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Abstract: This review paper centers on strategies employed for location 

determination in regions lacking GPS signals. It primarily explores a range of vision-

based methods tailored for this purpose, categorizing them accordingly. The article delves 

into the utilization of optical flow for feature extraction-based Visual Odometry (VO) and 

delves into advanced optical flow estimation methods that hinge on deep learning 

techniques. It compares the efficacy and practical applications of frequently utilized 

visual localization methods while also checking the efficiency of previous researches by 

reapplying the algorithms to new data and comparing the results. 
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1. Introduction 

According to [1], autonomous navigation systems must possess the capability 

to estimate, perceive, and comprehend their surroundings in order to accomplish 

tasks such as path tracking, motion planning, obstacle avoidance, and target 

detection. GNSS, or Global Navigation Satellite Systems, furnish dependable 

environmental data and instantaneous positioning for self-governing vehicles 

such as Autonomous Vehicles (AVs) and Unmanned Aerial Vehicles (UAVs). In 

scenarios where Unmanned Aerial Vehicles (UAVs) are operating in congested 

and complex environments, GNSS signals may encounter issues like fading, 

multipath effects, jamming, and spoofing, which can result in signal loss. Hence, 

GNSS may not be a reliable solution for UAVs flying at lower altitudes in terrains 

marked by numerous obstructions, such as forests, cities, and canyons/mountains  

https://sciendo.com/article/10.2478/auseme-2023-0002
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[2]. To tackle this problem, over the recent years, scientists have devised various 

localization approaches specifically for UAVs, including vision-based and 

LIDAR-based techniques. Incorporating multiple sensors in robotic localization 

studies can be an expensive undertaking, and it may also add extra weight and 

power consumption to the device. The challenges mentioned above have impeded 

the widespread implementation of several robot localization algorithms [3]. As 

an alternative, visual localization, a computer vision-based technology, has 

emerged as an appealing option. The operating principle of visual localization is 

based on capturing images of the surrounding environment using a visual camera, 

followed by determining the position and orientation of the area around it, thereby 

producing a map of the unknown territory. One of the major advantages of this 

technology is that the camera's cost is relatively low, and it has the ability to 

capture extensive environmental data, including visual aspects such as color and 

texture. Nonetheless, visual localization demands high computational power, and 

images require a significant amount of storage space, and software development 

for visual localization is relatively challenging. Moreover, the visual system is 

susceptible to lighting conditions, and it may not function effectively in poorly lit 

environments. At present, there are two primary vision-based localization 

methods, namely Relative Visual Localization (RVL) and Absolute Visual 

Localization (AVL). RVL encompasses Visual Odometry (VO) and Visual 

Simultaneous Localization and Mapping (VSLAM). Visual Odometry (VO) is a 

technique for calculating the self-motion of a robot, utilizing monocular or 

binocular cameras. This literature review summarizes the current state of research 

and challenges facing Visual Odometry localization technologies in 

environments where GPS is unavailable. The primary contributions are 

summarized in the following areas: 

- The research introduces the working principle of optical flow and its 

algorithm, as well as the broad applications of optical flow in visual 

odometry. The main focus of this review is on the introduction of FlowNet 

and its subsequent improved algorithms, and it includes a comparison to 

guide the selection of optical flow estimation algorithms based on deep 

learning. 

- The paper summarizes the main challenges in the development of 

localization technologies under GPS-denied conditions and proposes 

potential solutions. 

The structure of this review paper is as follows. In Section 2, 3, 4 and 5 it 

introduces optical flow-based techniques used in visual odometry and examines 

their applications. Section 6 contains the conclusion of the review article. 
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2. Visual Localization Through optical flow-based visual odometry 

techniques 

Visual odometry is a vision-based navigation method that uses visual features 

from a sequence of images to estimate the relative pose of a robotic platform. It 

is a well-established technique for autonomous navigation and localization, in 

which an agent estimates its location and orientation based on the visual 

information from its onboard cameras. In the last few years, researchers have put 

forth several VO techniques, which can be classified into two categories based 

on what type of camera is employed: monocular camera methods and stereo 

camera methods. A binocular camera is the most widely employed stereo camera, 

which can utilize the space between the two cameras to gain depth information. 

