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Abstract. In this paper we prove certain Bernstein-type inequalities for
rational functions with poles in the right half plane. We also deduce some
estimates for the maximum modulus of polar derivative of a polynomial
on the imaginary axis in terms of the modulus of the polynomial.

1 Introduction

Let Pn denote the class of all complex polynomials p(z) :=
n∑
j=0

cjz
j of degree

at most n. For every p ∈ Pn, the following inequality is due to Bernstein [4]:

max
|z|=1

|p ′(z)| ≤ nmax
|z|=1

|p(z)|.

It was conjectured by Erdös and proved by Lax [6] that if all the zeros of p
lie outside the open unit disk, then

max
|z|=1

|p ′(z)| ≤ n

2
max
|z|=1

|p(z)|.
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Later Turán [11] proved that if all the zeros of p lie inside the closed unit disk,
then

max
|z|=1

|p ′(z)| ≥ n

2
max
|z|=1

|p(z)|.

There have been many refinements and generalisations of the results of Lax
and Turan (see [9], [10]). Li, Mohapatra and Rodriguez [7] extended the above
inequalities to rational functions r with poles outside the closed unit disk and
proved the following results:

Theorem 1 Suppose r(z) =
p(z)∏n

j=1(z− aj)
, where p ∈ Pn and |aj| > 1, for all

1 ≤ j ≤ n. Then for |z| = 1

|r ′(z)| ≤ |B ′(z)|max
|z|=1

|r(z)|. (1)

where B(z) =
∏n

j=1

(
1− ajz

z− aj

)
is the Blashke Product for unit disk.

They also proved:

Theorem 2 Suppose r(z) =
p(z)∏n

j=1(z− aj)
, where p ∈ Pn and |aj| > 1, for all

1 ≤ j ≤ nand all the zeroes of r lie outside open unit disk. Then for |z| = 1

|r ′(z)| ≤ 1

2
|B ′(z)|max

|z|=1
|r(z)|. (2)

Theorem 3 Suppose r(z) =
p(z)∏n

j=1(z− aj)
, where p ∈ Pn and |aj| > 1, for all

1 ≤ j ≤ nand all the zeroes of r lie inside closed unit disk. Then for |z| = 1

|r ′(z)| ≥ 1

2
(|B ′(z)|− (n−m)max

|z|=1
|r(z)|). (3)

where m is the number of zeros of r.

Following the paper by Li, Mohapatra and Rodriguez [7], there have been
many generalizations of Theorems 1, 2 and 3 (For details see [2], [3], [5], [8]).
In all the cases, it is assumed that the poles of the rational function r are either
inside or outside of the unit circle in the complex plane. In this paper, instead of
assuming that the poles of r are inside/outside unit circle we consider the case
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when the poles are in the left/right half of the complex plane and derive the
corresponding inequalities on the imaginary axis. So we derive these estimates
on a line which is an unbounded set unlike the boundary of a disk. Further,
we obtain certain estimates of the maximum modulus of the polar derivative
Dζp(z) of a polynomial p(z) in terms of the maximum modulus of p(z) on the
imaginary axis. We start with the following notations and definitions:
Let I := {z ∈ C : ℜ(z) = 0} , I+ := {z ∈ C : ℜ(z) > 0} and I− := {z ∈ C :

ℜ(z) < 0}. For aj ∈ I+, j = 1, 2, . . . , n, let

w(z) :=

n∏
j=1

(z− aj),

and Rn = Rn(a1, a2, . . . , an) :=
{ p(z)

w(z)
: p ∈ Pn

}
.

Thus Rn is the set of all rational functions with poles a1, a2, . . . , an in the
open right half plane and with finite limit at ∞. We define the corresponding
Blashke product B(z) for the half plane

B(z) :=

n∏
j=1

(
z+ aj

z− aj

)
.

Clearly B(z) ∈ Rn.

We also define for p(z) =
n∑
j=0

cjz
j, the conjugate transpose(reciprocal) p∗ of p

as
p∗(z) := (−1)np(−z) = cnz

n − cn−1z
n−1 + · · ·+ (−1)nc0.

For r(z) =
p(z)

w(z)
∈ Rn, we define r

∗(z) := B(z)r(−z). Note that if r =
p

w
∈ Rn,

then r∗ =
p∗

w
and hence r∗ ∈ Rn. Further, we define the polar derivative

Dζp(z) of a polynomial p(z) with respect to ζ as

Dζp(z) := np(z) − (z− ζ)p′(z).

It is clear that Dζp(z) is a polynomial of degree atmost n− 1 and

lim
ζ→∞

(
Dζp(z)

ζ

)
= p′(z).

