

DOI: 10.47745/ausm-2024-0021

# A generalized $(\psi, \phi)$ - weak contraction in metric spaces

## A. K. Singh

Department of Pure & Applied Mathematics, Guru Ghasidas Vishwavidyalaya, Bilaspur (C.G.), India email: awnish.singh85@gmail.com

#### Koti N.V.V. Vara Prasad

Department of Pure & Applied Mathematics, Guru Ghasidas Vishwavidyalaya, Bilaspur (C.G.), India email: knvp71@yahoo.co.in

**Abstract.** In this paper, we introduce weakly generalized  $(\psi, \varphi)$ -weak quasi contraction for four self-maps and establish a common fixed point theorem using weak compatible property.

#### 1 Introduction

In 1997, Alber and Guerre-Delabrier [2] defined the concept of weak contraction as a generalization of contraction and established the existence of fixed points for a self-map in Hilbert space. In 2001, Rhoades [9] extended this concept to metric spaces. A mapping  $T: X \to X$  is said to be a weak contraction if there exists a function  $\phi: [0, \infty) \to [0, \infty), \ \phi(t) > 0$  for all t > 0 and  $\phi(0) = 0$  such that

$$d(\mathsf{Tx},\mathsf{Ty}) \le d(\mathsf{x},\mathsf{y}) - \varphi(d(\mathsf{x},\mathsf{y})) \ \forall \, \mathsf{x},\mathsf{y} \in \mathsf{X}. \tag{1}$$

As weak contractions are defined through  $\varphi$ , these are referred as  $\varphi$ -weak contraction.

Rhoades [9] established that every  $\varphi$ -weak contraction has a unique fixed point in complete metric space when  $\varphi$  is continuous.

2010 Mathematics Subject Classification: 47H10, 54H20

Key words and phrases: common fixed point,  $(\psi, \phi)$ -weak contraction condition, weakly compatible maps, metric spaces

**Theorem 1** Let (X,d) be a nonempty complete metric space, and let  $T:X\to X$  be a  $\phi$ -weak contraction on X. If  $\phi(t)>0$ , for all t>0 and  $\phi(0)=0$ , then T has a unique fixed point.

Afterwards, Dutta and Choudhury [4] generalized the concept of weak contraction and proved the following theorem.

**Theorem 2** [4] Let (X, d) be a nonempty complete metric space, and let T be a self-map on X, satisfying

$$\psi(d(\mathsf{T} x, \mathsf{T} y)) \le \psi(d(x, y)) - \varphi(d(x, y)) \tag{2}$$

for each  $x,y,\in X$ , where,  $\psi,\phi:\mathfrak{R}^+\to\mathfrak{R}^+$  are both continuous and non-decreasing function with  $\psi(t)=\phi(t)=0$  iff t=0. Then T has a unique fixed point in X.

Throughout this paper, we denote

 $\Psi = \{ \psi : \mathfrak{R}^+ \to \mathfrak{R}^+(i) \ \psi \text{ is continuous (ii) } \psi \text{ is non-decreasing (iii) } \psi(t) = 0 \Leftrightarrow t = 0 \}$ 

 $\Phi = \{ \phi : \mathfrak{R}^+ \to \mathfrak{R}^+ \ (i) \text{ lower semi-continuous for all } t > 0 \text{ and } \phi \text{ is discontinuous at } t = 0 \text{ with } \phi(0) = 0 \}.$ 

In fact, the function  $\Psi$  is called the altering distance function and it was introduced by Khan, Swaleh and Sessa [7].

In 2009, Doric [3] introduced generalized  $(\psi, \varphi)$ -weak contraction for a pair of self-maps as follows.

**Definition 1** [3] Let (X, d) be a metric space. Let S and T be self-maps in X. If there exist  $\psi \in \Psi$  and  $\varphi \in \Phi$  such that

$$\psi(d(Sx, Ty)) \le \psi(M(x, y)) - \varphi(M(x, y)) \tag{3}$$

for each  $x, y \in X$ , where

$$M(x,y) = \max \left\{ d(x,y), d(Tx,x), d(Sy,y), \frac{1}{2}[d(y,Tx) + d(x,Sy)] \right\}$$

then we say that S and T satisfy generalized  $(\psi, \varphi)$ -weak contraction condition.

**Theorem 3** [3] Let (X, d) be a nonempty metric space. Let S and T be selfmaps of X, satisfying generalized  $(\psi, \varphi)$ -weak contraction condition. Then S and T have a unique common fixed point in X.

In 2010, Abbas and Doric [1] extended the concept of generalized  $(\psi, \phi)$ -weak contraction for a pair of self-maps to four self-maps in the following way.

