathcal{P}_n$

(i) If p has all its zeros in the closed left half plane $\mathbb{I} \cup \mathbb{I}^-$, then for $\alpha \in \mathbb{I}^+$

$$\Re\left(\frac{\mathsf{D}_{\alpha}\mathsf{p}(z)}{(\alpha-z)\mathsf{p}(z)}\right) \ge \frac{\mathsf{n}\Re(\alpha)}{|z-\alpha|^2} \quad for \ z \in \mathbb{I}. \tag{14}$$

(ii) If $\mathfrak p$ has all its zeros in the closed right half plane $\mathbb I \cup \mathbb I^+$, then for $\alpha \in \mathbb I^+$

$$\Re\left(\frac{\mathsf{D}_{\alpha}\mathsf{p}(z)}{(\alpha-z)\mathsf{p}(z)}\right) \le \frac{\mathfrak{n}\Re(\alpha)}{|z-\alpha|^2} \quad for \ z \in \mathbb{I}. \tag{15}$$

The inequalities are sharp and equality holds for a polynomial $\mathfrak p$ having all the zeros on the imaginary axis $\mathbb I$.

Proofs:

Proof of the Theorem 4. Suppose

$$B(z) - i = 0. \tag{16}$$

Then $w^*(z)-iw(z)=0$, which is clearly a polynomial of degree $\mathfrak n$ and therefore it has $\mathfrak n$ zeros.

We claim that

$$z \in \mathbb{I}$$
 if and only if $|B(z)| = 1$. (*)

Indeed, we have $\left|\frac{z+\overline{\alpha_{j}}}{z-\alpha_{j}}\right|^{2}-1=\frac{4\Re(z)\Re(\alpha_{j})}{|z-\alpha_{j}|^{2}}$. Therefore if $\Re(z)=0$, then $\left|\frac{z+\overline{\alpha_{j}}}{z-\alpha_{j}}\right|=1$ for all $j=1,2,\cdots,n$ and we get $|B(z)|=\prod_{j=1}^{n}\left|\frac{z+\overline{\alpha_{j}}}{z-\alpha_{j}}\right|=1$. Conversely if |B(z)|=1, then $\Re(z)>0$, gives us

$$\left|\frac{z+\overline{\alpha_j}}{z-\alpha_j}\right|^2-1=\frac{4\Re(z)\Re(\alpha_j)}{|z-\alpha|^2}>0 \ \text{ for all } \ j=1,2,\cdots,n.$$

This in particular gives |B(z)| > 1, a contradiction. There will be a similar contradiction, if we assume that $\Re(z) < 0$. Hence $z \in \mathbb{I}$.

By (*) all the roots of (16) lie on \mathbb{I} and $w(z) \neq 0$ on \mathbb{I} . So the n zeros of $w^*(z) - iw(z)$ are the n roots (say) t_1, t_2, \dots, t_n of (16), which lie on the imaginary axis. We show that all t_k , $k = 1, 2, \dots, n$ are distinct. We have

$$B(z) = \frac{\prod_{j=1}^{n} (z + \overline{\alpha_j})}{\prod_{j=1}^{n} (z - \alpha_j)}.$$

Therefore

$$\begin{split} \frac{B'(z)}{B(z)} &= \sum_{j=1}^n \left(\frac{1}{z + \overline{\alpha_j}} - \frac{1}{z - a_j} \right) \\ &= \sum_{j=1}^n \frac{2\Re(\alpha_j)}{|z - a_j|^2} \ \text{for} \quad z \in \mathbb{I}. \end{split}$$

This proves (6) and hence for all $t_k, k = 1, 2, \dots, n$, we get

$$B'(t_k) = i \sum_{i=1}^n \frac{2\Re(a_j)}{|t_k - a_j|^2}.$$

Since $\Re(a_j) > 0$, for all $j = 1, 2, \dots, n$, $B'(t_k)$ is a non-zero (purely imaginary) number for all $k = 1, 2, \dots, n$. Hence $t_k, k = 1, 2, \dots, n$ are all distinct roots of (16). Now let

$$\begin{aligned} q(z) &= w^*(z) - iw(z) \\ &= w(z) (B(z) - i)) \\ &= a \prod_{k=1}^{n} (z - t_k), \quad a \neq 0. \end{aligned}$$

Then $q \in \mathcal{P}_n$. Now for $r(z) = \frac{p(z)}{w(z)} \in \mathcal{R}_n$, let $p(z) = cz^n + ...$ Then $p(z) - \frac{c}{a}q(z)$ is a polynomial of degree at most n-1. Since $t_k, k=1,2,\cdots,n$ are n distinct numbers, by Lagrange's interpolation formula

$$p(z) - \frac{c}{a}q(z) = \sum_{k=1}^{n} \frac{(p(t_k) - \frac{c}{a}q(t_k))q(z)}{(z - t_k)q'(t_k)}.$$