For details regarding Bernstein-type inequalities for polar derivatives on unit
circle (see [1], [12]).
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2 Main results

In this paper we assume that all the poles aj, j = 1, 2, . . . , n lie in open right
half plane I+. For the case when all the poles are in open left half plane I−,
we obtain analogous results with suitable modifications. We first prove:

Theorem 4 Let i be the imaginary unit, then B(z) = i has exactly n simple
roots, say t1, t2, . . . , tn and all lie on the imaginary axis I. Further, if r ∈ Rn

and z ∈ I, then

r′(z)(B(z) − i) − B′(z)r(z) = (B(z) − i)2
n∑

k=1

ukr(tk)

|z− tk|2
, (4)

where
1

uk
= B′(tk) = i

n∑
j=1

2ℜ(aj)

|tk − aj|2
, 1 ≤ k ≤ n. (5)

Moreover for z ∈ I
B′(z)

B(z)
=

n∑
j=1

2ℜ(aj)

|z− aj|2
. (6)

From Theorem 1 we can deduce the following:

Corollary 1 Let tk, k = 1, 2, . . . , n be as defined in Theorem 4 and sk, k =
1, 2, . . . , n be the roots of B(z) = −i, then for z ∈ I

|r′(z)| ≤ 1

2
|B′(z)|[max

1≤k≤n
|r(tk)|+ max

1≤k≤n
|r(sk)|]. (7)

Corollary 1 immediately gives us the following:

Corollary 2 If z ∈ I, then

max
z∈I

|r′(z)| ≤ |B′(z)|max
z∈I

|r(z)| (8)

The inequality is sharp in the sense that the equality holds if we take r(z) =
λB(z) for some λ ∈ C.

This is the Bernstein-type inequality for Rn, the rational functions with all
the poles in open right half plane and is identical to Theorem 1.
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Theorem 5 If r ∈ Rn and z ∈ I, then

|(r∗(z))′|− |r′(z)| ≤ |B′(z)||r(z)|. (9)

Theorem 6 Suppose r ∈ Rn

(i) If r has all its zeros in the closed left half plane I ∪ I−, then for z ∈ I

ℜ

(
r′(z)

r(z)

)
≥ 1

2
|B′(z)|. (10)

(ii) If r has all its zeros in the closed right half plane I ∪ I+, then for z ∈ I

ℜ

(
r′(z)

r(z)

)
≤ 1

2
|B′(z)|. (11)

The inequalities are sharp and the equality holds if all the zeros of r lie on the
imaginary axis I.

If we set a1 = a2 = · · · = an = α in Theorem 4, then we get the following
estimates for the polar derivative of a polynomial p ∈ Pn:

Theorem 7 If p ∈ Pn and α ∈ I+, then there exists a z0 ∈ I such that

|Dαp(z)| ≤ 2n

∣∣∣∣ z− α

z0 − α

∣∣∣∣n |p(z0)| for z ∈ I. (12)

Theorem 8 If p ∈ Pn, then for α ∈ I+

|Dαp
∗(z)|− |Dαp(z)| ≤ 2n|P(z)| for z ∈ I. (13)

Theorem 9 Suppose p ∈ Pn

(i) If p has all its zeros in the closed left half plane I ∪ I−, then for α ∈ I+

ℜ

(
Dαp(z)

(α− z)p(z)

)
≥ nℜ(α)

|z− α|2
for z ∈ I. (14)

(ii) If p has all its zeros in the closed right half plane I ∪ I+, then for α ∈ I+

ℜ

(
Dαp(z)

(α− z)p(z)

)
≤ nℜ(α)

|z− α|2
for z ∈ I. (15)

The inequalities are sharp and equality holds for a polynomial p having all the
zeros on the imaginary axis I.
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Proofs:

Proof of the Theorem 4. Suppose

B(z) − i = 0. (16)

Thenw∗(z)−iw(z) = 0, which is clearly a polynomial of degree n and therefore
it has n zeros.
We claim that

z ∈ I if and only if |B(z)| = 1. (∗)

Indeed, we have

∣∣∣∣z+ aj

z− aj

∣∣∣∣2 − 1 =
4ℜ(z)ℜ(aj)

|z− aj|2
. Therefore if ℜ(z) = 0, then∣∣∣∣z+ aj

z− aj

∣∣∣∣ = 1 for all j = 1, 2, · · · , n and we get |B(z)| =
∏n

j=1

∣∣∣∣z+ aj

z− aj

∣∣∣∣ = 1.