**Definition 2** [1] Let (X, d) be a metric space. Let A, B, S and T be self-maps in X. If there exist  $\psi \in \Psi$  and  $\varphi \in \Phi$  such that

$$\psi(d(Ax, By)) \le \psi(M(x, y)) - \varphi(M(x, y)), \tag{4}$$

for each  $x, y, \in X$ , where

$$M(x,y) = \max \bigg\{ d(Sx,Ty), d(Ax,Sx), d(By,Ty), \frac{1}{2}[d(Sx,By) + d(Ax,Ty)] \bigg\},$$

then we say that A, B, S and T satisfy generalized  $(\psi, \phi)$ -weak contraction condition.

**Theorem 4** [1] Let (X, d) be a complete metric space and A, B, S and T be self-maps of X satisfying generalized  $(\psi, \phi)$ -weak contraction condition. Suppose that  $A(X) \subseteq T(X)$ ,  $B(X) \subseteq S(X)$  and that the pairs (A, S) and (B, T) are weakly compatible. Then A, B, S and T have a unique common fixed point in X, provided one of the range spaces A(X), B(X), S(X) and T(X) are closed in X.

In 2015, P.P. Murthy et al, [8] extended the concept of generalized  $(\psi, \varphi)$ -weak contraction condition in a complete metric space by using a weaker condition than the (1.2) in complete metric space.

**Theorem 5** [8] Let (X, d) be a complete metric space, and A, B, S and T:  $X \to X$  be a continuous mapping satisfying

$$\psi(d(Ax, By)) \le \psi(M(x, y)) - \varphi(N(x, y)), \tag{5}$$

for all  $x, y \in X$ , with  $x \neq y$ , for some  $y \in Y$  and  $\phi \in \Phi$ 

$$M(x,y) = \max \left\{ d(Sx, Ty), \frac{1}{2} [d(Sx, Ax) + d(Ty, By)], \frac{1}{2} [d(Sx, By) + d(Ty, Ax)] \right\},$$

and

$$N(x,y) = \min \bigg\{ d(Sx,Ty), \frac{1}{2}[d(Sx,Ax) + d(Ty,By)], \frac{1}{2}[d(Sx,By) + d(Ty,Ax)] \bigg\},$$

$$A(X) \subseteq T(X) \text{ and } B(X) \subseteq S(X)$$
 (6)

$$(A, S)$$
 and  $(B, T)$  are weak compatible pairs.  $(7)$ 

Then A, B, S and T have a unique common fixed point in X.

**Definition 3** [5] (i) Let S and T be mappings of a metric space (X, d) into itself. The mappings S and T are said to be compatible

$$\lim_{n\to\infty} d(STx_n, TSx_n) = 0,$$

whenever  $\{x_n\}$  is a sequence in X such that

$$\lim_{n\to\infty} Sx_n = \lim_{n\to\infty} Tx_n = z,$$

for some  $z \in X$ .

**Definition 4** [6] (i) A pair of self-mapping S and T of a metric space (X, d) is said to be weakly compatible if they commute at their coincidence points i.e if Ax = Bx for some  $x \in X$ , then ABx = BAx,

(ii) be occasionally weakly compatible (owc) [10] if TSx = STx for some  $x \in X$ .

**Remark.** Every compatible map are weakly compatible but the converse is not true [6].

In this paper, we introduce weakly generalized  $(\psi, \phi)$ -weak quasi- contraction condition and establish a common fixed point theorem by using weakly compatible pairs in metric space.

**Definition 5** Let (X, d) be a metric space, and A, B, S and  $T : X \rightarrow Xbe$  a mappings satisfying

$$\psi(d(Ax, By)) \le \psi(M(x, y)) - \varphi(N(x, y)), \tag{8}$$

for all  $x, y, \in X$ , with  $x \neq y$ , for some  $\psi \in \Psi$  and  $\phi \in \Phi$ 

$$M(x,y) = \max \bigg\{ d(Sx,Ty), d(Sx,Ax), d(Ty,By), \frac{1}{2}[d(Sx,By) + d(Ty,Ax)] \bigg\},$$

an d

$$N(x,y) = \min \left\{ d(Sx,Ty), d(Sx,Ax), d(Ty,By), \frac{1}{2}[d(Sx,By) + d(Ty,Ax)] \right\}.$$

Then we say that A, B, S and T satisfy weakly generalized  $(\psi, \phi)$ -weak quasi contraction condition.

**Remark.** If  $\psi$  and  $\varphi$  in (5) satisfy ' $(\psi, \varphi)$  is non-decreasing' then the inequality (5) implies that inequality (8). But its converse need not be true. The following example shows that there exist maps A, B, S and T which are weakly generalized  $(\psi, \varphi)$ -weak quasi-contraction condition, but they do not satisfy the condition (5).