Using RGBD cameras, both image and depth information can be acquired 

concurrently; however, the scope of the acquired depth data is restricted and 

dependent on infrared light, in addition to consuming considerable power. The 

simplicity of structure and affordability that monocular cameras offer have 

encouraged a plethora of studies to be conducted on them. The utilization of 

monocular cameras as a vision sensor for the VO method is widespread due to 

their affordability, compactness, and energy efficiency. This makes them suitable 

for small platforms, including Unmanned Aerial Vehicles (UAVs) [7], [8]. VO 

can be categorized into two approaches - the direct method and the feature-based 

method. The latter is usually regarded as the predominant approach of VO due to 

its benefits of strong resistance to rotation, fuzziness, and scale transformation. 

This method functions by estimating the motion pose of the camera via the 

selection of specific points (like corner points) in the image and the concurrent 

assessment of the motion conditions of the connected feature points in the two 

frames preceding and succeeding it. Currently, numerous feature extraction 

techniques have been developed in the domain of computer vision, for example 

SURF (Speeded Up Robust Features) [10] (building histogram according to the 

magnitude of gradient value), SIFT(Scale-Invariant Feature Transform) [9] 

(generating features by utilizing the histogram of gradient direction and gradient 

magnitude),and ORB (Oriented FAST and Rotated BRIEF(Binary Robust 

Independent Elementary Features)) [11] (constructing histogram depending on     

the pixel value). Chen et al employed the SURF algorithm to identify and 

correlate feature points. For the purpose of matching, they utilized the 

Approximate Nearest Neighbor (ANN) algorithm. Initially, the SURF features 

drawn from each of the template flags are broken down into eight clusters and 

stored. These clusters are then compared with the databases of the images to be 

processed and the likely images are identified. Finally, the features are matched 

with the aid of ANN [12]. Figure 1. represents an example of that. Zheng et al. 

[13] conducted a study in which they applied various algorithms for feature 
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extraction on images in five different settings. The data in the Table 1 displays 

that The ORB was the quickest, whereas SIFT method took the longest time to 

compute. 

Table 1: Point and Time comparison of three feature extraction algorithms (SIFT, 

SURF, and ORB) [13] 

 

 

Figure 1: The SURF algorithm extracts feature points and matches them 

Although the feature-based approach is the most common method for Visual 

Odometry, it does possess some drawbacks. These include its requirement for 

extensive computing power and the fact that the feature extraction and descriptor 

computation processes are lengthy. It has been noted that when using this method 

to represent image motion, only a few hundred features are extracted, resulting in 

a significant amount of data loss compared to the hundreds of thousands of pixels 

that make up the image. This is especially apparent when there is a lack of texture 

in the image. It has been observed that the features that can be determined from 

the image are highly limited, making it extremely difficult for the feature-based 

approach to accurately estimate the camera motion in this circumstance. 

Consequently, scientists are attempting to utilize optical flow to enhance the 

feature-based approach. The navigation challenges can be tackled using optical 

flow techniques, which are based on the same principles of directional sensing 

ORB SIFT SURF 

Point Time(s) Point Time(s) Point Time(s) 

168 0.00282 171 0.01889 86 0.01244 

299 0.00411 253 0.01899 254 0.01621 

251 0.00470 234 0.01966 187 0.01386 

168 0.00221 175 0.02557 183 0.01570 

19 0.00175 24 0.01669 20 0.01038 
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and localization that birds and insects employ while flying [14]. Currently, this 

technology has become a popular choice for robot positioning and navigation, 

providing dependable speed and position data. The optical flow method takes 

advantage of the modifications to pixels in the image sequence in the time domain 

and the relationship between adjacent frames in order to pinpoint the correlation 

between the preceding frame and the current frame, thereby computing the 

movement of elements between adjacent frames. It can be said that the 

instantaneous change rate of gray level of a certain coordinate point of the two-

dimensional image plane is commonly classified as the optical flow vector. Optical 

flow has a great advantage as it can precisely measure and spot the location of a 

moving goal without any knowledge of the scene’s information. Furthermore, it 

remains effective even when the camera is in motion. Optical flow not only 

furnishes insight into the unknown environment, but also assists in figuring out the 

direction and velocity of the robot and can detect moving subjects without any prior 

details about the scene. Moreover, because of the relatively advanced development 

of optical sensors, the price is usually low, and it is quite simple to reduce their size, 

which can effectively lessen costs and raise portability [4]. 

