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Abstract. In the present work, we establish the strong approximations
of the empirical k-spacings process {αn(x) : 0 ≤ x < ∞} (cf. (3)). We
state the moment convergence rates results for this process.

1 Introduction

Let U1, U2, . . ., be independent and identically distributed (i.i.d.) uniform on
[0, 1] random variables (r.v.,s) defined on the same probability space (Ω,A,P).
Denote by 0 =: U0,n ≤ U1,n ≤ · · · ≤ Un−1,n ≤ Un,n := 1, the order statistics of
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U1, U2, . . . , Un−1, on [0, 1]. The corresponding non-overlapping k-spacings are
then defined by

Dk
i,n := Uik,n −U(i−1)k,n, for 1 ≤ i ≤ N− 1,

Dk
N,n := 1−U(N−1)k,n,

(1)

where N = ⌊n/k⌋, with ⌊u⌋ ≤ u < ⌊u⌋ + 1 denoting the integer part of u.
When k = 1, i.e., N = n, the k-spacings reduce to the usual 1-spacings (or
simple spacings) see for instance [18], [19], [20], [45] and [46]. Some useful
bibliographical references related to k-spacings can be seen in [2], namely
the applications for the goodness-of-fit tests, Kolmogorov-Smirnov tests (see,
for instance, [22] and [23]). We will use in the sequel the normalized non-
overlapping k-spacings (k ≥ 1) {kDk

i,n : 1 ≤ i ≤ N}. For a fixed k ≥ 1, as
n → ∞, the distribution function of kDk

i,n (which is independent of the index
i with 1 ≤ i ≤ N−1) converges to the distribution function Fk(·), of a standard
gamma random variable with expectation k, given by

Fk(t) :=
1

(k− 1)!

∫ t

0

xk−1e−xdx. (2)

For each choice of k ≥ 1, the empirical k-spacings process is defined by

αn(x) := N1/2
(

̂Fn(x) − Fk(x)
)

, for x > 0, (3)

where ̂Fn(·) is the empirical distribution function of {kDk
i,n : 1 ≤ i ≤ N},

defined for n ≥ m, by

̂Fn(x) :=
1

N

N∑

i=1

1{kDk
i,n

≤x}, for x ∈ R, (4)

with 1{A} denoting the indicator function of the event A. This paper aims to
obtain a refinement of the strong approximation results for {αn(x) : 0 ≤ x <

∞, n ≥ 1} obtained by [7]. To prove the invariance principle, we use the same
method developed in [7], which is based on the following representation of
simple spacings given by [39]. In the sequel of this section, we use a notation
similar to that of [7]. Let E1, E2, . . . denote an i.i.d. sequence of exponential
r.v.,s with mean 1, then, for each n > 1, we have the following representation
of the non-overlapping k-spacings

{
Dk

i,n : 1 ≤ i ≤ N− 1,Dk
N,n

}
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d
=






i+k−1∑

ℓ=i

Eℓ

Sn
: i = 1, k+ 1, . . . ,

(⌊n

k

⌋

− 1
)

k+ 1,

n∑

ℓ=k⌊n
k
⌋+1

Eℓ

Sn






, (5)

where

Sn :=

n∑

i=1

Ei.

In particular, if n = Nk is an integer multiple of k, then
{
Dk

i,n, 1 ≤ i ≤ N
}

d
= {Yi/TN, 1 ≤ i ≤ N} , (6)

where

Yi :=

ik∑

ℓ=(i−1)k+1

Eℓ, for i = 1, 2, . . . ,N, (7)

is a sequence of i.i.d. r.v.,s with distribution function Fk(·) and TN =
∑N

i=1 Yi.

Now, we denote by GN(·) the empirical distribution function of the sequence
Y1, . . . , YN, defined by

GN(x) :=
1

N

N∑

i=1

1{Yi≤x}, for x ∈ R
+. (8)

Let {βN(x) : 0 ≤ x < ∞, N ≥ 1} be the corresponding empirical processes,
defined by

βN(x) :=
√
N (GN(x) − Fk(x)) , for x ∈ R

+. (9)

By (6), we have the following representation

{αNk(x), 0 ≤ x < ∞}
d
=

{
α1
N(x) = βN

(

x
TN

Nk

)

+RN(x), 0 ≤ x < ∞
}
, (10)

where

RN(x) = N1/2

(

Fk

(

x
TN

Nk

)

− Fk(x)

)

.