**Example 1** Let X = [0,2) be endowed with the Euclidean metric d(x,y) = |x-y|, and let A, B, S and  $T \to X$  be defined by

$$A(X) = \begin{cases} 0 & \text{if } x = 0 \\ 1 & \text{if } x \neq 0 \end{cases} B(X) = \begin{cases} 0 & \text{if } x = 0 \\ \frac{1}{4} & \text{if } x \neq 0 \end{cases}$$

$$S(X) = \begin{cases} 0 & \text{if } x = 0 \\ \frac{3}{2} & \text{if } x \neq 0 \end{cases} T(X) = \begin{cases} 0 & \text{if } x = 0 \\ \frac{5}{4} & \text{if } x \neq 0 \end{cases}$$

where  $x, y \in X$ , defined as  $\psi \in \Psi$  and  $\varphi \in \Phi$ , by

$$\psi(t) = \frac{t}{2} \text{ and } \phi(t) = \left\{ \begin{array}{ll} 0 & \text{if } t = 0 \\ \frac{t}{16} & \text{if } t > 0 \end{array} \right.$$

In particular,  $x \neq 0$  and  $y \neq 0$ , the inequality (5) does not hold

$$\psi(d(Ax, By)) = \psi(\frac{3}{4}) \le \psi(\frac{3}{4}) - \varphi(\frac{1}{4})$$
$$\frac{3}{8} \le \frac{3}{8} - \frac{1}{64}.$$

But, these mappings satisfy the condition (8) in all possible cases.

# 2 Fixed point theorems in metric space

Before stating the main result we prove the following lemma.

**Lemma 1** Let (X,d) be a metric space, and A, B, S and  $T:X\to X$  be a mapping satisfying the condition (6) and (7), weakly generalized  $(\psi,\phi)$ - weak quasi contraction condition. Then the sequence  $\{y_n\}$  is a Cauchy sequence.

**Proof.** Let  $x_0 \in X$ , from (6), there exists a point  $x_1 \in X$  such that  $y_0 = Ax_0 = Tx_1$ , for this  $x_1$ , there exists a point  $x_2 \in X$  such that  $y_0 = Bx_1 = Sx_2$ . In general  $\{y_n\}$  is defined by

$$y_{2n} = Ax_{2n} = Tx_{2n+1}, (9)$$

$$y_{2n+1} = Bx_{2n+1} = Sx_{2n+2}. (10)$$

Now, we suppose that

$$y_{2n} \neq y_{2n+1} \ \forall n \tag{11}$$

For this suppose that  $x = x_{2n}, y = x_{2n+1}$  in (8), we have

$$\begin{split} \psi(d(Ax_{2n},Bx_{2n+1})) &\leq \psi(M(x_{2n},x_{2n+1})) - \varphi(N(x_{2n},x_{2n+1})) \\ &= \psi\big(max\{d(Sx_{2n},Tx_{2n+1}),d(Sx_{2n},Ax_{2n}),d(Tx_{2n+1},Bx_{2n+1}),\\ \frac{1}{2}[d(Sx_{2n},Bx_{2n+1}) + d(Tx_{2n+1},Ax_{2n})]\}\big) - \phi(N(x_{2n},x_{2n+1})). \end{split}$$

Using (9), (10) in (12), then we get

$$\begin{split} \psi(d(y_{2n},y_{2n+1})) &\leq \psi \big( max\{d(y_{2n-1},y_{2n}),d(y_{2n},y_{2n+1}),\\ &\frac{1}{2}[d(y_{2n-1},y_{2n+1})+d(y_{2n},y_{2n})]\} \big) - \phi(N(x_{2n},x_{2n+1})),\\ &\leq \psi \big( max\{d(y_{2n-1},y_{2n}),d(y_{2n+1},y_{2n}),\\ &\frac{1}{2}[d(y_{2n-1},y_{2n})+d(y_{2n},y_{2n+1})]\} \big) - \phi(N(x_{2n},x_{2n+1})). \end{split} \tag{13}$$

If  $y_{2n+1} \neq y_{2n+2} \, \forall \, n$  then taking  $x = x_{2n+2}$  and  $y = x_{2n+1}$  in (8), and applying the above process, then we get

$$\begin{split} \psi(d(y_{2n+2},y_{2n+1})) &\leq \psi \big( max\{d(y_{2n+1},y_{2n+2}),d(y_{2n},y_{2n+1}),\\ &\frac{1}{2}[d(y_{2n},y_{2n+1})+d(y_{2n+1},y_{2n+2})]\} \big) - \phi(N(x_{2n+1},x_{2n+2})). \end{split}$$

From (13) and (14) for any n, then we have

$$\begin{split} \psi(d(y_n,y_{n+1})) &\leq \psi\bigg(\text{max}\{d(y_{n-1},y_n),d(y_{n+1},y_n),\\ &\frac{1}{2}[d(y_{n-1},y_n)+d(y_n,y_{n+1})]\}\bigg) - \phi(N(x_n,x_{n+1})). \end{split} \tag{15}$$