Conversely if |B(z)| = 1, then ℜ(z) > 0, gives us∣∣∣∣z+ aj

z− aj

∣∣∣∣2 − 1 =
4ℜ(z)ℜ(aj)

|z− α|2
> 0 for all j = 1, 2, · · · , n.

This in particular gives |B(z)| > 1, a contradiction. There will be a similar
contradiction, if we assume that ℜ(z) < 0. Hence z ∈ I.
By (∗) all the roots of (16) lie on I and w(z) ̸= 0 on I. So the n zeros

of w∗(z) − iw(z) are the n roots (say) t1, t2, · · · , tn of (16), which lie on the
imaginary axis. We show that all tk, k = 1, 2, · · · , n are distinct. We have

B(z) =

∏n
j=1(z+ aj)∏n
j=1(z− aj)

.

Therefore

B′(z)

B(z)
=

n∑
j=1

(
1

z+ aj
−

1

z− aj

)

=

n∑
j=1

2ℜ(aj)

|z− aj|2
for z ∈ I.

This proves (6) and hence for all tk, k = 1, 2, · · · , n, we get

B′(tk) = i

n∑
j=1

2ℜ(aj)

|tk − aj|2
.
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Since ℜ(aj) > 0, for all j = 1, 2, · · · , n, B′(tk) is a non-zero (purely imaginary)
number for all k = 1, 2, · · · , n. Hence tk, k = 1, 2, · · · , n are all distinct roots
of (16). Now let

q(z) = w∗(z) − iw(z)

= w(z) (B(z) − i))

= a

n∏
k=1

(z− tk), a ̸= 0.

Then q ∈ Pn. Now for r(z) =
p(z)

w(z)
∈ Rn, let p(z) = czn+... Then p(z)−

c

a
q(z)

is a polynomial of degree atmost n− 1. Since tk, k = 1, 2, · · · , n are n distinct
numbers, by Lagrange’s interpolation formula

p(z) −
c

a
q(z) =

n∑
k=1

(p(tk) −
c

a
q(tk))q(z)

(z− tk)q′(tk)
.

This implies

p(z)

q(z)
−

c

a
=

n∑
k=1

p(tk)

(z− tk)q′(tk)
,

which on differentiation gives(
p(z)

q(z)

)′
= −

n∑
k=1

p(tk)

(z− tk)2q′(tk)
. (17)

Now p(z) = w(z)r(z) and q(z) = w(z)(B(z) − i) gives
p(z)

q(z)
=

r(z)

B(z) − i
and

hence (
p(z)

q(z)

)′
=

(B(z) − i)r′(z) − r(z)B′(z)

(B(z) − i)2
.

Also p(tk) = w(tk)r(tk) and

q′(tk) = w′(tk)(B(tk) − i) +w(tk)B
′(tk)

= w(tk)B
′(tk).

Therefore from (17), we have

(B(z) − i)r′(z) − r(z)B′(z)

(B(z) − i)2
= −

n∑
k=1

r(tk)

(z− tk)2B′(tk)
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=

n∑
k=1

r(tk)

|z− tk|2B′(tk)
, for z ∈ I

Hence

(B(z) − i)r′(z) − r(z)B′(z) = (B(z) − i)2
n∑

k=1

ukr(tk)

|z− tk|2
(18)

where
1

uk
= B′(tk) = i

n∑
j=1

2ℜ(aj)

|tk − aj|2
.

This proves (4) and (5).

Remark 1 Note that uk, (k = 1, 2, · · · , n) are purely imaginary numbers
with negative imaginary part under our assumption ℜ(aj) > 0 for all j =
1, 2, · · · , n.

Proof of Corollary 1. By the same argument as in Theorem 4 applied to
B(z) = −i instead of B(z) = i, we get

(B(z) + i)r′(z) − r(z)B′(z) = (B(z) + i)2
n∑

k=1

vkr(sk)

|z− sk|2
, (19)

where
1

vk
= B′(tk) = −i

n∑
j=1

2ℜ(aj)

|sk − aj|2
.