In [18], more than 60 references are given on this subject, with statistical
applications such as testing uniformity or goodness-of-fit tests. Further, [23]
obtained tables for the limiting distribution of the Kolmogorov-Smirnov (K-
S) statistic based on the spacing process. Here, we mention that [39] was the
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first to suggest the use of the K-S and Cramér-von Mises functionals of the
spacing process. [22] consider the k-spacings and characterized the limiting
distribution of the statistics

Wn(g, k) = N−1/2
N∑

i=1

(

g
(

NkDk
i,N

)

− a
)

, (11)

where g(·) is a smooth function, k is fixed and a = E[g(Y)], Y is a rv with
a density function fk(y). These statistics Wn(g, k) can be used for testing
goodness-of-fit to a uniform distribution. [42] discovered that the Greenwood
test (one corresponding to g(x) = x2, x ≥ 0) is asymptotically optimal
among tests based on simple spacings (i.e., k = 1). [22] demonstrated that the
Greenwood-type test based on disjoint higher-order spacings is asymptotically
superior to the conventional Greenwood-type test based on simple spacings
(k = 1). [35] demonstrated that, for any fixed spacing size k, the Greenwood
type test is optimal among type statistics-based tests (11). [35] discovered that
the Greenwood type test based on overlapping k-spacings is superior to the
corresponding test based on disjoint m-spacings for any fixed spacing size k.
A known limitation of tests based on symmetric sum functions of spacings is
their inability to detect alternatives converging to the null distribution at a
rate faster than n−1/4, for more details, refer to [44]. For applications of the
spacing in statistical tests and others we may refer to [25, 24], [45], [46], [8].
In the present work, we establish strong approximations of the process

{αn(x) : 0 ≤ x < ∞} defined respectively in (3) in Section 2. Motivated by
[15]’s results for the uniform empirical process {ηn(t) : 0 ≤ t ≤ 1}, we state
a result of moment convergence rates for the process {αn(x) : 0 ≤ x < ∞}.
Mathematical developments are given in Section 4.

2 Strong approximations

2.1 Preliminaries

Let us recall some useful (in this work) gaussian processes. Let W = {W(s) :

s ≥ 0} and B = {B(u) : u ∈ [0, 1]} be the standard Wiener process and
Brownian bridge, that is, the centered Gaussian processes with continuous
sample paths and covariance functions

E(W(s)W(t)) = s∧ t, for s, t ≥ 0

and
E(B(u)B(v)) = u∧ v− uv, for u, v ∈ [0, 1].
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In the sequel, the underlying probability space (Ω,A,P) is assumed to be
rich enough, in the sense that an independent sequence of Gaussian processes,
which are independent of the originally given i.i.d. a sequence of random vec-
tors can be constructed on this probability space, see for instance [17], Lemma
A1 in [12] and [34]. Before stating the main result of this section, let us recall
some useful results.

Theorem 1 ([7]) Given the process {αn(x) : 0 ≤ x < ∞} constructed from
a sequence U1, U2, . . . of i.i.d random variables of uniform law on [0, 1] and
defined on a space of probability eventually enlarged version of (Ω,A,P), there
exists a sequence of Brownian bridges B1, B2, . . . , defined on (Ω,A,P) such
that, for all 0 ≤ x < ∞, if,

Vn(x) = BN(Fk(x)) −
1

k
xfk(x)

∫
∞

0

BN(Fk(u))du, (12)

then with probability 1,

sup
0≤x<∞

|αn(x) − VN(x)| = O
(

n−1/4(logn)3/4
)

, as n → ∞. (13)

Notice that the approximating Gaussian processes, for k = 1, and x ∈ [0, 1] is
given by

Vn(x) = Bn(x) + (1− x) log(1− x)

∫ 1

0

Bn(u)

1− u
du.

2.2 Main result

Our next theorem describes strong approximations.