If

$$d(y_{n-1}, y_n) < d(y_n, y_{n+1}).$$
(16)

Then inequality (15) reduces to

$$\psi(d(y_n, y_{n+1})) < \psi(d(y_n, y_{n+1})) - \varphi(N(x_n, x_{n+1})).$$

On taking liminf as  $n \to \infty$  on both sides, then we have

$$\underline{\lim}_{n\to\infty} \psi(d(y_n,y_{n+1})) < \underline{\lim}_{n\to\infty} \psi(d(y_n,y_{n+1})) - \underline{\lim}_{n\to\infty} \phi(N(x_n,x_{n+1})). \tag{17}$$

The right-hand side is positive due to the property of  $\Phi$ , therefore inequality (17), change the form

$$\underline{\lim}_{n\to\infty} \psi(d(y_n, y_{n+1})) < \underline{\lim}_{n\to\infty} \psi(d(y_n, y_{n+1})),$$

a contradiction. From (15) we have

$$\psi(d(y_n, y_{n+1})) \le \psi(d(y_n, y_{n-1})) - \phi(N(x_n, x_{n+1})) 
< \psi(d(y_n, y_{n-1})).$$
(18)

Therefore by the property of  $\psi$ , we get

$$d(y_n, y_{n+1}) < d(y_n, y_{n-1}). \tag{19}$$

Hence, the sequence  $\{d(y_n, y_{n+1})\}$  is a non increasing sequence of nonnegative real number and hence it converges to some real number r (say),  $r \ge 0$ . Suppose r > 0, on taking liminf as  $n \to \infty$  on (18), we have

$$\underline{\lim}_{n\to\infty} \psi(d(y_n,y_{n+1})) < \underline{\lim}_{n\to\infty} \psi(d(y_n,y_{n-1}))$$

The right term  $\underline{\lim}_{n\to\infty} \phi(N(x_n,x_{n+1})) > 0$ , due to the property of  $\phi$ . Hence

$$\psi(r) < \psi(r)$$
,

a contradiction. Thus

$$\underline{\lim}_{n\to\infty}\psi d(y_n,y_{n+1})=0,$$

and then

$$\underline{\lim}_{n\to\infty} d(y_n, y_{n+1}) = 0. \tag{20}$$

Next, we prove that  $\{y_n\}$  is a Cauchy sequence. It is enough to show that the sub-sequence  $\{y_{2n}\}$  of  $\{y_n\}$  is a Cauchy sequence. Suppose that  $\{y_{2n}\}$  is not a Cauchy sequence, then there exist  $\epsilon > 0$  and the sequence of natural numbers  $\{2m(k)\}$  and  $\{2n(k)\}$  such that 2m(k) > 2n(k) > 2k for  $k \in \mathbb{N}$  and

$$d(y_{2m(k)}, y_{2n(k)}) > \epsilon, \tag{21}$$

For each k, let 2m(k) be the least positive integer exceeding 2n(k) and satisfying (21). Then we have

$$d(y_{2m(k)}, y_{2n(k)}) > \epsilon \text{ and } d(y_{2n(k)}, y_{2m(k)-2}) \le \epsilon.$$
 (22)

We have

$$\begin{split} \varepsilon &< (d(y_{2m(k)},y_{2n(k)})) \leq (d(y_{2m(k)},y_{2m(k)-1})) + d(y_{2m(k)-1},y_{2m(k)-2}) \\ &\qquad + d(y_{2m(k)-2},y_{2n(k)}) \\ &\leq (d(y_{2m(k)},y_{2m(k)-1})) + d(y_{2m(k)-1},y_{2m(k)-2}) + \varepsilon \end{split}$$

by taking the liminf as  $k \to \infty$  and using (21), we get

$$\epsilon < \underline{\lim}_{k \to \infty} (d(y_{2m(k)}, y_{2n(k)})) \le \epsilon.$$

Therefore

$$\underline{\lim}_{k\to\infty}(d(y_{2m(k)},y_{2n(k)}))=\epsilon.$$

Using triangular inequality

$$|d(y_{2m(k)},y_{2n(k)})-d(y_{2m(k)-1}),y_{2n(k)+1})| \leq d(y_{2m(k)},y_{2m(k)-1})+d(y_{2n(k)},y_{2n(k)+1}).$$

We take the limit  $k \to \infty$ , on both sides, we get

$$\lim_{k \to \infty} d(y_{2\mathfrak{m}(k)-1}, y_{2\mathfrak{n}(k)+1}) = \epsilon. \tag{23}$$

Again using triangular inequality

$$|d(y_{2m(k)}, y_{2n(k)}) - d(y_{2m(k)-1}, y_{2n(k)})| \le d(y_{2m(k)}, y_{2m(k)-1}),$$

on taking  $\lim_{k\to\infty}$ , on both sides

$$\lim_{k \to \infty} d(y_{2\mathfrak{m}(k)-1}, y_{2\mathfrak{n}(k)}) = \epsilon.$$
 (24)

