

DOI: 10.47745/ausm-2024-0020

Some generalisations and minimax approximants of D'Aurizio trigonometric inequalities

Branko Malešević

School of Electrical Engineering, University of Belgrade email: malesevic@etf.bg.ac.rs

Bojana Mihailović

School of Electrical Engineering, University of Belgrade email: mihailovicb@etf.bg.ac.rs

Miloš Mićović

School of Electrical Engineering, University of Belgrade email: milos.micovic@etf.bg.ac.rs

Marija Nenezić Jović

School of Electrical Engineering, University of Belgrade email: maria.nenezic@gmail.com

Luka Milinković

School of Electrical Engineering, University of Belgrade email: lukaui@yahoo.com

Abstract. In this paper, we generalise J. Sándor's results on D'Aurizio's trigonometric inequalities using stratified families of functions.

1 Introduction and preliminaries

In this paper, we give some generalisations of the following results of József Sándor [1] concerning D'Aurizio's trigonometric inequalities:

2010 Mathematics Subject Classification: 41A44, 26D05

Key words and phrases: D'Aurizio trigonometric inequalities, stratified families of functions, a minimax approximant, Nike theorem

Theorem 1 (*J. Sándor*) For $0 < |x| < \pi/2$

$$1 - \frac{4}{\pi^2} x^2 < \frac{\cos x}{\cos \frac{x}{2}} < 1 - \frac{3}{8} x^2 \tag{1}$$

holds.

Theorem 2 (J. Sándor) For $0 < |x| < \pi/2$

$$2 - \frac{1}{4}x^2 < \frac{\sin x}{\sin \frac{x}{2}} < 2 - \frac{4(2 - \sqrt{2})}{\pi^2}x^2 \tag{2}$$

holds.

The improved results are obtained using concepts presented in [2]. In this section, the important theorems from [2], which are necessary for further proofs, are listed.

Let

$$\varphi_{\mathfrak{p}}(\mathfrak{x}):(\mathfrak{a},\mathfrak{b})\longrightarrow\mathbb{R}$$

be a family of functions with a variable $x \in (a, b)$ and a parameter $p \in \mathbb{R}^+$. In this paper, we call $\sup_{x \in (a,b)} |\phi_p(x)|$ an error and denote it by:

$$\mathbf{d}^{(p)} = \sup_{\mathbf{x} \in (\mathbf{a}, \mathbf{b})} |\varphi_{p}(\mathbf{x})|. \tag{3}$$

In [2], the conditions for the existence of the unique value p_0 of the parameter, for which an infimum of an error (as a positive real number) is attained, are explored. Such infimum is denoted by:

$$d_0 = \inf_{\mathfrak{p} \in \mathbb{R}^+} \sup_{x \in (\mathfrak{a}, \mathfrak{b})} |\phi_{\mathfrak{p}}(x)|. \tag{4}$$

For such a value p_0 , the function $\phi_{p_0}(x)$ is called the minimax approximant on (a,b).

A family of functions $\phi_p(x)$ is increasingly stratified if $p' > p'' \iff \phi_{p'}(x) > \phi_{p''}(x)$ for any $x \in (a,b)$ and, conversely, it is decreasingly stratified if $p' > p'' \iff \phi_{p'}(x) < \phi_{p''}(x)$ for any $x \in (a,b)$ $(p',p'' \in \mathbb{R}^+)$.