3. Traditional Methods of Optical Flow 

Different methods for computing optical flow have been suggested by 

researchers, including Lucas-Kanade algorithm [16], HornSchunck algorithm 

[17], image interpolation algorithm [18], block matching algorithm [19], and 

feature matching algorithm [9]. Optical flow estimation is typically predicated on 

the supposition that there is a constancy in brightness and a smoothness present. 

The constancy of brightness postulates that the luminance of an object does not 

waver between two successive frames. The idea of smoothness further expresses 

that the displacement is minimal; thus, the values of pixels in the vicinity are alike 

[17]. In real-world scenarios, the lighting conditions rarely meet the requirement 

of having the same intensity in adjacent frames for optical flow methods. Any 

changes in the lighting conditions will then have an impact on the accuracy of the 

optical flow measurements. Zhang et al. [20] proposed an optical flow 

localization technique based on ROF (Rudin-Osher-Fatemi) denoising to tackle 

the issue of optical flow calculation in non-uniform lighting. The convex 

optimization theory and duality principle were utilized to decompose the image 

in changing lighting and to minimize its effect. Boretti et al. [21] applied the 

Lucas-Kanade method for computing sparse optical flow fields and detected 

features with an ORB detector to calculate the optical flow of the image and 

further extract the motion information of the position and attitude of the MAV 

(Micro Aerial Vehicle) [20]. However, it was difficult to strictly adhere to the 

constant smoothness assumption in practicality. An image pyramid approach was 
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taken up to prevent the breakdown of feature detection in times of significant 

movement [21]. In the same way, Lou et al. [22] used image texture 

decomposition and image pyramid techniques to improve the Lucas-Kanade 

optical flow algorithm, diminishing the interference of illumination changes and 

large displacements on the detection of moving objects. The authors of this paper 

reproduced the research results of [22] and presented it in Figure 2. 

 

Figure 2: Results of moving object detection 

(a) Input Image 

(b) L-K Optical Flow Algorithm 

(c) The Improved Algorithm by Lou etc. 
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4. Deep Learning Methods of Optical Flow 

The performance of deep learning methods for estimating optical flow 

surpasses that of traditional image-based approaches, and these techniques do not 

require explicit modeling of the entire problem, making them especially 

promising for use in optical flow estimation projects [23]. Dosovitskiy et al. [24] 

were the originators of an optical flow estimation technique based on learning, 

which they dubbed FlowNet. This supervised learning approach was designed to 

address the issue of optical flow estimation. In their work, Dosovitskiy et al. [24] 

introduced the Flying chairs dataset for the purpose of training the FlowNet 

network. Tests demonstrated that the FlowNet model developed using this 

synthetic dataset was able to generalize to images of the real world. Figure 3. 

illustrates the structure of two FlowNets. The first, known as FlowNetSimple, 

consists of a series of networks with only convolutional layers, in which two 

consecutive frames of input images are superimposed. On the other hand, 

FlowNetCorr takes two frames of pictures and processes them separately, 

extracting their respective features through a convolution layer and then 

performing a matching. 

Despite its advantages, one of the major drawbacks of FlowNet is its high 

prediction error rate, making it unable to correctly process small displacements 

and real-world data. As a result, FlowNet2 was developed as an improved 

version. 