Now consider

$$\psi(d(y_{2m(k)}, y_{2n(k)})) \leq \psi d(y_{2n(k)}, y_{2n(k)+1}) + \psi(d(y_{2n(k)+1}, y_{2m(k)}))$$

$$= \psi d(y_{2n(k)}, y_{2n(k)+1}) + \psi(d(Ax_{2m(k)}, Bx_{2n(k)+1}))$$

$$(25)$$

Then

$$\begin{split} & \psi(d(Ax_{2m(k)},Bx_{2n(k)+1}) \leq \psi(M(x_{2m(k)},x_{2n(k)+1})) - \phi(N(x_{2m(k)},x_{2n(k)+1})) \\ & = \psi\big(max\{d(Sx_{2m(k)},Tx_{2n(k)+1}),d(Sx_{2m(k)},Ax_{2m(k)}),d(Tx_{2n(k)+1}),Bx_{2n(k)+1}),\\ & \frac{1}{2}[d(Sx_{2m(k)},Bx_{2n(k)+1}) + d(Tx_{2n(k)+1},Ax_{2m(k)})]\big) - \phi(N(x_{2m(k)},x_{2n(k)+1})) \\ & = \psi\big(max\{d(y_{2m(k)-1},y_{2n(k)}),d(y_{2m(k)-1},y_{2m(k)}),d(y_{2n(k)},y_{2n(k)+1}),\\ & \frac{1}{2}[d(y_{2m(k)-1},y_{2n(k)-1}) + d(y_{2n(k)},y_{2m(k)})]\}\big) - \phi(N(x_{2m(k)},x_{2n(k)+1})) \end{split}$$

Using (25) and (26) and taking  $\underline{\lim}_{k\to\infty}$ , on both side we get

$$\psi(\varepsilon) \leq \psi(\varepsilon) - \underline{\lim}_{k \to \infty} \phi(N(x_{2\mathfrak{m}(k)}, x_{2\mathfrak{n}(k)+1})).$$

We observe that the last term on the right-hand side of the above inequality is non-zero. Thus we arrive at a contradiction. Therefore  $\{y_{2n}\}$  is a Cauchy so that  $\{y_n\}$  is a Cauchy sequence

**Theorem 6** Let (X, d) be a metric space, and A, B, S and  $T: X \to X$  be a mapping satisfying the condition (6), (7) and weakly generalized  $(\psi, \varphi)$  weak quasi contraction condition. Then A, B, S and T have a unique common fixed point in X, provided any one of the ranges A(X), B(X), S(X), T(X) is a closed subspace of X.

**Proof.**Since  $\{y_n\}$  is a Cauchy sequence and assumes that S(X) is a closed subspace of X,  $\{y_{2n}\}$  is sub-sequence of  $\{y_n\}$ , we get

$$\lim_{n \to \infty} y_{2n} = \lim_{n \to \infty} Ax_{2n} = z, \tag{27}$$

where  $z \in X$ . Since  $\{y_n\}$  is a Cauchy sequence it follows that  $\lim_{n\to\infty} y_n = z$ , therefore

$$\lim_{n\to\infty} y_{2n} = \lim_{n\to\infty} y_{2n+1} = z. \tag{28}$$

Consequently, the subsequence also converges to z in X. Therefore

$$\lim_{n\to\infty}Ax_{2n}=\lim_{n\to\infty}Tx_{2n+1}=\lim_{n\to\infty}Bx_{2n+1}=\lim_{n\to\infty}Sx_{2n+2}=z\ \forall z\in X.\eqno(29)$$

Since S(X) is closed. Then, there exists a  $u \in X$  such that

$$z = Su. (30)$$

We claim that Au = z. Suppose not, putting x = u and  $y = x_{2n+1}$  then in inequality (8), we get

$$\begin{split} \psi(d(Au,Bx_{2n+1})) &\leq \psi(M(u,x_{2n+1})) - \phi(N(u,x_{2n+1})) \\ &= \psi\bigg(max\big\{d(Su,Tx_{2n+1}),d(Su,Au),d(Tx_{2n+1},Bx_{2n+1}),\\ &\frac{1}{2}[d(Su,Bx_{2n+1}) + d(Tx_{2n+1},Au)]\big\}\bigg) - \phi(N(u,x_{2n+1})) \end{split}$$

on taking the  $\underline{\lim}_{n\to\infty}$ , we get

$$\begin{split} \psi(\mathrm{d}(\mathrm{A}\mathrm{u},z)) &\leq \psi\bigg(\max\bigg\{\mathrm{d}(z,z),\mathrm{d}(z,\mathrm{A}\mathrm{u}),\frac{1}{2}[\mathrm{d}(z,z)+\mathrm{d}(z,\mathrm{A}\mathrm{u})]\bigg\}\bigg) \\ &-\underline{\lim}_{n\to\infty}\phi(\mathrm{N}(\mathrm{u},\mathrm{x}_{2n+1})) \end{split} \tag{31}$$

we obtain that the last term on the right side of the inequality (31) is non-zero by the property of  $\varphi$ , then we get

$$\psi(d(Au, z)) < \psi(d(Au, z)) \tag{32}$$

a contradiction.