Based on Theorem 1 and Theorem 1' from [2], we can conclude that for stratified families of functions, the following theorem is true:

Theorem 3 Let $\phi_p(x)$ be an increasingly (decreasingly) stratified family of functions (for $p \in \mathbb{R}^+$) that are continuous with respect to $x \in (a,b)$ for each $p \in \mathbb{R}^+$, and let c,d be in \mathbb{R}^+ such that c < d. If:

- (a) $\phi_c(x) < 0$ ($\phi_c(x) > 0$) and $\phi_d(x) > 0$ ($\phi_d(x) < 0$) for all $x \in (a,b)$, and at the endpoints $\phi_c(a+) = \phi_d(a+) = 0$, $\phi_c(b-) = 0$ ($\phi_d(b-) = 0$) and $\phi_d(b-) \in \mathbb{R}^+$ ($\phi_c(b-) \in \mathbb{R}^+$) hold;
- (b) the functions $\phi_p(x)$ are continuous with respect to $p \in (c, d)$ for each $x \in (a, b)$ and $\phi_p(b-)$ is continuous with respect to $p \in (c, d)$ too;
- (c) for all $p \in (c,d)$, there exists a right neighbourhood of point a in which $\phi_p(x) < 0$ holds and a left neighbourhood of point b in which $\phi_p(x) > 0$ holds;
- (d) for all $p \in (c, d)$, the function $\phi_p(x)$ has exactly one extremum $t^{(p)}$ on (a, b), which is minimum;

then there exists exactly one solution p_0 , for $p \in \mathbb{R}^+$, of the following equation

$$|\varphi_{\mathfrak{p}}(\mathfrak{t}^{(\mathfrak{p})})| = \varphi_{\mathfrak{p}}(\mathfrak{b}-)$$

and for $d_0 = |\phi_{\mathfrak{p}_0}(t^{(\mathfrak{p}_0)})| = \phi_{\mathfrak{p}_0}(b-)$ we have

$$d_0 = \inf_{\mathfrak{p} \in \mathbb{R}^+} \sup_{x \in (\mathfrak{a},\mathfrak{b})} |\phi_{\mathfrak{p}}(x)|.$$

Remark 1 Theorem 1 in [2] considers the case of an increasingly stratified family of functions, while Theorem 1' is analogous and considers the case of a decreasingly stratified family of functions. In this paper, both Theorems are unified in Theorem 3 and improved. Specifically, in condition (c), we have added that there exists a left neighbourhood of point b in which $\phi_p(x) > 0$ holds. Although the theorems in [2] were correct, this addition uniquely defines the function $\phi_c(x)$ in Theorem 1 and the function $\phi_d(x)$ in Theorem 1' from the paper [2].

Exploring the fulfillment of the conditions for Theorem 3 is often reduced to the following statement [2]:

Theorem 4 (Nike theorem) Let $f:(0,c) \longrightarrow \mathbb{R}$ be \mathfrak{m} times differentiable function (for some $\mathfrak{m} \geq 2$, $\mathfrak{m} \in \mathbb{N}$) satisfying the following conditions:

- (a) $f^{(m)}(x) > 0$ for $x \in (0, c)$;
- (b) there is a right neighbourhood of zero in which the following inequalities are true:

$$f < 0, f' < 0, ..., f^{(m-1)} < 0;$$

(c) there is a left neighbourhood of ${\bf c}$ in which the following inequalities are true:

$$f > 0, f' > 0, ..., f^{(m-1)} > 0.$$

Then the function f has exactly one zero $x_0 \in (0,c)$, and f(x) < 0 for $x \in (0,x_0)$ and f(x) > 0 for $x \in (x_0,c)$. Also, the function f has exactly one local minimum t on the interval (0,c). More precisely, there is exactly one point $t \in (0,c)$ (in fact $t \in (0,x_0)$) such that f(t) < 0 is the smallest value of the function f on the interval (0,c) and particularly on $(0,x_0)$.

2 Main results

In this section, some generalisations of Theorems 1 and 2 are given.

Generalisation of Theorem 1

First, we give some auxiliary results.

Lemma 1 The family of functions

$$\varphi_{p}(x) = 1 - \frac{\cos x}{\cos \frac{x}{2}} - p x^{2} \qquad \qquad \left(\text{for } x \in (0, \pi/2) \right)$$

is decreasingly stratified with respect to parameter $\mathfrak{p} \in \mathbb{R}^+$.