 

Figure 3: The network structures of FlowNetSimple (top) and FlowNetCorr (bottom) 
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Ilg et al. [25] demonstrated a substantial decrease in estimation errors when 

using a serial multiple network architecture in combination with a branch network 

to address optical flow estimation problems with small object displacement. Sun 

et al. [26] proposed an enhanced version of PWC-Net to calculate optical flow 

with high resolution. This network applies convolutional neural networks (CNNs) 

to capture image features and then employs the pyramid processing principle to 

predict optical flow at low resolution, while gradually progressing to the desired 

resolution [26]. PWC-Net has the benefit of being simpler to train than its 

counterpart, FlowNet2. Zhu et al. [23] proposed EV-FlowNet, based on FlowNet, 

as a novel self-supervised deep learning channel for estimate optical flow from 

event-based cameras. To do this, they first presented a novel approach for the 

depiction of event flow as images. A deep learning network is applied to an image 

with four channels, it encodes positive events with the first two channels and 

negative events with the other two channels. EV-FlowNet utilizes a single input 

of a (256×256×4) image sourced from a specific event stream. Through the use 

of the estimated traffic from the network, the corresponding gray level image 

taken from the same camera at the same time as the event is then used as a 

supervision signal which provides a loss function during the training process. The 

combination of images and self-monitoring loss is enough to enable the network 

to accurately predict optical flow solely from events [23].  

Figure 4. shows the network structure of EV-FlowNet. The convolutional 

layer (in green) is responsible for downsampling (encoding), and the 

convolutional results from each layer are kept and linked to the upsampling 

(decoding) layer for use as a skip layer. The middle blue part is the residual block, 

which helps to further extract features. 

The last part (in yellow) is the upsampling (decoding) section, which is 

accomplished by symmetric padding. 

 

Figure 4: Illustrates the network structure of EV-FlowNet 
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The decoder activations from each set are passed through a depth wise 

convolutional layer to generate stream predictions at the resolution. The loss is 

applied to this stream prediction, and the prediction is also connected to the 

decoder activation [23]. Shi and Yin [27] introduced GeoNet, a collaborative 

unsupervised learning system, which was compared to EV-FlowNet for the 

purpose of estimating monocular depth, optical flow, and ego-motion from 

videos. The data acquired by the camera is comprised of rigid flow (static 

characteristics) and non-rigid flow (dynamic features). These are derived from 

not just the camera's motion, but also the movement of the target object. By taking 

this into account, the researchers devised a brand-new cascaded architecture with 

two stages to calculate both the global and fine displacement of the picture, 

respectively, to be able to adaptively tackle the figure of rigid and non-rigid flow. 

Table 2 below presents an evaluation of FlowNet and its improved algorithms. 

Figure 5 shows a schematic illustration of the UAV autonomous navigation 

network designed by Mumuni et al. [33] Ground plane segmentation (G-Seg) 

maps are also used to calibrate the metric scale. DepthNet estimates depth per 

frame, EgoMNet estimates relative camera pose, and OFNet predicts optical 

flow. The network also estimates confidence maps for each task [33]. 

 

Figure 5: Schematic illustration of the UAV autonomous navigation network 
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5. Application of Visual odometry 

The focus on Visual Odometry (VO) has grown substantially in recent years, 

as technology has become increasingly employed in the realms of robotics, 

autonomous driving vehicles, and Augmented Reality (AR). In the absence of 

GPS, Visual Odometry (VO) has become a popular choice due to its cost 

effectiveness and ease of access, acting as a supplementary tool to Inertial 

Navigation Systems (INS) and wheel odometers. 

Table 2: A comparison of the benefits and drawbacks of FlowNet and its succeeding 

modified algorithms 

Method 
Main 

Contribution 
Main Disadvantages Dataset 

FlowNet [24]  

CNN was the first 

to set the example 

of being able to 

forecast OF. 

Prediction accuracy not 

satisfactory, the system 

not responding to small 

movements or actual 

data. 

Middlebury [28] 

+ KITTI [29] + 

Sintel [30] + 

FlyingChairs 

[24]  

FlowNet2[25]  

FlowNet 

surpassed in terms 

of accuracy and 

speed. 

The impact of image 

noise on forecast is still 

significant. 