This implies

$$\frac{p(z)}{q(z)} - \frac{c}{a} = \sum_{k=1}^{n} \frac{p(t_k)}{(z - t_k)q'(t_k)},$$

which on differentiation gives

$$\left(\frac{p(z)}{q(z)}\right)' = -\sum_{k=1}^{n} \frac{p(t_k)}{(z - t_k)^2 q'(t_k)}.$$
 (17)

Now p(z) = w(z)r(z) and q(z) = w(z)(B(z) - i) gives $\frac{p(z)}{q(z)} = \frac{r(z)}{B(z) - i}$ and hence

$$\left(\frac{\mathrm{p}(z)}{\mathrm{q}(z)}\right)' = \frac{(\mathrm{B}(z) - \mathrm{i})\mathrm{r}'(z) - \mathrm{r}(z)\mathrm{B}'(z)}{(\mathrm{B}(z) - \mathrm{i})^2}.$$

Also $p(t_k) = w(t_k)r(t_k)$ and

$$q'(t_k) = w'(t_k)(B(t_k) - i) + w(t_k)B'(t_k)$$

= $w(t_k)B'(t_k)$.

Therefore from (17), we have

$$\frac{(B(z) - i)r'(z) - r(z)B'(z)}{(B(z) - i)^2} = -\sum_{k=1}^{n} \frac{r(t_k)}{(z - t_k)^2 B'(t_k)}$$

$$=\sum_{k=1}^n\frac{r(t_k)}{|z-t_k|^2B'(t_k)},\ \ \mathrm{for}\ \ z\in\mathbb{I}$$

Hence

$$(B(z) - i)r'(z) - r(z)B'(z) = (B(z) - i)^{2} \sum_{k=1}^{n} \frac{u_{k}r(t_{k})}{|z - t_{k}|^{2}}$$
(18)

where

$$\frac{1}{u_k} = B'(t_k) = i \sum_{j=1}^n \frac{2\Re(a_j)}{|t_k - a_j|^2}.$$

This proves (4) and (5).

Remark 1 Note that u_k , $(k = 1, 2, \dots, n)$ are purely imaginary numbers with negative imaginary part under our assumption $\Re(a_j) > 0$ for all $j = 1, 2, \dots, n$.

Proof of Corollary 1. By the same argument as in Theorem 4 applied to B(z) = -i instead of B(z) = i, we get

$$(B(z) + i)r'(z) - r(z)B'(z) = (B(z) + i)^{2} \sum_{k=1}^{n} \frac{\nu_{k}r(s_{k})}{|z - s_{k}|^{2}},$$
(19)

where

$$\frac{1}{\nu_k} = B'(t_k) = -i \sum_{j=1}^n \frac{2\Re(a_j)}{|s_k - a_j|^2}.$$

Subtracting (18) from (19) we have

$$2ir'(z) = (B(z) + i)^2 \sum_{k=1}^{n} \frac{\nu_k r(s_k)}{|z - s_k|^2} - (B(z) - i)^2 \sum_{k=1}^{n} \frac{\mu_k r(t_k)}{|z - t_k|^2}.$$
 (20)

Taking $r(z) \equiv 1$ in (18) and (19) we get

$$B'(z) = -(B(z) - i)^2 \sum_{k=1}^{n} \frac{u_k}{|z - t_k|^2}$$

$$B'(z) = -(B(z) + i)^2 \sum_{k=1}^{n} \frac{v_k}{|z - s_k|^2}$$

and hence

$$|B'(z)| = |B(z) - i|^2 \left| \sum_{k=1}^{n} \frac{u_k}{|z - t_k|^2} \right|$$
 (21)

$$|B'(z)| = |B(z) + i|^2 \left| \sum_{k=1}^{n} \frac{v_k}{|z - s_k|^2} \right|.$$
 (22)

Now from (20)

$$|2r'(z)| \leq |(B(z) + i)|^2 \left| \sum_{k=1}^n \frac{\nu_k r(s_k)}{|z - s_k|^2} \right| + |(B(z) - i)|^2 \left| \sum_{k=1}^n \frac{u_k r(t_k)}{|z - t_k|^2} \right|.$$

Using (21) and (22), we get for $z \in \mathbb{I}$

$$|\mathbf{r}'(z)| \leq \frac{1}{2} |\mathbf{B}'(z)| [\max_{1 \leq k \leq n} |\mathbf{r}(\mathbf{t}_k)| + \max_{1 \leq k \leq n} |\mathbf{r}(s_k)|]$$

Proof of Theorem 5. We have

$$r^*(z) = B(z)\overline{r(\overline{-z})}$$
.