The family of functions $\varphi_p(x)$, introduced in the previous lemma, is formed based on the double inequality from Theorem 1 for parameter values $p=\frac{4}{\pi^2}$ and $p=\frac{3}{8}$, as will be discussed in the following analysis. With that aim, we introduce the function

$$g(x) = \frac{-2\cos^2\frac{x}{2} + \cos\frac{x}{2} + 1}{x^2\cos\frac{x}{2}} \qquad (\text{for } x \in (0, \pi/2))$$

which is strictly increasing, while $g(0+)=\frac{3}{8}$ and $g(\pi/2)=\frac{4}{\pi^2}$ hold [1]. Obviously,

$$\varphi_{\mathfrak{p}}(x) = 0 \Leftrightarrow \mathfrak{p} = \mathfrak{q}(x)$$
.

Now we give the main results for the first generalisation:

Statement 1 Let

$$A = \frac{3}{8} = 0.375$$
 and $B = \frac{4}{\pi^2} = 0.40528...$

(i) If $p \in (0, A]$, then

$$x \in \left(0, \frac{\pi}{2}\right) \implies \frac{\cos x}{\cos \frac{x}{2}} < 1 - A \, x^2 < 1 - p \, x^2 \, .$$

 $\mbox{(ii) } \mbox{ If } p \in (A,B), \mbox{ then } \phi_p(x) \mbox{ has exactly one zero } x_0^{(p)} \mbox{ on } (0,\pi/2). \mbox{ Also,}$

$$x \in \left(0, x_0^{(p)}\right) \implies \frac{\cos x}{\cos \frac{x}{2}} > 1 - p x^2$$

and

$$x \in \left(x_0^{(p)}, \frac{\pi}{2}\right) \implies \frac{\cos x}{\cos \frac{x}{2}} < 1 - p \, x^2$$

hold.

(iii) If $\mathfrak{p} \in [B, \infty)$, then

$$x \in \left(0, \frac{\pi}{2}\right) \implies \frac{\cos x}{\cos \frac{x}{2}} > 1 - B \, x^2 > 1 - p \, x^2 \,.$$

Proof. The function g(x) is increasing, continuous and surjection on (A, B), see [1]. It is obvious that

$$g(x) - p = \frac{\varphi_p(x)}{x^2}$$

holds. Therefore, $g(x) \neq p$ (i.e. $\phi_p(x) \neq 0$) holds on $(0, \frac{\pi}{2})$ if $p \in (0, A]$ or $p \in [B, +\infty)$. We can easily see that $\phi_A(\pi/2) > 0$ and $\phi_B(\pi/3) < 0$. Hence, $\phi_A(x) > 0$ for $x \in (0, \frac{\pi}{2})$ and $\phi_B(x) < 0$ for $x \in (0, \frac{\pi}{2})$. Then (i) and (iii) follow from the decreasing stratification of the family $\phi_p(x)$. Furthermore, for $p \in (A, B)$, the equation g(x) = p has exactly one solution, which we denote by $x_0^{(p)}$, while g(x) < p for $x \in (0, x_0^{(p)})$ and g(x) > p for $x \in (x_0^{(p)}, \frac{\pi}{2})$. Hence, (ii) is true.

Corollary 1 For any $0 < x < \pi/2$

$$1 - \frac{4}{\pi^2} x^2 < \frac{\cos x}{\cos \frac{x}{2}} < 1 - \frac{3}{8} x^2$$

holds, with the best possible constants $A=\frac{3}{8}=0.375$ and $B=\frac{4}{\pi^2}=0.40528\ldots$

Statement 2 Let

$$\phi_p(x) = 1 - \frac{\cos x}{\cos \frac{x}{2}} - p\,x^2 \ \text{for} \ x \! \in \! (0, \tfrac{\pi}{2}) \ \text{and} \ p \! \in \! \mathbb{R}^+.$$

