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Abstract. In this paper, we generalise J. Sándor’s results on D’Aurizio’s
trigonometric inequalities using stratified families of functions.

1 Introduction and preliminaries

In this paper, we give some generalisations of the following results of József
Sándor [1] concerning D’Aurizio’s trigonometric inequalities:
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Theorem 1 (J. Sándor) For 0 < |x| < π/2

1−
4

π2
x2 <

cos x

cos
x

2

< 1−
3

8
x2 (1)

holds.

Theorem 2 (J. Sándor) For 0 < |x| < π/2

2−
1

4
x2 <

sin x

sin
x

2

< 2−
4(2−

√
2)

π2
x2 (2)

holds.

The improved results are obtained using concepts presented in [2]. In this sec-
tion, the important theorems from [2], which are necessary for further proofs,
are listed.

Let
φp(x) : (a, b) −→ R

be a family of functions with a variable x∈ (a, b) and a parameter p∈R+. In
this paper, we call sup

x∈(a,b)
|φp(x)| an error and denote it by:

d(p) = sup
x∈(a,b)

|φp(x)| . (3)

In [2], the conditions for the existence of the unique value p0 of the parameter,
for which an infimum of an error (as a positive real number) is attained, are
explored. Such infimum is denoted by:

d0 = inf
p∈R+

sup
x∈(a,b)

|φp(x)| . (4)

For such a value p0, the function φp0(x) is called the minimax approximant
on (a, b).

A family of functions φp(x) is increasingly stratified if p ′ > p ′′ ⇐⇒ φp ′(x) >
φp ′′(x) for any x∈ (a, b) and, conversely, it is decreasingly stratified if p ′ >
p ′′ ⇐⇒ φp ′(x) < φp ′′(x) for any x∈(a, b) (p ′, p ′′∈R+).

Based on Theorem 1 and Theorem 1’ from [2], we can conclude that for strat-
ified families of functions, the following theorem is true:
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Theorem 3 Let φp(x) be an increasingly (decreasingly) stratified family of
functions (for p∈R+) that are continuous with respect to x∈ (a, b) for each
p∈R+, and let c, d be in R+ such that c < d. If :

(a) φc(x)< 0 (φc(x)> 0) and φd(x)> 0 (φd(x)< 0) for all x ∈ (a, b), and
at the endpoints φc(a+) = φd(a+) = 0, φc(b−) = 0 (φd(b−) = 0) and
φd(b−)∈R+ (φc(b−)∈R+) hold;

(b) the functions φp(x) are continuous with respect to p ∈ (c, d) for each
x∈(a, b) and φp(b−) is continuous with respect to p∈(c, d) too;

(c) for all p∈ (c, d), there exists a right neighbourhood of point a in which
φp(x)<0 holds and a left neighbourhood of point b in which φp(x)>0

holds;

(d) for all p ∈ (c, d), the function φp(x) has exactly one extremum t(p) on
(a, b), which is minimum;

then there exists exactly one solution p0, for p∈R+, of the following equation

|φp(t
(p))| = φp(b−)

and for d0 = |φp0(t
(p0))| = φp0(b−) we have

d0 = inf
p∈R+

sup
x∈ (a, b)

|φp(x)| .

Remark 1 Theorem 1 in [2] considers the case of an increasingly stratified
family of functions, while Theorem 1 ′ is analogous and considers the case
of a decreasingly stratified family of functions. In this paper, both Theorems
are unified in Theorem 3 and improved. Specifically, in condition (c), we have
added that there exists a left neighbourhood of point b in which φp(x)>0 holds.
Although the theorems in [2] were correct, this addition uniquely defines the
function φc(x) in Theorem 1 and the function φd(x) in Theorem 1 ′ from the
paper [2].

Exploring the fulfillment of the conditions for Theorem 3 is often reduced to
the following statement [2]:

Theorem 4 (Nike theorem) Let f : (0, c) −→ R be m times differentiable
function (for some m≥2, m∈N) satisfying the following conditions:
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(a) f(m)(x)>0 for x∈(0, c);

(b) there is a right neighbourhood of zero in which the following inequalities
are true:

f < 0, f ′ < 0, . . . , f(m−1) < 0;

(c) there is a left neighbourhood of c in which the following inequalities are
true:

f > 0, f ′ > 0, . . . , f(m−1) > 0.

Then the function f has exactly one zero x0∈(0, c), and f(x)<0 for x∈(0, x0)
and f(x)>0 for x∈(x0, c). Also, the function f has exactly one local minimum
t on the interval (0, c). More precisely, there is exactly one point t∈(0, c)

(
in

fact t∈(0, x0)
)
such that f(t)<0 is the smallest value of the function f on the

interval (0, c) and particularly on (0, x0).