Middlebury + 

KITTI + Sintel + 

Flying Chairs  

PWC-Net 

[26]  

Reduce the size of 

the CNN, process 

training simpler. 

Blurry estimates. 

KITTI + 

Sintel + 

Flying Chairs  

EV-FlowNet 

[23] 

Use event camera 

data as an input 

for the network. 

The picture capture 

technique is unusual and 

causes poor migration. 

MVSEC [31]  

 

GeoNet [27]  

Evaluation 

difficulty of rigid 

and non-rigid 

flows. 

The GeoNet model 

demonstrates less 

successful results than 

the direct unsupervised 

flow. 

KITTI+ 

Cityscape [32]  

 

 

VO techniques can be classified into three primary categories: those based on 

geometry, those based on deep learning, and those that combine the two. 

Conventional monocular VO algorithms typically involve three primary stages: 

tracking, optimization, and a closed-loop module. These processes exploit the 

geometric properties of the scene and often rely on optical flow techniques to 

identify image features. Despite the fact that methods that have been in use for a 

long time are usually more dependable and precise when it comes to determining 

a pose and navigational purposes, they frequently lack the ability to accurately 

deduce the scale without extra data. Simultaneously, the utilization of deep 
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learning can address the above issues by training convolutional neural networks 

with a considerable amount of data. As opposed to manually setting geometric 

limitations, DL-based approaches can get them by taking advantage of the pre-

existing knowledge in the training information. Even when the shift in the 

apparent position of an object is not significant, it is still possible to calculate a 

reasonable position and depth. It is evident that online learning can be an effective 

tool for enhancing efficiency. Despite the advantages of deep learning-based 

approaches, the traditional methods still have high accuracy in estimating ego-

motion [34]. 

5.1 Obstacle detection 

Obstacle detection in VO (Visual Odometry) is a method of analyzing a 

sequence of images to detect the presence of obstacles or objects in the 

environment. It is used in navigation and localization systems, as well as in 

autonomous robots. By analyzing the images, the system can identify objects and 

obstacles, such as walls, furniture, or other objects that could potentially block 

the path of the robot or other entities. The optical flow algorithm is advantageous 

in that it can detect not only the location of a moving object, but also its speed 

and direction. Furthermore, since it does not need background modelling or 

updating, it is a very popular choice [22]. Currently, three predominant 

approaches for detecting obstacles by vision are monocular cues, stereo vision, 

and motion parallax [53]. The motion parallax method relies heavily on optical 

flow and uses it to get the movement and shape of both the viewer and the objects 

in the scene from a set of images. As indicated by Meneses et al. [54], optical 

flow was adopted to spot obstacles rather than calculating the movement of the 

robot. According to the definition of optical flow, areas with low optical flow 

intensity have less relative motion and thus a lower likelihood of containing 

obstacles. Through robot navigation, the optical flow data is conveyed to a 

Support Vector Machine (SVM) classifier with a radial basis function (RBF) 

kernel, which is used to determine if any obstacles are present in the intended 

path. This allows the robot to modify its course, usually in the direction with a 

lower intensity of optical flow [54]. Kendoul et al. [53] made use of the dense 

optical flow approach to gain knowledge about the entire environment and 

applied the Gunnar-Farneback method to calculate dense optical flow [15]. When 

the Unmanned Aerial Vehicle (UAV) is in motion, the presence of a multitude of 

optical flow vectors in its field of view suggests that an obstacle is present ahead. 

Conversely, if the magnitude of the optical flow vector is less than the set 

threshold, it implies that there is nothing blocking the UAV’s path. The authors 

tackle the issue of foreground and background being intertwined by utilizing 

different thresholds to differentiate between regions, based on the magnitude of 

the optical flow vector. Subsequently, a clustering process is employed to 
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amalgamate similar regions [53]. Zhang et al. [55] proposed an auto-localization 

method for scenarios wherein tall buildings stand on both sides and there is no 

aerial view. To evaluate the rotation of the image captured by the monocular 

camera, they employed an optimization algorithm with the RANSAC algorithm 

to fit the points that correspond to the obstructions on both sides into a straight 