- (i) For $p \in (A,B)$, there exists only one extremum of this function on $(0,\frac{\pi}{2})$ at $t^{(p)}$ and that extremum is minimum.
- (ii) There is exactly one solution to the equation

$$\left|\phi_{\mathfrak{p}}(\mathfrak{t}^{(\mathfrak{p})})\right| = \phi_{\mathfrak{p}}\left(\frac{\pi}{2}-\right)$$

with the respect to parameter $\mathfrak{p} \in (A,B)$, which can be determined numerically as

$$p_0 = 0.39916...$$

For the value

$$d_0 = \left| \phi_{p_0}(t^{(p_0)}) \right| = \phi_{p_0}(\frac{\pi}{2} -) = 0.015109...,$$

the following result

$$d_0 = \inf_{\mathfrak{p} \in \mathbb{R}^+} \sup_{x \in (0,\pi/2)} |\phi_{\mathfrak{p}}(x)|$$

holds.

(iii) The minimax approximant of the family $\phi_p(x)$ is

$$\phi_{p_0}(x) = 1 - \frac{\cos x}{\cos \frac{x}{2}} - p_0 x^2,$$

which determines the corresponding minimax approximation

$$\frac{\cos x}{\cos \frac{x}{2}} \approx 1 - 0.39916 x^2.$$

Proof. For $p \in (A, B)$, functions $\phi_p(x)$ fulfill the conditions of Theorem 4 (Nike theorem):

(a) For m = 3

$$\phi_p'''(x) = \frac{d^3 \phi_p}{d x^3} = \frac{1}{8} \frac{\left(6 - 2\cos^4 \frac{x}{2} - \cos^2 \frac{x}{2}\right) \sin \frac{x}{2}}{\cos^4 \frac{x}{2}} > 0 \qquad (x \in (0, \pi/2)).$$

(b) Based on the Taylor expansions of the functions $\varphi_{\mathfrak{p}}(x)$ around x=0:

$$\varphi_{p}(x) = \left(\frac{3}{8} - p\right)x^{2} + \frac{1}{128}x^{4} + o(x^{4}),$$
(5)

there exists a right neighbourhood \mathcal{U}_0 of the point 0 such that

$$\phi_{\mathfrak{p}}(x), \phi_{\mathfrak{p}}'(x) = \frac{d\phi_{\mathfrak{p}}}{dx}, \phi_{\mathfrak{p}}''(x) = \frac{d^2\phi_{\mathfrak{p}}}{dx^2} < 0 \qquad (x \in \mathcal{U}_0).$$

(c) Based on the Taylor expansions of the functions $\varphi_p(x)$ around $x = \frac{\pi}{2}$:

$$\begin{split} \phi_p(x) &= \left(1 - \frac{p \, \pi^2}{4}\right) + \left(-p \, \pi + \sqrt{2}\right) \left(x - \frac{\pi}{2}\right) + \\ &+ \left(\frac{\sqrt{2}}{2} - p\right) \left(x - \frac{\pi}{2}\right)^2 + \frac{5\sqrt{2}}{24} \left(x - \frac{\pi}{2}\right)^3 + o\left(\left(x - \frac{\pi}{2}\right)^3\right), \end{split} \tag{6}$$

there exists a left neighbourhood $\mathcal{U}_{\pi/2}$ of the point $\pi/2$ such that

$$\phi_p(x), \phi_p'(x) = \frac{d\phi_p}{dx}, \phi_p''(x) = \frac{d^2\phi_p}{dx^2} > 0 \qquad \qquad \big(x\!\in\!\mathcal{U}_{\pi/2}\big).$$

Based on Theorem 3, for $p \in (A, B)$, we can conclude that each function $\phi_p(x)$ has exactly one extremum $t^{(p)}$, which is minimum, on $(0, \frac{\pi}{2})$ (and thus exactly one zero $x_0^{(p)}$ on $(0, \frac{\pi}{2})$).