Theorem 2 There exists a sequence of Gaussian processes {Vn(x) : 0 ≤ x ≤

∞, n ≥ 1}, such that the following properties hold. We have

EVn(x) = 0, (14)

and

EVn(x)Vn(y) = min (Fk(x), Fk(y)) − Fk(x)Fk(y) −
1

k
xyFk(x)Fk(y). (15)

Moreover, for all x > 0 and n great enough, we have

P

(

sup
0≤t≤∞

|αn(t) − Vn(t)| ≥ N−1/4(A1(logN)3/4 + x)

)

≤ B1 exp(−C1x),

where A1, B1 and C1 are positive constants.
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The proof of Theorem 2 will be done in Section 4. We will consider the cases
n = [Nk] and k(N− 1) < n < Nk.

Remark 1 The proof of this Theorem is based on the proof of Theorem 3.1
of [7]. More precisely, for reader convenience, the relations that we need are
given in pages 10 and 11 of this paper. For instance, the relations (32), (33),
(35)-(38) were stated in the proof of [7]’s Theorem.

Remark 2 We highlight that Theorem 2 is more refined than the previous
works [2] and [7]. More precisely, we obtain the analog theorem of KMT result,
permitting the following result

sup
0≤t≤∞

|αn(t) − Vn(t)| = O(N−1/4((logN)3/4)),

in an almost sure sense that is not possible with previous results.

Let D(A) be the space of right-continuous real-valued functions defined on A

which have left-hand limits, equipped with the Skorohod topology; refer to
[13] for further details on this problem.

Corollary 1 Let Φ(·) be a functional defined on the space D(R), satisfying a
Lipschitz condition

|Φ(v) −Φ(w)| ≤ L sup
t∈R

|v(t) −w(t)|.

Assume further that the distribution of the r.v. Φ
(

Vn(·)
)

has a bounded den-
sity. Then, as n → ∞,

sup
x∈R

∣

∣P
{
Φ
(

αn(·)
)

≤ x
}
− P

{
Φ
(

Φ
(

Vn(·)
))

≤ x
}∣
∣ = O(N−1/4((logN)3/4)).

(16)

For more comments on this kind of result, we may refer to [4, 5].

3 Moment convergence rates

Zhang in [49] investigated the uniform empirical process and obtained the
precise asymptotics in the Baum-Katz and Davis law of large numbers given
by [26] and [27] for a sequence of i.i.d. random variables. For further details
we refer to [47], [30], [36], [48], [31, 32], [3, 1] and the references therein. The
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legendary paper by [33] introducing the concept of “complete convergence” is
to be cited here. The last mentioned reference generated a series of papers,
in particular Baum and Katz (1965)’s seminal work (cf. [9]), which provided
necessary and sufficient conditions for the convergence of the series

∞∑

n=1

nr/p−2
P

(∣

∣

∣

∣

∣

n∑

i=1

Xi

∣

∣

∣

∣

∣

≥ ϵ

)

for suitable values of r and p. One result, among others, of [49] reads as follows:
for 1 ≤ p < 2, r > p, we have, for gn(ϵ) = ϵn1/p,

lim
ϵ→0

ϵ2(r−p)/(2−p)
∞∑

n=1

nr/p−2
E {∥αn∥∞ − gn(ϵ)}+

=
p

r− p
E

[

∥B∥2(r−p)/(2−p)
∞

]

. (17)

Motivated by the moment convergence rates for the uniform empirical process
{ηn(u) : 0 ≤ u ≤ 1, n ≥ 1} stated by [15], see Theorem 3 below, we state
analog results for the empirical k-spacing process {αn(x) : 0 ≤ x < ∞} defined
respectively in (3), with {x}+ = max{x, 0}.

Theorem 3 Let a > −1, then

lim
ϵ↘

√

a+1
2

(

1−
a+ 1

4ϵ2

)1/2 +∞∑

n=1

na
E{∥ηn∥− ϵ

√

2 logn}+ =

√

π/2

a+ 1
,

and

lim
ϵ↘

√

a+1
2

(

1−
a+ 1

4ϵ2

)1/2 +∞∑

n=1

(logn)a

n
E{∥ηn∥− ϵ

√

2 logn}+ =

√

π/2

a+ 1
.