$$Au = z. (33)$$

Therefore from (30) and (33), we get

$$Au = Su = z. (34)$$

Since the pair (A, S) is weakly compatible, then we get

$$Au = Su \Rightarrow ASu = SAu \Rightarrow Az = Sz. \tag{35}$$

We shall show that z is a common fixed point of A and S. If  $Az \neq z$ , then we take x = z and  $y = x_{2n+1}$  in (8), we have

$$\begin{split} \psi(d(Az,Bx_{2n+1})) &\leq \psi(M(z,x_{2n+1})) - \phi(N(z,x_{2n+1})) \\ &= \psi\bigg(max\big\{d(Sz,Tx_{2n+1}),d(Sz,Az),d(Tx_{2n+1},Bx_{2n+1}),\\ &\frac{1}{2}[d(Sz,Bx_{2n+1}) + d(Tx_{2n+1},Az)]\big\}\bigg) - \phi(N(z,x_{2n+1})), \end{split}$$

on taking  $\underline{\lim}_{n\to\infty}$ , we have

$$\underline{\lim}_{n\to\infty} \psi(d(Az, Bx_{2n+1})) \leq \underline{\lim}_{n\to\infty} \psi(M(z, x_{2n+1})) - \underline{\lim}_{n\to\infty} \phi(N((z, x_{2n+1})).$$
(36)

It is clear that from the condition of  $\varphi$  right-hand side term

$$\underline{\lim}_{n\to\infty}\phi(N((z,x_{2n+1}))$$

is non-zero, then we get

$$\psi(d(Az,z)) < \psi(d(Az,z))$$

a contradiction. Thus, we have

$$\psi(d(Az,z)) < \psi(d(Az,z)),$$

which implies that

$$Az = z. (37)$$

From (35) and (37), we get

$$Az = Sz = z. (38)$$

Since  $A(X) \subset T(X)$ , there is a point  $v \in X$  such that Az = Tv. Thus from (38), we have

$$Az = Sz = Tv = z. (39)$$

Suppose that  $B\nu \neq z$ . On taking  $x = x_{2n}$  and  $y = \nu$  in inequality (8), we have

$$\begin{split} \psi(d(Ax_{2n},B\nu)) &\leq \psi(M(x_{2n},\nu)) - \phi(N(x_{2n},\nu)) \\ &= \psi\bigg(max\big\{d(Sx_{2n},T\nu),d(Sx_{2n},Ax_{2n}),d(T\nu,B\nu),\\ &\frac{1}{2}[d(Sx_{2n},B\nu) + d(T\nu,Ax_{2n})]\big\}\bigg) - \phi(N(x_{2n},\nu)), \end{split} \tag{40}$$

on taking the liminf as  $n \to \infty$  and using (39)

$$\begin{split} \underline{\lim}_{n\to\infty} \psi(d(Ax_{2n},B\nu)) &\leq \underline{\lim}_{n\to\infty} \psi(M(z,B\nu)) - \underline{\lim}_{n\to\infty} \phi(N(x_{2n},\nu)) \\ &\qquad \underline{\lim}_{n\to\infty} \psi\bigg( max \big\{ d(Sz,T\nu), d(Sz,A\nu), d(T\nu,B\nu), \\ &\qquad \frac{1}{2} [d(Sz,B\nu) + d(T\nu,Az)] \big\} \bigg) - \underline{\lim}_{n\to\infty} \phi(N(x_{2n},\nu)), \end{split}$$

by the property of  $\varphi$  function,  $\underline{\lim}_{n\to\infty} \varphi(N(x_{2n},\nu))$  is positive, then we have

$$\psi(d(z,Bv)) < \psi(d(z,Bv)),$$

by monotone properties of  $\psi$ , we get

$$Bv = z. (41)$$

From (39) and (41), we get

$$Az = Sz = Bv = Tv = z. \tag{42}$$

Since (B, T) is weakly compatible, then

$$z = B\nu = T\nu \Rightarrow BT\nu = TB\nu$$

$$\Rightarrow Bz = Tz.$$
(43)