2 Main results

In this section, some generalisations of Theorems 1 and 2 are given.

Generalisation of Theorem 1

First, we give some auxiliary results.

Lemma 1 The family of functions

φp(x) = 1−
cos x

cos
x

2

− px2
(
for x ∈ (0, π/2)

)

is decreasingly stratified with respect to parameter p∈R+.

The family of functions φp(x), introduced in the previous lemma, is formed
based on the double inequality from Theorem 1 for parameter values p = 4

π2

and p = 3
8 , as will be discussed in the following analysis. With that aim, we

introduce the function

g(x) =
−2 cos2

x

2
+ cos

x

2
+ 1

x2 cos
x

2

(
for x ∈ (0, π/2)

)
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which is strictly increasing, while g(0+) =
3

8
and g(π/2) =

4

π2
hold [1].

Obviously,
φp(x) = 0 ⇔ p = g(x) .

Now we give the main results for the first generalisation:

Statement 1 Let

A =
3

8
= 0.375 and B =

4

π2
= 0.40528 . . . .

(i) If p ∈ (0,A], then

x ∈
(
0,

π

2

)
=⇒ cos x

cos
x

2

< 1−Ax2 < 1− px2 .

(ii) If p ∈ (A,B), then φp(x) has exactly one zero x
(p)
0 on (0, π/2). Also,

x ∈
(
0, x

(p)
0

)
=⇒ cos x

cos
x

2

> 1− px2

and
x ∈

(
x
(p)
0 ,

π

2

)
=⇒ cos x

cos
x

2

< 1− px2

hold.

(iii) If p ∈ [B,∞), then

x ∈
(
0,

π

2

)
=⇒ cos x

cos
x

2

> 1− Bx2 > 1− px2 .

Proof. The function g(x) is increasing, continuous and surjection on (A,B),
see [1]. It is obvious that

g(x) − p =
φp(x)

x2

holds. Therefore, g(x) ̸= p (i.e. φp(x) ̸= 0) holds on (0, π2 ) if p ∈ (0,A] or
p ∈ [B,+∞). We can easily see that φA(π/2) > 0 and φB(π/3) < 0. Hence,
φA(x) > 0 for x ∈ (0, π2 ) and φB(x) < 0 for x ∈ (0, π2 ). Then (i) and (iii)
follow from the decreasing stratification of the family φp(x). Furthermore, for
p ∈ (A,B), the equation g(x) = p has exactly one solution, which we denote

by x
(p)
0 , while g(x) < p for x ∈ (0, x

(p)
0 ) and g(x) > p for x ∈ (x

(p)
0 , π2 ). Hence,

(ii) is true. □
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Corollary 1 For any 0 < x < π/2

1−
4

π2
x2 <

cos x

cos
x

2

< 1−
3

8
x2

holds, with the best possible constants A =
3

8
= 0.375 and B =

4

π2
= 0.40528 . . . .

Statement 2 Let

φp(x) = 1−
cos x

cos
x

2

− px2 for x∈(0, π2 ) and p∈R+.

(i) For p ∈ (A,B), there exists only one extremum of this function on (0, π2 )

at t(p) and that extremum is minimum.

(ii) There is exactly one solution to the equation∣∣∣φp

(
t(p)
)∣∣∣ = φp

(
π

2
−
)

with the respect to parameter p∈(A,B), which can be determined numerically
as

p0 = 0.39916 . . .

For the value

d0 =
∣∣∣φp0

(
t(p0)

)∣∣∣ = φp0

(
π

2
−
)
= 0.015109 . . . ,

the following result

d0 = inf
p∈R+

sup
x∈(0,π/2)

|φp(x)|

holds.

(iii) The minimax approximant of the family φp(x) is

φp0(x) = 1−
cos x

cos
x

2

− p0 x
2,

which determines the corresponding minimax approximation

cos x

cos
x

2

≈ 1− 0.39916 x2 .
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Proof. For p ∈ (A,B), functions φp(x) fulfill the conditions of Theorem 4
(Nike theorem):

(a) For m = 3

φ ′′′
p (x) =

d3φp

dx3
=

1

8

(
6− 2 cos4

x

2
− cos2

x

2

)
sin

x

2

cos4
x

2

> 0
(
x∈(0, π/2)

)
.

(b) Based on the Taylor expansions of the functions φp(x) around x=0 :

φp(x) =

(
3

8
− p

)
x2 +

1

128
x4 + o(x4), (5)

there exists a right neighbourhood U0 of the point 0 such that

φp(x), φ
′
p(x) =

dφp

dx
,φ ′′

p (x) =
d2φp

dx2
< 0

(
x∈U0

)
.