Therefore

$$(\mathbf{r}^*(z))' = \mathbf{B}'(z)\overline{\mathbf{r}(\overline{-z})} - \mathbf{B}(z)\overline{\mathbf{r}'(\overline{-z})}$$
$$= \mathbf{B}'(z)\overline{\mathbf{r}(z)} - \mathbf{B}(z)\overline{\mathbf{r}'(z)} \text{ for } z \in \mathbb{I}$$

This implies that

$$|(\mathbf{r}^*(z))'| \le |\mathbf{B}'(z)| \left| \overline{\mathbf{r}(z)} \right| + |\mathbf{B}(z)| \left| \overline{\mathbf{r}'(z)} \right|$$

= $|\mathbf{B}'(z)| |\mathbf{r}(z)| + |\mathbf{B}(z)| |\mathbf{r}'(z)|.$

Since |B(z)| = 1 on imaginary axis, it follows that for $z \in \mathbb{I}$

$$|(\mathbf{r}^*(z))'| - |\mathbf{r}'(z)| \le |\mathbf{B}'(z)||\mathbf{r}(z)|.$$

Proof of Theorem 6. Let $b_1, b_2, \ldots, b_m, m \le n$. be the zeros of r. (i) Suppose $\Re(b_j) \le 0$ for all $j = 1, 2, \ldots, m$. Then $p(z) = c \prod_{j=1}^{m} (z - b_j)$ with $c \ne 0$ and we have

$$\mathbf{r}(z) = \frac{\mathbf{p}(z)}{w(z)} = \frac{\mathbf{c} \prod_{j=1}^{m} (z - \mathbf{b}_j)}{\prod_{j=1}^{n} (z - \mathbf{a}_j)}.$$

Taking logarithms on both sides and differentiating we get

$$\frac{\mathbf{r}'(z)}{\mathbf{r}(z)} = \sum_{j=1}^{m} \frac{1}{z - \mathbf{b}_{j}} - \sum_{j=1}^{n} \frac{1}{z - \mathbf{a}_{j}}.$$
 (23)

Now for $\Re(z) = 0$

$$\mathfrak{R}\left(\frac{1}{z-b_j}\right) = \frac{-\mathfrak{R}(b_j)}{|z-b_j|^2} \ge 0 \ \ \mathrm{for \ all} \ \ j=1,2,\ldots,m$$

and therefore

$$\sum_{j=1}^{m} \mathfrak{R}\left(\frac{1}{z-b_{j}}\right) \geq 0.$$

Hence from (23) and by using (6) we have

$$\mathfrak{R}\left(\frac{\mathbf{r}'(z)}{\mathbf{r}(z)}\right) = \sum_{j=1}^{m} \mathfrak{R}\left(\frac{1}{z - b_{j}}\right) - \sum_{j=1}^{n} \mathfrak{R}\left(\frac{1}{z - a_{j}}\right)$$

$$\geq -\sum_{j=1}^{n} \mathfrak{R}\left(\frac{1}{z - a_{j}}\right)$$

$$= -\sum_{j=1}^{n} \frac{\mathfrak{R}(z - a_{j})}{|z - a_{j}|^{2}}$$

$$= \sum_{j=1}^{n} \frac{\mathfrak{R}(a_{j})}{|z - a_{j}|^{2}} \text{ for } \mathfrak{R}(z) = 0$$

$$= \frac{1}{2} \left| \frac{\mathbf{B}'(z)}{\mathbf{B}(z)} \right|.$$

Since |B(z)| = 1 for $z \in \mathbb{I}$, we conclude

$$\Re\left(\frac{r'(z)}{r(z)}\right) \geq \frac{1}{2}|B'(z)|.$$

(ii) Suppose $\Re(\mathfrak{b}_j) \geq 0$ for all j = 1, 2, ..., m. Then for $\Re(z) = 0$

$$\mathfrak{R}\left(\frac{1}{z-b_j}\right) = \frac{-\mathfrak{R}(b_j)}{|z-b_j|^2} \leq 0 \ \mathrm{for \ all} \ \ j=1,2,\cdots,m.$$