Let us recall Proposition 2.1 of [15], stating the following result for the Brow-
nian bridge {B(t) : 0 ≤ t ≤ 1}.

Theorem 4 Let a > −1, an = o(1/ logn), then

lim
ϵ↘

√

a+1
2

(

1−
a+ 1

4ϵ2

)1/2 +∞∑

n=1

na
E{∥B∥− (ϵ+ an)

√

2 logn}+ =

√

π/2

a+ 1
.

In the following theorem, we state our result for the empirical process αn(x)

defined respectively in (3).
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Theorem 5 Let a > −1, then

lim
ϵ↘

√

a+1
2

(

1−
a+ 1

4ϵ2

)1/2 +∞∑

n=1

na
E{∥αn∥− ϵ

√

2 logn}+ =

√

π/2

a+ 1
,

and

lim
ϵ↘

√

a+1
2

(

1−
a+ 1

4ϵ2

)1/2 +∞∑

n=1

(logn)a

n
E{∥αn∥− ϵ

√

2 logn}+ =

√

π/2

a+ 1
.

4 Proof

This section is devoted to the proof of our results. The previously defined no-
tation continues to be used in the following. In this section, we introduce some
technical lemma’s (with proofs) useful for the proof of Theorem 2.

Let us recall the following theorem.

Theorem 6 [34] On a suitable probability space, we may define the uniform
empirical process {βN(x) : 0 ≤ x < ∞, n ≥ 1}, in combination with a sequence

of Brownian bridges {B
(1)
N (t) : 0 ≤ t ≤ 1}, such that, for any n ∈ N

∗ and any
positive number x,

P

{
sup

0≤x<∞

|βN(u) − Bn(Fk(x))| ≥
1
√
n
(A2 logn+ x)

}
≤ B2 exp(−C2x), (18)

where A2, B2 and C2 are suitable absolute constants.

The following lemma is in the spirit of Lemma 3.1 of [7], but we give an
exponential rate. Our proof follows the lines of the just mentioned lemma,
namely decompositions given on page 20 of this paper and relation (22) are
stated by [7].

Lemma 1 We have, for each ε > 0, and all n ≥ m sufficiently large

P

(
∣

∣

∣

∣

N1/2

(

TN

Nk
− 1

)

−
1

k

∫
∞

0

tdB
(1)
N (Fk(t))

∣

∣

∣

∣

>
A3(logN)2 + x

√
N

)

≤ B3 exp(−C3x),

(19)

where A3, B3 and C3 are suitable absolute constants and x ≤ Nk
2 .
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Proof of Lemma 1.

It is readily checked that,

TN

Nk
=

1

Nk

N∑

i=1

Yi =
1

k

∫
∞

0

tdGN(t) and

∫
∞

0

tdFk(t) = k. (20)

From which, we obtain readily that

N1/2

(

TN

N
− k

)

=

∫
∞

0

tdβN(t) = −

∫
∞

0

βN(t)dt. (21)

Let λN be a sequence of positive numbers. Making use of the triangle inequality,
we infer that

∣

∣

∣

∣

∫
∞

0

βN(t)dt−

∫
∞

0

B
(1)
N (Fk(t))dt

∣

∣

∣

∣

≤

∫λN

0

∣

∣

∣
βN(t) − B

(1)
N (Fk(t))

∣

∣

∣
dt

+

∣

∣

∣

∣

∫
∞

λN

B
(1)
N (Fk(t))dt

∣

∣

∣

∣

+

∣

∣

∣

∣

∫
∞

λN

βN(t)dt

∣

∣

∣

∣

.

We have the inequality

∫λN

0

∣

∣

∣
βN(t) − B

(1)
N (Fk(t))

∣

∣

∣
dt

≤ sup
0≤x<∞

∣

∣

∣
βN(t) − B

(1)
N (Fk(t))

∣

∣

∣

∫λN

0

dt

= λN sup
0≤x<∞

∣

∣

∣
βN(t) − B

(1)
N (Fk(t))

∣

∣

∣
.