Finally, we have to show that z is a common fixed point of B and T. Taking  $x = x_{2n}$  and y = z in inequality (8), then we have

$$\begin{split} \psi(d(Ax_{2n},Bz)) &\leq \psi(M(x_{2n},z)) - \phi(N(x_{2n},z)) \\ &= \psi\bigg(max\big\{d(Sx_{2n},Tz),d(Sx_{2n},Ax_{2n}),d(Tz,Bz),\\ &\frac{1}{2}[d(Sx_{2n},Bz) + d(Tz,Ax_{2n})]\big\}\bigg) - \phi(N(x_{2n},z)), \end{split} \tag{44}$$

on taking the liminf as  $n \to \infty$ , using (42) and (43)

$$\begin{split} \underline{\lim}_{n\to\infty} \psi(d(Ax_{2n},Bz)) &\leq \underline{\lim}_{n\to\infty} \psi(M(x_{2n},z)) - \underline{\lim}_{n\to\infty} \phi(N(x_{2n},z)) \\ &\leq \underline{\lim}_{n\to\infty} \psi\bigg(max\big\{d(Sx_{2n},Tz),d(Sx_{2n},Ax_{2n}),d(Tz,Bz),\\ \frac{1}{2}[d(Sx_{2n},Bz) + d(Tz,Ax_{2n})]\big\}\bigg) - \underline{\lim}_{n\to\infty} \phi(N(x_{2n},z)), \end{split}$$

by the property of  $\phi$  function,  $\varliminf_{n\to\infty}\phi(N(x_{2n},z))$  is positive, then we have

$$\psi(d(z,Bz)) < \psi(d(z,Bz)),$$

by monotone properties of  $\psi$ , we have

$$Bz = z. (45)$$

By using (42), (43) and (45), we get

$$Az = Sz = Bz = Tz = z. \tag{46}$$

Hence A, B, S and T have a common fixed point in X. Similarly, we can take A(X), B(X), T(X) is a closed subspace of X. Uniqueness follow easily from (5).

**Theorem 7** Let (X, d) be a metric space, and A, B, S and  $T: X \to X$  be a mapping satisfying the condition weakly generalized  $(\psi, \phi)$ - weak quasi contraction condition. And (6), the pairs (A, S) and (B, T) satisfying occasionally weakly compatible. Then A, B, S and T have a unique common fixed point in X, provided any one of the ranges A(X), B(X), S(X), T(X) is a closed subspace of X.

We get the following corollaries.

**Corollary 1** Let (X, d) be a complete metric space, and A, B, S and  $T: X \to X$  be a continuous mapping satisfying (6)

$$\psi(d(Ax, By)) \le \psi(M(x, y)) - \varphi(M(x, y)) \tag{47}$$

for all  $x, y, \in X$ , with  $x \neq y$  and

$$M(x,y) = \max \bigg\{ d(Sx,Ty), d(Sx,Ax), d(Ty,By), \frac{1}{2}(d(Sx,By) + d(Ty,Ax)) \bigg\},$$

where  $\psi \in \Psi$  and  $\varphi \in \Phi$ . Then A, B, S and T have a unique common fixed point in X.

Now, the following example is support of our main result.

**Example 2** Let X = [0,3) be endowed with the Euclidean metric d(x,y) = |x-y|, and let A, B, S and  $T \to X$  be defined by

$$A(X) = \left\{ \begin{array}{ll} 0 & \text{if} \quad x = 0 \\ \frac{x}{5} + 1 & \text{if} \quad x \neq 0 \end{array} \right. B(X) = \left\{ \begin{array}{ll} 0 & \text{if} \quad x = 0 \\ \frac{x}{4} + 1 & \text{if} \quad x \neq 0 \end{array} \right.$$

$$S(X) = \begin{cases} 0 & \text{if} \quad x = 0 \\ \frac{x}{2} + 1 & \text{if} \quad x \neq 0 \end{cases} T(X) = \begin{cases} 0 & \text{if} \quad x = 0 \\ \frac{2x}{3} + 1 & \text{if} \quad x \neq 0 \end{cases}$$

where  $x, y \in X$ 

$$A(X) = \{0\} \cup \left[1, \frac{8}{5}\right) \subset \{0\} \cup [1, 3) = T(X)$$

and

$$B(X) = \{0\} \cup \left[1, \frac{7}{4}\right) \subset \{0\} \cup \left[0, \frac{5}{2}\right) = S(X).$$

Define  $\psi(t)$  and  $\varphi$  as follows:

$$\psi(t)=t^2\;\forall\,t\in\mathfrak{R}^+,$$

and

$$\phi(t) = \left\{ \begin{array}{ll} 0 & \mathrm{if} \quad t = 0 \\ 1 + \frac{t}{2} & \mathrm{if} \quad t > 0 \end{array} \right.$$

Case 1: If x = 0 and y = 0

$$\psi(d(Ax, By)) = 0, \psi(M(x, y)) = 0, \varphi(N(x, y)) = 0,$$

hence equation(8) satisfied.