This in particular gives

$$\sum_{j=1}^{m} \Re\left(\frac{1}{z-b_{j}}\right) \leq 0.$$

Thus as in part (i), we get for $\Re(z) = 0$

$$\begin{split} \mathfrak{R}\left(\frac{\mathbf{r}'(z)}{\mathbf{r}(z)}\right) &= \sum_{j=1}^{m} \mathfrak{R}\left(\frac{1}{z-b_{j}}\right) - \sum_{j=1}^{n} \mathfrak{R}\left(\frac{1}{z-a_{j}}\right) \\ &\leq -\sum_{j=1}^{n} \mathfrak{R}\left(\frac{1}{z-a_{j}}\right) \\ &= -\sum_{j=1}^{n} \frac{\mathfrak{R}(z-a_{j})}{|z-a_{j}|^{2}} \\ &= \sum_{j=1}^{n} \frac{\mathfrak{R}(a_{j})}{|z-a_{j}|^{2}} \\ &= \frac{1}{2} \left| \frac{\mathbf{B}'(z)}{\mathbf{B}(z)} \right|. \end{split}$$

That is

$$\Re\left(\frac{\mathrm{r}'(z)}{\mathrm{r}(z)}\right) \leq \frac{1}{2}|\mathrm{B}'(z)|,$$

Proof of Theorem 7. Let s_k and t_k , k = 1, 2, ..., n be as defined in Corollary 1 and Let

 $z_0 \in \{t_1, t_2, \dots, t_n, s_1, s_2, \dots, s_n\}$, be such that $|r(z_0)| = \max\{|r(t_1)|, |r(t_2)|, \dots, |r(t_n)|, |r(s_1)|, |r(s_2)|, \dots, |r(s_n)|\}$. By Corollary 1

1
$$|\mathbf{r}'(z)| \le |\mathbf{B}'(z)||\mathbf{r}(z_0)| \tag{24}$$
For $a_1 = a_2 = \dots = a_n = \alpha$, $\mathbf{r}(z) = \frac{p(z)}{(z - \alpha)^n}$ and $\mathbf{B}(z) = \frac{(z + \overline{\alpha})^n}{(z - \alpha)^n}$
so that $\mathbf{r}'(z) = \left(\frac{p(z)}{(z - \alpha)^n}\right)'$

$$= \frac{(z - \alpha)^n p'(z) - p(z)n(z - \alpha)^{n-1}}{(z - \alpha)^{2n}}$$

$$= \frac{1}{-(z - \alpha)^{n+1}} D_{\alpha} p(z).$$

Also from (6)

$$|\mathrm{B}'(z)| = rac{2 \mathrm{n} \mathfrak{R}(\alpha)}{|z - \alpha|^2} \ \ \mathrm{for} \ z \in \mathbb{I}.$$

Substituting in (24), we get for $z \in \mathbb{I}$

$$\begin{aligned} \left| \frac{1}{(z-\alpha)^{n+1}} D_{\alpha} p(z) \right| &\leq \frac{2n \Re(\alpha)}{|z-\alpha|^2} \left| \frac{P(z_0)}{(z_0-\alpha)^n} \right| \\ &= \frac{2n \Re(\alpha-z)}{|z-\alpha|^2} \left| \frac{P(z_0)}{(z_0-\alpha)^n} \right| \end{aligned}$$

and hence

$$\left|\frac{1}{(z-\alpha)^{n+1}}D_{\alpha}p(z)\right| \leq \frac{2n\Re(\alpha-z)}{|z-\alpha|^2}\left|\frac{P(z_0)}{(z_0-\alpha)^n}\right|.$$

Proof of Theorem 8. We have from Theorem 5 for every $z \in \mathbb{I}$

$$|(\mathbf{r}^*(z))'| - |\mathbf{r}'(z)| \le |\mathbf{B}'(z)||\mathbf{r}(z)| \tag{25}$$

Taking $r(z) = \frac{p(z)}{(z-\alpha)^n}$, so that

$$\mathbf{r}'(z) = \frac{1}{-(z-\alpha)^{n+1}} \mathbf{D}_{\alpha} \mathbf{p}(z).$$

Also

$$r^*(z) = \frac{p^*(z)}{(z - \alpha)^n}$$

gives

$$(r^*(z))' = \frac{1}{-(z-\alpha)^{n+1}} D_{\alpha} p^*(z).$$

Further from (6), we have for $z \in \mathbb{I}$

$$|B'(z)| = \frac{2n\Re(\alpha)}{|z - \alpha|^2}.$$

Therefore from (25), for $z \in \mathbb{I}$

$$\left| \frac{1}{(z-\alpha)^{n+1}} \mathcal{D}_{\alpha} \mathfrak{p}^*(z) \right| - \left| \frac{1}{(z-\alpha)^{n+1}} \mathcal{D}_{\alpha} \mathfrak{p}(z) \right| \le \frac{2n \mathfrak{R}(\alpha)}{|z-\alpha|^2} \left| \frac{\mathfrak{p}(z)}{(z-\alpha)^n} \right|. \tag{26}$$

Also for $z \in \mathbb{I}$

$$\Re(\alpha) = \Re(\alpha - z)$$

 $\leq |\alpha - z|$
 $= |z - \alpha|$.