(c) Based on the Taylor expansions of the functions φp(x) around x=
π

2
:

φp(x) =

(
1−

pπ2

4

)
+
(
−pπ+

√
2
)(

x−
π

2

)
+

+

(√
2

2
− p

)(
x−

π

2

)2
+

5
√
2

24

(
x−

π

2

)3
+ o

((
x−

π

2

)3)
,

(6)

there exists a left neighbourhood Uπ/2 of the point π/2 such that

φp(x), φ
′
p(x) =

dφp

dx
,φ ′′

p (x) =
d2φp

dx2
> 0

(
x∈Uπ/2

)
.

Based on Theorem 3, for p ∈ (A,B), we can conclude that each function φp(x)
has exactly one extremum t(p), which is minimum, on (0, π2 )

(
and thus exactly

one zero x
(p)
0 on (0, π2 )

)
.

The family of functions φp(x), for values p ∈ (A,B), fulfills the conditions of
Theorem 3, thereby there exists a minimax approximant. Numerical determi-
nation of the minimax approximant and the error can be calculated in Maple
in the manner we present here. Let f(x, p) := φp(x) and F(x, p) := φ ′

p(x).
With Maple code

fsolve
(
{F(x, p) = 0, abs

(
f(x, p)

)
= f(π/2, p)}, {x = 0..π/2, p = A..B}

)
;
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we have numerical values

{p = 0.399161163, x = 1.069252853}.

For the value p0 = 0.39916 . . ., we have the minimax approximant of the family

φp0(x) = 1−
cos x

cos
x

2

− p0 x
2

and numerical value of minimax error

d0 = f(π/2, p0) = 0.015109 . . . . □

Figure 1 illustrates the stratified family of functions from Lemma 1 for p∈R+.

Figure 1: Stratified family of functions from Lemma 1

Generalisation of Theorem 2

First, we give some auxiliary results.

Lemma 2 The family of functions

φp(x) = −2+
sin x

sin
x

2

+ px2
(
for x ∈ (0, π/2)

)
is increasingly stratified with respect to parameter p∈R+.
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The family of functions φp(x), introduced in the previous lemma, is formed
based on the double inequality from Theorem 2 for parameter values p = 1

4

and p = 8−4
√
2

π2 , as will be discussed in the following analysis. With that aim,
we introduce the function

g(x) =
2
(
1− cos

x

2

)
x2

(
for x ∈ (0, π/2)

)
which is strictly decreasing, while g(0+) =

1

4
and g(π/2−) =

8− 4
√
2

π2
hold.

Further,

φp(x) = 0 ⇔ p = g(x) .

holds, as in the previous case.

Now we give the main results for the second generalisation:

Statement 3 Let

A =
8− 4

√
2

π2
= 0.23741 . . . and B =

1

4
= 0.25.

(i) If p ∈ (0,A], then

x ∈
(
0,

π

2

)
=⇒ sin x

sin
x

2

< 2−Ax2 < 2− px2 .

(ii) If p ∈ (A,B), then φp(x) has exactly one zero x
(p)
0 on (0,

π

2
). Also,

x ∈
(
0, x

(p)
0

)
=⇒ sin x

sin
x

2

< 2− px2

and

x ∈
(
x
(p)
0 ,

π

2

)
=⇒ sin x

sin
x

2

> 2− px2

hold.

(iii) If p ∈ [B,∞), then

x ∈
(
0,

π

2

)
=⇒ sin x

sin
x

2

> 2− Bx2 > 2− px2 .
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Proof. The function g(x) is increasing, continuous and surjection on (A,B),
and

g(x) − p = −
φp(x)

x2

holds. Hence, φp(x) ̸= 0 holds on (0, π2 ) if p ∈ (0,A] or p ∈ [B,+∞). It can
be checked that φA(π/3) < 0 and φB(π/2) > 0, which means that φA(x) < 0

for x ∈ (0, π2 ) and φB(x) > 0 for x ∈ (0, π2 ). Then (i) and (iii) follow from
the increasing stratification of the family φp(x). For p ∈ (A,B), the equation

g(x) = p has exactly one solution which we denote by x
(p)
0 , while g(x) > p for

x ∈ (0, x
(p)
0 ) and g(x) < p for x ∈ (x

(p)
0 , π2 ). Hence, (ii) holds. □

Corollary 2 For any 0 < x < π/2

2−
1

4
x2 <

sin x

sin
x

2

< 2−
4(2−

√
2)

π2
x2.

holds, with the best possible constants A =
8− 4

√
2

π2
= 0.23741 . . . and B =

1

4
= 0.25.