The family of functions $\varphi_p(x)$, for values $p \in (A,B)$, fulfills the conditions of Theorem 3, thereby there exists a minimax approximant. Numerical determination of the minimax approximant and the error can be calculated in Maple in the manner we present here. Let $f(x,p) := \varphi_p(x)$ and $F(x,p) := \varphi_p'(x)$. With Maple code

$$\mathtt{fsolve}\big(\!\{\mathsf{F}(\mathsf{x},\mathsf{p})=\mathtt{0},\mathtt{abs}\big(\mathsf{f}(\mathsf{x},\mathsf{p})\big)=\mathsf{f}(\pi/2,\mathsf{p})\!\},\!\{\mathsf{x}=\mathtt{0}..\pi/2,\mathsf{p}=\mathsf{A}..\mathsf{B}\}\big);$$

we have numerical values

$$\{p = 0.399161163, x = 1.069252853\}.$$

For the value $p_0 = 0.39916...$, we have the minimax approximant of the family

$$\varphi_{p_0}(x) = 1 - \frac{\cos x}{\cos \frac{x}{2}} - p_0 x^2$$

and numerical value of minimax error

$$d_0 = f(\pi/2, p_0) = 0.015109...$$

Figure 1 illustrates the stratified family of functions from Lemma 1 for $p \in \mathbb{R}^+$.

Figure 1: Stratified family of functions from Lemma 1

Generalisation of Theorem 2

First, we give some auxiliary results.

Lemma 2 The family of functions

$$\varphi_{p}(x) = -2 + \frac{\sin x}{\sin \frac{x}{2}} + p x^{2} \qquad \qquad \left(\text{for } x \in (0, \pi/2) \right)$$

is increasingly stratified with respect to parameter $\mathfrak{p} \in \mathbb{R}^+$.

The family of functions $\phi_p(x)$, introduced in the previous lemma, is formed based on the double inequality from Theorem 2 for parameter values $p=\frac{1}{4}$ and $p=\frac{8-4\sqrt{2}}{\pi^2}$, as will be discussed in the following analysis. With that aim, we introduce the function

$$g(x) = \frac{2\left(1 - \cos\frac{x}{2}\right)}{x^2} \qquad \qquad \left(\text{for } x \in (0, \pi/2)\right)$$

which is strictly decreasing, while $g(0+) = \frac{1}{4}$ and $g(\pi/2-) = \frac{8-4\sqrt{2}}{\pi^2}$ hold. Further,

$$\phi_{\mathfrak{p}}(x) = 0 \Leftrightarrow \mathfrak{p} = g(x)$$
 .

holds, as in the previous case.

Now we give the main results for the second generalisation:

Statement 3 Let

$$A = \frac{8 - 4\sqrt{2}}{\pi^2} = 0.23741...$$
 and $B = \frac{1}{4} = 0.25.$

(i) If $p \in (0, A]$, then

$$x \in \left(0, \frac{\pi}{2}\right) \implies \frac{\sin x}{\sin \frac{x}{2}} < 2 - Ax^2 < 2 - px^2.$$

(ii) If $p \in (A, B)$, then $\phi_p(x)$ has exactly one zero $x_0^{(p)}$ on $(0, \frac{\pi}{2})$. Also,

$$x \in \left(0, x_0^{(p)}\right) \implies \frac{\sin x}{\sin \frac{x}{2}} < 2 - p x^2$$

and

$$x \in \left(x_0^{(p)}, \frac{\pi}{2}\right) \implies \frac{\sin x}{\sin \frac{x}{2}} > 2 - p x^2$$

hold.