line, thus reducing the variance of errors in the forward-looking points of the 

robot. Then, they used Kalman filtering algorithm to determine the vanishing 

point of the straight line, which is the point at which the parallel obstacles on 

either side converge at an infinite distance. The Ackermann steering model and 

singular value decomposition are utilized in the algorithm for calculating the 

trajectory of the car, while wheel encoders are used to figure out the rate of 

translation. The application of optical flow in CNNs makes it easier to process 

objects in motion within very active settings. Rashed et al. [56] boosted the results 

of semantic segmentation by taking advantage of motion and depth information 

from optical flow when distinguishing between roads, structures, and trees, 

among others. A CNN architecture that is based on semantic segmentation 

through the combination of multiple modes of data is mainly used in autonomous 

driving, where earlier knowledge is utilized to make the segmentation process 

better [57]. 

5.2 Multi-sensor fusion 

Under conditions where GPS is not available, the standard approaches to 

localization are usually SLAM (simultaneous localization and mapping), inertial 

IMU (inertial measurement unit) positioning, and visual localization. SLAM is 

precise, but the size and price of it are considerable; IMU apparatuses tend to be 

erratic, causing integral mistakes; and visual localization needs considerable real-

time computing power support. Currently, multi-sensor fusion localization has 

been demonstrated to be successful in lessening localization errors, augmenting 

system robustness, and decreasing expenses. Consequently, it has become a 

popular approach among researchers. Shen et al. [5] put forward a multi-sensor 

fusion localization algorithm leveraging the Extended Kalman Filter (EKF). 

Visual Odometry (VO) was employed to calculate the velocity and position of 

the UAV, and a magnetometer was utilized to measure its attitude. Subsequently, 

the Extended Kalman Filter [5] was employed to adjust any drift observed in the 

inertial navigation system (INS). Kim et al. [35] suggested a way to enhance 

Shen's research by devising a Feature Point Threshold Filter (FPTF) algorithm 

that can enhance the performance of INS + Optical Flow sensor fusion by 

modifying the threshold according to the elevation and speed of the UAV. Due 

to the inability of monocular visual odometry to precisely determine depth and 

distance, a significant issue that it encounters is scale blur. To address this, Yu et 

al. [36] use prior information from the environment to find a solution. In their 
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research, a GPE (Ground Point Extraction) algorithm based on Delaunay 

triangulation [37] and ground points to combine ground points from subsequent 

frames is adopted, supposing a steady camera height over the ground and fitting 

the ground plane employing the least squares method. The Point Aggregation 

(GPA) algorithm determines the true scale by calculating the ground plane based 

on the collected data. Subsequently, a RANSAC-based optimizer is employed to 

solve a least squares problem in order to finalize the scale. 

The results from experiments conducted on the KITTI dataset demonstrate 

that the framework put forward by Yu et al. [36] is effective in terms of both 

translation and rotation errors. Additionally, the framework demonstrates 

excellent computational efficiency, achieving a performance frequency of 20 Hz 

on the KITTI dataset. Mostafa et al. [4] suggested a new intelligent hybrid vision-

aided inertial navigation system to deal with the issue of scale ambiguity in 

vehicle motion estimation that optical flow provides. The system is constructed 

of three distinct components: a Visual Odometry (VO) module, a Gaussian 

Regression Process (GPR) for predicting the movements of an Inertial Navigation 

System (INS) and another GPR for forecasting the drift of the VO. The operation 

can be broken down into three phases: first, when GNSS signals are available, 

the monocular VO and INS drift estimator are trained; second, the monocular VO 

drift estimator is trained to model the errors related to the speed estimates of the 

monocular VO; and finally, if GNSS signals are lost, the monocular VO drift 

estimator is used for prediction. This scheme has the advantage of being able to 

build up a representation of any discrepancies caused by the monocular visual 

odometry drift or the inside navigation system drift when GNSS data is 

accessible, as well as foreseeing these errors during times when GNSS readings 

are not available. Previous regression techniques using Gaussian Process 

Regression [38] and Support Vector Machine (SVM) [39] may yield unreliable 

results if there are insufficient features available or when there are frequent 

duplicated patterns. Mostafa et al. [4] put forth a technique that efficiently 

resolves the major issue of not being able to address missing optical flow vectors 