Thus from (26) we get

$$\left|\frac{1}{(z-\alpha)^{n+1}}D_{\alpha}p^*(z)\right| - \left|\frac{1}{(z-\alpha)^{n+1}}D_{\alpha}p(z)\right| \leq \frac{2n|z-\alpha|}{|z-\alpha|^2}\left|\frac{p(z)}{(z-\alpha)^n}\right|.$$

This gives

$$|D_{\alpha}p^*(z)| - |D_{\alpha}p(z)| \le 2n|p(z)| \text{ for } z \in \mathbb{I}.$$

Proof of Theorem 9. Let $b_1, b_2, ..., b_m, m \le n$, be the zeros of p.

(i) Suppose
$$\mathfrak{R}(\mathfrak{b}_{\mathfrak{j}}) \leq 0$$
 for all $\mathfrak{j}=1,2,\ldots,\mathfrak{m}$. Taking $\mathfrak{r}(z)=\frac{\mathfrak{p}(z)}{(z-\alpha)^{\mathfrak{n}}}$ in

Theorem 6 (i), we get by using the fact that $r'(z) = \frac{-D_{\alpha}p(z)}{(z-\alpha)^{n+1}}$ and $|B'(z)| = \frac{2n\Re(\alpha)}{|z-\alpha|^2}$ for $z \in \mathbb{I}$,

$$\Re\left(\frac{\mathsf{D}_{\alpha}\mathsf{p}(z)}{(\alpha-z)\mathsf{p}(z)}\right) \ge \frac{\mathsf{n}\Re(\alpha)}{|z-\alpha|^2} \text{ for } z \in \mathbb{I}. \tag{27}$$

(ii) Suppose $\mathfrak{R}(b_j) \geq 0$ for all j = 1, 2, ..., m. Then taking $r(z) = \frac{p(z)}{w(z)}$ in Theorem 6 (ii).

Declarations:

Ethical Approval:

Not Applicable.

Conflict of Interest:

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Funding:

No Funding received.

Availability of Data and Materials:

Not applicable to this article as no datasets were generated or analysed during the current study.

Acknowledgements

The authors are highly thankful to the anonymous referee for his suggestions which have indeed improved the article.

References

- [1] A. Aziz, Inequalities for the polar derivative of a polynomial *J. Approx. Theory*, **55**(1988), 183–193.
- [2] A. Aziz and W. M. Shah, Some properties of rational functions with prescribed poles and restricted zeros, *Math. Balkanica(N.S)*, **18**(2004), 33–40.
- [3] A. Aziz and B.A.Zarger, Some properties of rational functions with prescribed poles, Canad. Math. bull., **42**(1999),417–426.
- [4] S. Bernstein, Sur la limitation des dérivées des polynomes, C. R. Acad. Sci. Paris., 190(1930), 338–340.
- [5] V. N. Dubinin, On application of conformal maps to inequalities for rational functions, Izv. Math., 66(2002), 285-297.
- [6] P. D. Lax, Proof of a conjecture of P. Erdös on the derivative of a polynomial, *Bull. Amer. Math. Soc.*, **50**(1944), 509–513.
- [7] Xin Li, R. N. Mohapatra and R. S. Rodriguez, Bernstien -type inequalities for rational functions with prescribed poles, *J. London. Math. Soc.*, 1(1995), 523–531.
- [8] N. K. Govil and R. N. Mohapatra, Inequalities for maximum modulus of rational functions with prescribed poles. Approximation theory, 255-263, Monogr. Textbooks Pure Appl. Math., 212, Dekker, New York, 1998.
- [9] Q. I. Rahman and G. Schmeisser, Analytic theory of polynomials, Oxford University Press, Oxford, 2002.
- [10] T. Sheil-Small, Complex polynomials, Cambridge Stud. Adv. Math., Cambridge Univ. Press, Cambridge., 2002.

- [11] P. Turán, Über die Ableitung von Polynomen, Compositio Math. Compositio Math., 7(1939), 89–95.
- [12] S.L.Wali and W.M.Shah, Some applications of Dubinin's lemma to rational functions with prescribed poles, J.Math.Anal.Appl., ${\bf 450}(2017),769-779$.

Received: October 23, 2023