Case 2: If x = 0 and  $y \neq 0$ 

$$\psi(d(Ax, By)) = \left(\frac{y}{4} + 1\right)^2,$$

and

$$M(x,y) = \max\left\{ \left| \frac{2y}{3} + 1 \right|, 0, \left| \frac{2y}{3} - \frac{y}{4} \right|, \left| \frac{2y}{3} + 1 \right| \right\}$$
$$M(x,y) = \left| \frac{2y}{3} + 1 \right|,$$

and

$$\begin{split} N(x,y) &= \left| \frac{2y}{3} - \frac{y}{4} \right|, \\ \psi(M(x,y)) - \varphi(N(x,y)) &= \left( \frac{2y}{3} + 1 \right)^2 - \left( 1 + \frac{5y}{48} \right) \\ \psi(M(x,y)) - \varphi(N(x,y)) &\geq \psi(d(Ax,By)). \end{split}$$

Case 3: If  $x \neq 0$  and y = 0

$$\psi(d(Ax, By)) = \left(\frac{x}{5} + 1\right)^2,$$

and

$$M(x,y) = \max\left\{ \left| \frac{2x}{5} + 1 \right|, \left| \frac{x}{2} - \frac{x}{5} \right|, 0, \frac{1}{2} \left| \frac{x}{2} + \frac{x}{5} \right| \right\}$$
$$M(x,y) = \left| \frac{2x}{5} + 1 \right|,$$

and

$$N(x,y) = \left| \frac{x}{2} - \frac{x}{5} \right|,$$

$$\psi(M(x,y)) - \varphi(N(x,y)) = \left( \frac{2x}{5} + 1 \right)^2 - \left( 1 + \frac{3x}{20} \right)$$

$$\psi(M(x,y)) - \varphi(N(x,y)) \ge \psi(d(Ax,By)).$$

Case 4: If  $x \neq 0$  and  $y \neq 0$ 

$$\psi(d(Ax, By)) = \left(\frac{x}{5} - \frac{y}{4}\right)^2,$$

and

$$M(x,y) = \max\left\{ \left| \frac{2x}{5} - \frac{5y}{3} \right|, \left| \frac{x}{5} \right|, \left| \frac{5y}{12} \right|, \frac{1}{2} \left[ \left| \frac{x}{2} - \frac{y}{4} \right| + \left| \frac{2y}{3} - \frac{x}{5} \right| \right] \right\}$$

$$M(x,y) = \left| \frac{5y}{12} \right|,$$

and

$$\begin{split} N(x,y) &= \frac{1}{2} \left[ \left| \frac{x}{2} - \frac{y}{4} \right| + \left| \frac{2y}{3} - \frac{x}{5} \right| \right], \\ \psi(M(x,y)) - \varphi(N(x,y)) &= \left( \frac{5y}{12} \right)^2 - \left( 1 + \frac{18x + 25y}{240} \right) \\ \psi(M(x,y)) - \varphi(N(x,y)) &\geq \psi(d(Ax,By)). \end{split}$$

Hence the inequality holds in each of the cases.

## References

- [1] Abbas, M., Doric, D.,: Common fixed point theorem for four selfmappings satisfying a generalized condition, *Filomat*, 24 (2010), 1–10.
- [2] Alber, YI., Guerre-Delabrier, S.,: Principle of weakly contractive maps in Hilbert spaces, In: Gohberg, I, Lyubich, Y (eds.) New Results in Operator Theory and Its Applications, 98 (1997), 7–22, Birkhauser, Basel.
- [3] Doric, D.,: Common fixed point for generalized  $(\psi, \varphi)$ -weak contractions, *Appl. Math. Lett.*, 22 (2009), 1896–1900.
- [4] Dutta, PN., Choudhury, BS.,: A generalization of contraction principle in metric spaces, *Fixed Point Theory Appl.* 2008, Article ID 406368 (2008).
- [5] Jungck, G.,: Compatible mappings and common fixed points, *Int. J. Math. Math. Sci.*, 9 (4) (1986), 771–779.
- [6] Jungck, G., Rhoades, BE.,: Fixed points for set valued functions without continuity, *Indian J. Pure Appl.*, 29 (1998), 227–238.
- [7] Khan, MS., Swalesh, M., Sessa, S.,: Fixed points theorems by altering distances between the points, *Bull. Aust. Math. Soc.*, 30 (1984), 1–9.

- [8] Murthy, PP., et al.: Common fixed point theorems for generalized  $(\psi, \varphi)$ -weak contraction condition in complete metric spaces, *Journ. of Ineq. and Appl.* (2015): 139 DOI 10.1186/s13660-015-0647-y.
- [9] Rhoades, BE.,: Some theorems on weakly contractive maps, *Non linear Anal.*, 47 (2001), 2683–2693.
- [10] Thagafi, MA, Shahzad, N.,: Generalized I-nonexpansive selfmaps and invariant approximation, Acta Math. Sin. (Engl. Ser.), 24 (2008), 867– 876.

Received: October 20, 2020