in some regions of an image due to conflicting matching. It has been 

demonstrated through experiments that the algorithm is able to effectively 

decrease positioning error during a GNSS signal loss. In comparison to the pure 

VO/INS procedure and VO/INS with GPR rectification, the algorithm reduced 

positioning error to 47.6% and 76.3% respectively, when a GNSS signal 

disruption happened for one minute. Xu et al. [40] present a multi-layer 

methodology for multi-target tracking which combines regular optical flow 

restrictions with product terms and utilizes a Sequential Convex Programming 

(SCP) technique to tackle the ensuing nonconvex optimization issue. To enhance 

the precision and dependability of the autonomous navigation algorithm of the 

aircraft, they modelled and inspected the mistakes of each sensor in the VO/IMU 
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integrated navigation system and investigated the Kalman filtering-based free 

combination filtering equation [40]. Nevertheless, drones and other miniaturized 

systems have restrictions when it comes to their dimensions, the amount of cargo 

they can carry, and the power they possess, issues that are regularly experienced 

in the realms of computer vision and robotics. 

In recent times, researchers have been attempting to enhance the visual 

localization system, due to the challenge of needing high computing power and 

portability. The authors of the paper [41] by He et al. conducted an examination 

of the state-of-the-art edge-based visual odometry (EBVO) and developed an 

optimization framework known as PicoVO. This framework can effectively 

lower the computation and memory requirements. Santamaria et al. [43] came up 

with an efficient, cost-effective and high-performance approach to state 

estimation to allow MAVs to autonomously fly with minimal processing power 

requirements. This technique incorporates a smart camera with a monocular 

camera, an ultrasonic distance sensor and a three-axis gyroscope. The camera 

allows for high-frequency optical flow measurements, range of reflective 

surfaces, and three-axis angular rate to be taken, thus ruling out the need for the 

CPU to execute real-time image processing. The inventiveness of their proposed 

algorithm is that it does not rely on the optical flow information to determine the 

linear velocity, but rather directly observes the motion state with the initial optical 

flow information, thus separating the process and measurement noise. Pastor-

Moreno et al. [6] created a system, OFLAAM, intended to be used on micro air 

vehicles (MAVs). The design of the system is composed of a downward-pointing 

optical flow camera, a forward-facing monocular camera, and an inertial 

measurement unit (IMU). The use of a localization module enables the mapping 

of these features into a specific vocabulary. This module applies the DBoW2 

algorithm for the purpose of position correction by loopback detection [44] in 

order to address the problem of optical flow drift. By merging a high-speed 

optical flow localization with a low-rate positioning algorithm, an autonomous 

localization of the MAV can be achieved while also reducing the overall 

computational load [6]. Dong et al. [45] came up with a creative relative 

localization technique for utilization with unmanned aerial vehicles. They took 

photos of the ground from a camera attached beneath the drone, then used the 

SURF algorithm to identify points between two frames and the Fast Approximate 

Nearest Neighbors (FLANN) algorithm to determine the optical flow. The 

velocity of UAVs can be determined through the application of the optical flow 

motion estimation equation and known parameters. The proposed system 

incorporates measurements from a SINS, electronic compass, optical flow, 

altimeter system, and laser rangefinder to achieve relatively precise localization 

data. A summary of the sensor fusion VO algorithms is presented in Table 3 

below, which highlights the main issues and their respective solutions. 
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Table 3: Comparison of VO Algorithms for Sensor Fusion 

5.3 Estimate Speed-Distance-Position 

Evaluating the state of motion is a significant area of research when it comes 

to localization, and the VO technique that is based on optical flow/feature 

matching can supply an abundance of details about self-motion. Ho et al. [46] 

applied an extended Kalman filter (EKF) in combination with images from a 

monocular camera to analyze the divergence of the temporal flow vector during 

the UAV's vertical touchdown, ascertain the altitude and vertical velocity of the 

UAV, and govern the UAV's landing [46]. For every taken picture, they used the 

FAST algorithm to discover corners and followed them in the subsequent frame 

utilizing a Lucas-Kanade tracker, which enabled them to quantify the contraction 

and expansion of optical flow and calculate the divergence of optical flow. 