(iii) If $p \in [B, \infty)$, then

$$x \in \left(0, \frac{\pi}{2}\right) \implies \frac{\sin x}{\sin \frac{x}{2}} > 2 - Bx^2 > 2 - px^2.$$

Proof. The function g(x) is increasing, continuous and surjection on (A, B), and

$$g(x) - p = -\frac{\varphi_p(x)}{x^2}$$

holds. Hence, $\varphi_p(x) \neq 0$ holds on $(0,\frac{\pi}{2})$ if $p \in (0,A]$ or $p \in [B,+\infty)$. It can be checked that $\varphi_A(\pi/3) < 0$ and $\varphi_B(\pi/2) > 0$, which means that $\varphi_A(x) < 0$ for $x \in (0,\frac{\pi}{2})$ and $\varphi_B(x) > 0$ for $x \in (0,\frac{\pi}{2})$. Then (i) and (iii) follow from the increasing stratification of the family $\varphi_p(x)$. For $p \in (A,B)$, the equation g(x) = p has exactly one solution which we denote by $x_0^{(p)}$, while g(x) > p for $x \in (0,x_0^{(p)})$ and g(x) < p for $x \in (x_0^{(p)},\frac{\pi}{2})$. Hence, (ii) holds.

Corollary 2 For any $0 < x < \pi/2$

$$2 - \frac{1}{4}x^2 < \frac{\sin x}{\sin \frac{x}{2}} < 2 - \frac{4(2 - \sqrt{2})}{\pi^2}x^2.$$

holds, with the best possible constants $A = \frac{8-4\sqrt{2}}{\pi^2} = 0.23741...$ and $B = \frac{1}{4} = 0.25.$

Statement 4 Let

$$\phi_{\mathfrak{p}}(x) = -2 + \frac{\sin x}{\sin \frac{x}{2}} + \mathfrak{p} \, x^2 \text{ for } x \in (0, \frac{\pi}{2}) \text{ and } \mathfrak{p} \in \mathbb{R}^+.$$

- (i) For $p \in (A,B)$, there exists only one extremum of this function on $(0,\frac{\pi}{2})$ at $t^{(p)}$ and that extremum is minimum.
- (ii) There is exactly one solution to the equation

$$\left| \varphi_{\mathfrak{p}}(\mathfrak{t}^{(\mathfrak{p})}) \right| = \varphi_{\mathfrak{p}}\left(\frac{\pi}{2}-\right),$$

where $t^{(p)}$ is a unique local minimum of $\phi_p(x)$, by parameter $p \in (A,B)$, which we determine numerically as

$$p_0 = 0.23955...$$

For the value

$$d_0 = \left| \phi_{p_0}(t^{(p_0)}) \right| = \phi_{p_0}(\frac{\pi}{2}) = 0.0052842...,$$

the following result

$$d_0 = \inf_{\mathfrak{p} \in \mathbb{R}^+} \sup_{x \in (0,\pi/2)} |\phi_{\mathfrak{p}}(x)|$$

holds.

(iii) The minimax approximant of the family $\phi_p(x)$ is

$$\phi_{p_0}(x) = -2 + \frac{\sin x}{\sin \frac{x}{2}} + p_0 x^2,$$

which determines the corresponding minimax approximation

$$\frac{\sin x}{\sin \frac{x}{2}} \approx 2 - 0.23955 x^2.$$

Proof. For $p \in (A, B)$, functions $\phi_p(x)$ fulfill the conditions of Theorem 4 (Nike theorem):

(a) For $\mathfrak{m}=3$

$$\phi_p'''(x) = \frac{d^3 \phi_p}{d x^3} = \frac{1}{4} \sin \frac{x}{2} > 0 \qquad (x \in (0, \pi/2)).$$

(b) Based on the Taylor expansion of the functions $\varphi_p(x)$ around x=0:

$$\phi_p(x) = \left(-\frac{1}{4} + p\right)x^2 + \frac{1}{192}x^4 + o(x^4) \tag{7}$$

there exists a right neighbourhood \mathcal{U}_0 of the point 0 such that

$$\phi_{\mathfrak{p}}(x), \phi_{\mathfrak{p}}'(x) = \frac{d\phi_{\mathfrak{p}}}{dx}, \phi_{\mathfrak{p}}''(x) = \frac{d^2\phi_{\mathfrak{p}}}{dx^2} < 0 \qquad \qquad \big(x \in \mathcal{U}_0\big).$$