Statement 4 Let

φp(x) = −2+
sin x

sin
x

2

+ px2 for x∈(0, π2 ) and p∈R+.

(i) For p ∈ (A,B), there exists only one extremum of this function on (0, π2 )

at t(p) and that extremum is minimum.

(ii) There is exactly one solution to the equation∣∣∣φp

(
t(p)
)∣∣∣ = φp

(
π

2
−
)
,

where t(p) is a unique local minimum of φp(x), by parameter p∈(A,B), which
we determine numerically as

p0 = 0.23955 . . .

For the value

d0 =
∣∣∣φp0

(
t(p0)

)∣∣∣ = φp0

(
π

2
−
)
= 0.0052842 . . . ,
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the following result

d0 = inf
p∈R+

sup
x∈(0,π/2)

|φp(x)|

holds.

(iii) The minimax approximant of the family φp(x) is

φp0(x) = −2+
sin x

sin
x

2

+ p0 x
2,

which determines the corresponding minimax approximation

sin x

sin
x

2

≈ 2− 0.23955 x2 .

Proof. For p ∈ (A,B), functions φp(x) fulfill the conditions of Theorem 4
(Nike theorem):

(a) For m = 3

φ ′′′
p (x) =

d3φp

dx3
=

1

4
sin

x

2
> 0

(
x∈(0, π/2)

)
.

(b) Based on the Taylor expansion of the functions φp(x) around x=0 :

φp(x) =

(
−
1

4
+ p

)
x2 +

1

192
x4 + o(x4) (7)

there exists a right neighbourhood U0 of the point 0 such that

φp(x), φ
′
p(x) =

dφp

dx
,φ ′′

p (x) =
d2φp

dx2
< 0

(
x∈U0

)
.

(c) Based on the Taylor expansion of the functions φp(x) around x=
π

2
:

φp(x) =

(
−2+

√
2+

pπ2

4

)
+

(
pπ−

√
2

2

)(
x−

π

2

)
+

+

(
p−

√
2

8

)(
x−

π

2

)2
+

√
2

48

(
x−

π

2

)3
+ o

((
x−

π

2

)3) (8)
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there exists a left neighbourhood Uπ/2 of the point π/2 such that it is

φp(x), φ
′
p(x) =

dφp

dx
,φ ′′

p (x) =
d2φp

dx2
> 0

(
x∈Uπ/2

)
.

Based on Theorem 3, for p ∈ (A,B), we can conclude that functions φp(x)

has exactly one extremum t(p), which is minimum, on (0, π2 )
(
and thus exactly

one zero x
(p)
0 on (0, π2 )

)
.

The family of functions φp(x), for values p ∈ (A,B), fulfills the conditions of
Theorem 3, thereby there exists a minimax approximant. Numerical determi-
nation of the minimax approximant and the error can be calculated in Maple
in the manner we present here. Let f(x, p) := φp(x) and F(x, p) := φ ′

p(x).
With Maple code

fsolve
(
{F(x, p) = 0, abs

(
f(x, p)

)
= f(π/2, p)}, {x = 0..π/2, p = A..B}

)
;

we have numerical values

{p = 0.2395519170, x = 1.007887451}.

For the value p0 = 0.23955 . . ., we have the minimax approximant of the family

φp0(x) = −2+
sin x

sin
x

2

+ p0 x
2

and numerical value of minimax error

d0 = f(π/2, p0) = 0.0052842 . . . .

□

Figure 2 illustrates the stratified family of functions from Lemma 2 for
p∈R+.
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Figure 2: Stratified family of functions from Lemma 2

3 Conclusion

This paper specifies the results of J. Sándor [1] related to D’Aurizio’s trigono-
metric inequality [8] using concepts from the paper [2]. Additionally, Theorems
1 and 1’ from [2] were improved. Let us emphasize that the paper [2] presents
one method for possible improvements of existing results in the Theory of
analytic inequalities in terms of determining the corresponding minimax ap-
proximants for many inequalities from reviewed papers [6], [7], and books
[3]-[5]. The concept of stratification is used in recent research to improve and
generalise some inequalities, see [11]-[14], and can be used to improve many
more from [3]-[5], [10], [15]-[21]. In further papers, the subject of our studies
will be to determine the appropriate minimax approximants for papers [9] and
[10] relating to the generalizations of D’Aurizio’s trigonometric inequalities.
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[12] M. Mićović, B. Malešević: Jordan-Type Inequalities and Stratification,
Axioms. 13:4, 262, (2024), 1–25.
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