Mumuni et al. [33] incorporated Structure of Motion (SFM) [47] with Optical 

Flow and Monocular Depth Estimation (MDE), to augment the precision of depth 

estimation. Generally, the dense measurements derived from MDEs are uncertain 

in scale, while the sparse depths derived from SFM models possess a metric scale. 

MDE furnishes abundant depth measurements, so only some sparse depth 

information from SFM is required to complete the picture. By combining these 

two approaches, the precision of the unmanned aerial vehicle's depth estimation 

can be improved. Recent years have seen impressive results from CNN-based 

optical flow models [48] [49], however Mumuni et al.'s [50] algorithm is more 

efficient in terms of memory and computation [50]. To apply optical flow for the 

purpose of localization on small unmanned aerial vehicles (UAVs), it is necessary 

to develop a more efficient optical flow algorithm. Because of that McGuire et 

al. [52] developed the EdgeFlow algorithm, which builds on a feature density 

distribution-based collision detection algorithm [51] by introducing a variable 

time horizon for subpixel flow detection and employing spatial edge distribution 

for the purpose of image motion tracking. Tests have shown that the procedure is 

Method Objectives Solutions 

Shen et al. [5]  

Kim [35]  

Implement 

multi-sensor 

fusion  

- Create an EKF-based fusion algorithm. 

- Create a fusion algorithm using FPTF 

Yu et al. [36]  

Mostafa [4]  

Xu et al. [40]  

Solving scale 

ambiguity  

- Train scale drift predictors in the 

presence of GNSS signals 

- examination of each sensor's error  

PicoVO [42]  

Angel [43]  

OFLAAM [6] 

Dong [45]  

Use navigation 

algorithms on 

low-computing 

platforms.  

- real-time picture processing  

- Combining low-speed positioning 

techniques with high-speed OF 

- Using OF Motion Estimation  
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computationally effective enough to be executed at close to the speed of frames 

on restricted embedded processors, offering reliable speed and distance 

estimations for Unmanned Aerial Vehicles in unfamiliar environments. Zheng et 

al. [13] used the Lucas-Kanade sparse optical flow algorithm in their localization 

approach for indoor UAVs, which requires real-time optical flow calculation, and 

additionally implemented Forward-Backward bidirectional tracking 

optimization. They opted for ORB feature extraction for its real-time capabilities, 

KNN forward-backward bidirectional matching for feature matching, and 

RANSAC algorithm to filter the matching outcomes. According to the 

experimental results, this approach has a high degree of accuracy in predicting 

velocity and location [13]. A novel end-to-end network is suggested in work by 

Huang et al. [57] for learning optical flow and calculating camera ego motion. 

They utilized an autoencoder and estimated optical flow using the PWC-Net 

created by Sun et al [26] (CNN Encoder).  

6. Conclusion 

This review examines the optical flow-based visual odometry of localization 

without GPS. This research focused on the traditional approaches (such as feature 

extraction) and more unconventional methods (like those that involve deep 

learning). This review outlines the fundamental concepts for each category and, 

if relevant, illustrates how they are used in practice. Recent research into visual 

localization techniques has shown an evolving trend towards more cost-effective, 

compact solutions that offer greater precision. In recent years, deep learning has 

seen a surge in growth, prompting some scientists to explore using neural 

networks for visual localization tasks. This has produced noteworthy outcomes. 

FlowNet has been identified as the most prominent approach for extracting image 

motion information and providing localization support, due to its utilization of 

optical flow extraction and its improved algorithms. 

At the end, this article checked and regenerated all the results in the previous 

research and reapplied all the algorithms with other data and compared the results 

with the old ones. 
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