(c) Based on the Taylor expansion of the functions $\varphi_p(x)$ around $x = \frac{\pi}{2}$:

$$\varphi_{p}(x) = \left(-2 + \sqrt{2} + \frac{p \pi^{2}}{4}\right) + \left(p \pi - \frac{\sqrt{2}}{2}\right) \left(x - \frac{\pi}{2}\right) + \left(p - \frac{\sqrt{2}}{8}\right) \left(x - \frac{\pi}{2}\right)^{2} + \frac{\sqrt{2}}{48} \left(x - \frac{\pi}{2}\right)^{3} + o\left(\left(x - \frac{\pi}{2}\right)^{3}\right)$$
(8)

there exists a left neighbourhood $\mathcal{U}_{\pi/2}$ of the point $\pi/2$ such that it is

$$\phi_p(x), \phi_p'(x) = \frac{d\phi_p}{dx}, \phi_p''(x) = \frac{d^2\phi_p}{dx^2} > 0 \qquad (x \in \mathcal{U}_{\pi/2}).$$

Based on Theorem 3, for $p \in (A, B)$, we can conclude that functions $\phi_p(x)$ has exactly one extremum $t^{(p)}$, which is minimum, on $(0, \frac{\pi}{2})$ (and thus exactly one zero $x_0^{(p)}$ on $(0, \frac{\pi}{2})$).

The family of functions $\varphi_p(x)$, for values $p \in (A,B)$, fulfills the conditions of Theorem 3, thereby there exists a minimax approximant. Numerical determination of the minimax approximant and the error can be calculated in Maple in the manner we present here. Let $f(x,p) := \varphi_p(x)$ and $F(x,p) := \varphi_p'(x)$. With Maple code

fsolve(
$$\{F(x,p) = 0, abs(f(x,p)) = f(\pi/2,p)\}, \{x = 0..\pi/2, p = A..B\}$$
);

we have numerical values

$$\{p = 0.2395519170, x = 1.007887451\}.$$

For the value $p_0 = 0.23955...$, we have the minimax approximant of the family

$$\phi_{p_0}(x) = -2 + \frac{\sin x}{\sin \frac{x}{2}} + p_0 x^2$$

and numerical value of minimax error

$$d_0 = f(\pi/2, p_0) = 0.0052842...$$

Figure 2 illustrates the stratified family of functions from Lemma 2 for $\mathfrak{p}\!\in\!\mathbb{R}^+.$

Figure 2: Stratified family of functions from Lemma 2

3 Conclusion

This paper specifies the results of J. Sándor [1] related to D'Aurizio's trigonometric inequality [8] using concepts from the paper [2]. Additionally, Theorems 1 and 1' from [2] were improved. Let us emphasize that the paper [2] presents one method for possible improvements of existing results in the Theory of analytic inequalities in terms of determining the corresponding minimax approximants for many inequalities from reviewed papers [6], [7], and books [3]-[5]. The concept of stratification is used in recent research to improve and generalise some inequalities, see [11]-[14], and can be used to improve many more from [3]-[5], [10], [15]-[21]. In further papers, the subject of our studies will be to determine the appropriate minimax approximants for papers [9] and [10] relating to the generalizations of D'Aurizio's trigonometric inequalities.

Acknowledgment

This work was financially supported by the Ministry of Science, Technological Development and Innovation of the Republic of Serbia under contract numbers: 451-03-65/2024-03/200103 (for the first and second authors) and 451-03-66/2024-03/200103 (for the fourth author). This research was conducted at the Center for Applied Mathematics, the Palace of Science; therefore, the authors wish to express their gratitude to the Miodrag Kostic Endowment, Belgrade.