Subtracting (18) from (19) we have

2ir′(z) = (B(z) + i)2
n∑

k=1

vkr(sk)

|z− sk|2
− (B(z) − i)2

n∑
k=1

ukr(tk)

|z− tk|2
. (20)

Taking r(z) ≡ 1 in (18) and (19) we get

B′(z) = −(B(z) − i)2
n∑

k=1

uk

|z− tk|2

B′(z) = −(B(z) + i)2
n∑

k=1

vk
|z− sk|2
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and hence

|B′(z)| = |B(z) − i|2

∣∣∣∣∣
n∑

k=1

uk

|z− tk|2

∣∣∣∣∣ (21)

|B′(z)| = |B(z) + i|2

∣∣∣∣∣
n∑

k=1

vk
|z− sk|2

∣∣∣∣∣ . (22)

Now from (20)

|2r′(z)| ≤ |(B(z) + i)|2

∣∣∣∣∣
n∑

k=1

vkr(sk)

|z− sk|2

∣∣∣∣∣+ |(B(z) − i)|2

∣∣∣∣∣
n∑

k=1

ukr(tk)

|z− tk|2

∣∣∣∣∣ .
Using (21) and (22), we get for z ∈ I

|r′(z)| ≤ 1

2
|B′(z)|[max

1≤k≤n
|r(tk)|+ max

1≤k≤n
|r(sk)|]

Proof of Theorem 5. We have

r∗(z) = B(z)r(−z).

Therefore

(r∗(z))′ = B′(z)r(−z) − B(z)r′(−z)

= B′(z)r(z) − B(z)r′(z) for z ∈ I

This implies that

|(r∗(z))′| ≤ |B′(z)|
∣∣∣r(z)∣∣∣+ |B(z)|

∣∣∣r′(z)∣∣∣
= |B′(z)||r(z)|+ |B(z)||r′(z)|.

Since |B(z)| = 1 on imaginary axis, it follows that for z ∈ I

|(r∗(z))′|− |r′(z)| ≤ |B′(z)||r(z)|.

Proof of Theorem 6. Let b1, b2, . . . , bm,m ≤ n. be the zeros of r.
(i) Suppose ℜ(bj) ≤ 0 for all j = 1, 2, . . . ,m. Then p(z) = c

∏m
j=1(z− bj) with

c ̸= 0 and we have

r(z) =
p(z)

w(z)
=

c
∏m

j=1(z− bj)∏n
j=1(z− aj)

.
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Taking logarithms on both sides and differentiating we get

r′(z)

r(z)
=

m∑
j=1

1

z− bj
−

n∑
j=1

1

z− aj
. (23)

Now for ℜ(z) = 0

ℜ

(
1

z− bj

)
=

−ℜ(bj)

|z− bj|2
≥ 0 for all j = 1, 2, . . . ,m

and therefore
m∑
j=1

ℜ

(
1

z− bj

)
≥ 0.

Hence from (23) and by using (6) we have

ℜ

(
r′(z)

r(z)

)
=

m∑
j=1

ℜ

(
1

z− bj

)
−

n∑
j=1

ℜ

(
1

z− aj

)

≥ −

n∑
j=1

ℜ

(
1

z− aj

)

= −

n∑
j=1

ℜ(z− aj)

|z− aj|2

=

n∑
j=1

ℜ(aj)

|z− aj|2
for ℜ(z) = 0

=
1

2

∣∣∣∣B′(z)

B(z)

∣∣∣∣ .
Since |B(z)| = 1 for z ∈ I, we conclude

ℜ

(
r′(z)

r(z)

)
≥ 1

2
|B′(z)|.

(ii) Suppose ℜ(bj) ≥ 0 for all j = 1, 2, . . . ,m. Then for ℜ(z) = 0

ℜ

(
1

z− bj

)
=

−ℜ(bj)

|z− bj|2
≤ 0 for all j = 1, 2, · · · ,m.



304 G. M. Sofi, W. M. Shah

This in particular gives
m∑
j=1

ℜ

(
1

z− bj

)
≤ 0.

Thus as in part (i), we get for ℜ(z) = 0

ℜ

(
r′(z)

r(z)

)
=

m∑
j=1

ℜ

(
1

z− bj

)
−

n∑
j=1

ℜ

(
1

z− aj

)

≤ −

n∑
j=1

ℜ

(
1

z− aj

)

= −

n∑
j=1

ℜ(z− aj)

|z− aj|2

=

n∑
j=1

ℜ(aj)

|z− aj|2

=
1

2

∣∣∣∣B′(z)

B(z)

∣∣∣∣ .
That is

ℜ

(
r′(z)

r(z)

)
≤ 1

2
|B′(z)|,

Proof of Theorem 7. Let sk and tk, k = 1, 2, . . .¸ , n be as defined in Corollary
1 and Let
z0 ∈ {t1, t2, . . . , tn, s1, s2, . . . , sn}, be such that
|r(z0)| = max{|r(t1)|, |r(t2)|, . . . , |r(tn)|, |r(s1)|, |r(s2)|, . . . , |r(sn)|}. By Corollary
1

|r′(z)| ≤ |B′(z)||r(z0)| (24)

For a1 = a2 = . . . = an = α, r(z) =
p(z)

(z− α)n
and B(z) =

(z+ α)n

(z− α)n

so that r′(z) =

(
p(z)

(z− α)n

)′

=
(z− α)np′(z) − p(z)n(z− α)n−1

(z− α)2n

=
1

−(z− α)n+1
Dαp(z).
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Also from (6)

|B′(z)| =
2nℜ(α)

|z− α|2
for z ∈ I.