References

- [1] J. Sándor: On D'Aurizio's trigonometric inequality, J. Math. Inequal. 10:3, (2016), 885–888.
- [2] B. Malešević, B. Mihailović: A Minimax Approximant in the Theory of Analytic Inequalities, *Appl. Anal. Discrete Math.* **15**:2, (2021), 486–509.
- [3] D. S. Mitrinović: Analytic Inequalities, Springer-Verlag, 1970.
- [4] G. Milovanović, M. Rassias (eds), Analytic Number Theory, Approximation Theory and Special Functions, Springer 2014 (Chapter: G. D. Anderson, M. Vuorinen, X. Zhang: Topics in Special Functions III, 297–345.)
- [5] M. J. Cloud, B. C. Drachman, L. P. Lebedev: *Inequalities with Applications to Engineering*, Springer 2014.
- [6] L. Zhu: A source of inequalities for circular functions, Comput. Math. Appl. 58:10, (2009), 1998–2004.
- [7] F. Qi, D.-W. Niu, B.-N. Guo: Refinements, Generalizations, and Applications of Jordan's Inequality and Related Problems, *J. Inequal. Appl.* (Article ID: 271923), (2009), 1–52
- [8] J. D'Aurizio: Refinements of the Shafer-Fink inequality of arbitrary uniform precision, *Math. Inequal. Appl.* **17**:4, (2014), 1487–1498.
- [9] J. Sándor: Extensions of D'Aurizio's trigonometric inequality, *Notes Number Theory Discrete Math.* **23**:2, (2017), 81–83.
- [10] L.-C. Hung, P.-Y. Li: On generalization of D'Aurizio-Sándor inequalities involving a parameter, J. Math. Inequal. 12:3, (2018), 853–860.
- [11] B. Malešević, M. Mićović: Exponential Polynomials and Stratification in the Theory of Analytic Inequalities, *Journal of Science and Arts.* **23**:3, (2023), 659–670.
- [12] M. Mićović, B. Malešević: Jordan-Type Inequalities and Stratification, *Axioms.* **13**:4, 262, (2024), 1–25.
- [13] B. Malešević, D. Jovanović: Frame's Types of Inequalities and Stratification, *Cubo*. **26**:1, (2024), 1–19.

- [14] B. Banjac, B. Malešević, M. Mićović, B. Mihailović, M. Savatović: The best possible constants approach for Wilker-Cusa-Huygens inequalities via stratification, *Appl. Anal. Discrete Math.* **18**:1, (2024), 244–288.
- [15] S. Chen, X. Ge: A solution to an open problem for Wilker-type inequalities, J. Math. Inequal. 15:1, (2021), 59–65.
- [16] W.-D. Jiang: New sharp inequalities of Mitrinović-Adamović type, *Appl. Anal. Discrete Math.* **17**:1, (2023), 76–91.
- [17] R. Shinde, C. Chesneau, N. Darkunde, S. Ghodechor, A. Lagad: Revisit of an Improved Wilker Type Inequality, *Pan-American Journal of Mathematics* 2, (2023), 1–17.
- [18] Y. J. Bagul, R. M. Dhaigude, M. Kostić, C. Chesneau: Polynomial-Exponential Bounds for Some Trigonometric and Hyperbolic Functions, Axioms. 10:4, 308, (2021), 1–10.
- [19] D. Q. Huy, P. T. Hieu, D. T. T. Van: New sharp bounds for sinc and hyperbolic sinc functions via cos and cosh functions, *Afr. Mat.* **35**:38, (2024), 1–13.
- [20] L. Zhu, R. Zhang: New inequalities of Mitrinović-Adamović type, Rev. R. Acad. Cienc. Exacts Fis. Nat. Ser. A Math. RACSAM. 116:34, (2022), 1–15.
- [21] L. Zhu: New inequalities of Wilker's type for circular functions, AIMS Mathematics. 5:5, (2020), 4874–4888.

Received: February 2, 2022