Substituting in (24), we get for z ∈ I∣∣∣∣ 1

(z− α)n+1
Dαp(z)

∣∣∣∣ ≤ 2nℜ(α)

|z− α|2

∣∣∣∣ P(z0)

(z0 − α)n

∣∣∣∣
=

2nℜ(α− z)

|z− α|2

∣∣∣∣ P(z0)

(z0 − α)n

∣∣∣∣
and hence ∣∣∣∣ 1

(z− α)n+1
Dαp(z)

∣∣∣∣ ≤ 2nℜ(α− z)

|z− α|2

∣∣∣∣ P(z0)

(z0 − α)n

∣∣∣∣ .
Proof of Theorem 8. We have from Theorem 5 for every z ∈ I

|(r∗(z))′|− |r′(z)| ≤ |B′(z)||r(z)| (25)

Taking r(z) =
p(z)

(z− α)n
, so that

r′(z) =
1

−(z− α)n+1
Dαp(z).

Also

r∗(z) =
p∗(z)

(z− α)n

gives

(r∗(z))′ =
1

−(z− α)n+1
Dαp

∗(z).

Further from (6), we have for z ∈ I

|B′(z)| =
2nℜ(α)

|z− α|2
.

Therefore from (25), for z ∈ I∣∣∣∣ 1

(z− α)n+1
Dαp

∗(z)

∣∣∣∣− ∣∣∣∣ 1

(z− α)n+1
Dαp(z)

∣∣∣∣ ≤ 2nℜ(α)

|z− α|2

∣∣∣∣ p(z)

(z− α)n

∣∣∣∣ . (26)
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Also for z ∈ I

ℜ(α) = ℜ(α− z)

≤ |α− z|

= |z− α|.

Thus from (26) we get∣∣∣∣ 1

(z− α)n+1
Dαp

∗(z)

∣∣∣∣− ∣∣∣∣ 1

(z− α)n+1
Dαp(z)

∣∣∣∣ ≤ 2n|z− α|

|z− α|2

∣∣∣∣ p(z)

(z− α)n

∣∣∣∣ .

This gives
|Dαp

∗(z)|− |Dαp(z)| ≤ 2n|p(z)| for z ∈ I.

Proof of Theorem 9. Let b1, b2, . . . , bm,m ≤ n, be the zeros of p.

(i) Suppose ℜ(bj) ≤ 0 for all j = 1, 2, . . . ,m. Taking r(z) =
p(z)

(z− α)n
in

Theorem 6 (i), we get by using the fact that r′(z) =
−Dαp(z)

(z− α)n+1
and |B′(z)| =

2nℜ(α)

|z− α|2
for z ∈ I,

ℜ

(
Dαp(z)

(α− z)p(z)

)
≥ nℜ(α)

|z− α|2
for z ∈ I. (27)

(ii) Suppose ℜ(bj) ≥ 0 for all j = 1, 2, . . . ,m. Then taking r(z) =
p(z)

w(z)
in

Theorem 6 (ii).
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Sci. Paris., 190(1930), 338–340.

[5] V. N. Dubinin, On application of conformal maps to inequalities for ra-
tional functions,Izv.Math.,66(2002), 285-297.

[6] P. D. Lax, Proof of a conjecture of P. Erdös on the derivative of a poly-
nomial, Bull. Amer. Math. Soc., 50(1944), 509–513.

[7] Xin Li, R. N. Mohapatra and R. S. Rodriguez, Bernstien -type inequali-
ties for rational functions with prescribed poles, J. London. Math. Soc.,
1(1995), 523–531.

[8] N. K. Govil and R. N. Mohapatra, Inequalities for maximum modulus of
rational functions with prescribed poles. Approximation theory, 255-263,
Monogr. Textbooks Pure Appl. Math., 212, Dekker, New York, 1998.

[9] Q. I. Rahman and G. Schmeisser, Analytic theory of polynomials, Oxford
University Press, Oxford, 2002.

[10] T. Sheil-Small, Complex polynomials, Cambridge Stud. Adv. Math.,
Cambridge Univ. Press, Cambridge., 2002.



308 G. M. Sofi, W. M. Shah
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