Making use of Theorem 6, we obtain

P

(∫λN

0

∣

∣

∣
βN(t) − B

(1)
N (Fk(t))

∣

∣

∣
dt > λNN

−1/2(A logN+ x)

)

≤ P

(

λN sup
0≤x<∞

∣

∣

∣
βN(t) − B

(1)
N (Fk(t))

∣

∣

∣
> λNN

−1/2(A logN+ x)

)
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= P

(

sup
0≤x<∞

∣

∣

∣
βN(t) − B

(1)
N (Fk(t))

∣

∣

∣
> N−1/2(A logN+ x)

)

≤ Be−Cx.

Let us now study the behavior of
∫
∞

λN
|B

(1)
N (Fk(t))|dt. We have that the variance

can be written as (see [21])

σ2
1 = E

[∫
∞

λN

B
(1)
N (Fk(t))dt

∫
∞

λN

B
(1)
N (Fk(s))ds

]

=

∫
∞

λN

∫
∞

λN

{Fk(t)∧ Fk(s) − Fk(t)Fk(s)}dsdt

=

∫
∞

λN

{
(1− Fk(s))

∫ s

λN

Fk(t)dt+ Fk(s)

(∫
∞

s

(1− Fk(t))dt

)}
ds.

By [7], there exists t0 > 0 such that

1− Fk(t) ≤ 2 exp

(

−
t

2

)

, if t ≥ t0. (22)

From (22), we have
σ2
1 ≤ σ2

1,N = Ce−λN ,

for some positive constant C.

Finally, taking in account that
∫
∞

λN
B
(1)
N (Fk(t))dt is a Gaussian-centered vari-

able, with variance σ2
1, we have, for all x > 0,

P

(
∣

∣

∣

∣

∫
∞

λN

B
(1)
N (Fk(t))dt

∣

∣

∣

∣

≥
x

N1/2

)

= P

(

1

σ1

∣

∣

∣

∣

∫
∞

λN

B
(1)
N (Fk(t))dt

∣

∣

∣

∣

≥
x

N1/2σ1

)

≤ 2
σ1,NN

1/2

x
e
− x2

2σ2
1,N

N ≤
C

x
e−x2 ,

where the inequality on the right-hand-side is obtained by using (22), jointly
with λN = C1 logN.

Finally, we must study the behavior of
∣

∣

∣

∫
∞

λN
βN(t)dt

∣

∣

∣
. Tacking in account that

TN is a γ(Nk, 1) r.v., we have

P

(

TN ≥
√
2Nkx+ x

)

+ P

(

−TN ≥
√
2Nkx+ x

)

≤ 2e−x.
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The last inequality was obtained from page 29 of [14]. Then,

P (TN −Nk ≥ x) ≤ P

(

TN ≥
√
2Nkx+ x

)

≤ e−x

for 0 ≤ x ≤ Nk
2 . Moreover, from (22), we have

P (TN ≤ Nk− x) ≤ Ce−Nk+x ≤ e−x

for Nk ≥ t0 + x and x ≤ Nk
2 .

The following Lemma is in the spirit of Lemma 3.2 of [7], but we give an
exponential rate. Our proof follows the lines of the just mentioned Lemma,
namely relations (25)-(27) given on page 23 of this paper are stated by [7].

Lemma 2 For each ε > 0 and n ≥ k, we have

P

(

sup
0≤x≤∞

∣

∣

∣

∣

B
(1)
N

(

Fk

(

x
TN

Nk

))

− B
(1)
N (Fk(x))

∣

∣

∣

∣

> N−1/4(A4 log
3/4N+ x)

)

≤ B4 exp(−C4x),

where A4, B4 and C4 are positive constants.

Proof of lemma 2. The random variable
∫
∞

0
B
(1)
N (Fk(t))dt has a normal dis-

tribution, with expectation 0 and finite variance, given by

σ2
2 = E

[

(∫
∞

0

B
(1)
N (Fk(t))dt

)2
]

=

∫
∞

0

{
(1− Fk(s))

∫ s

0

Fk(t)dt+ Fk(s)

(∫
∞

s

(1− Fk(t))dt

)}
ds.

Hence, we have the inequality

P

(

1

σ2

∣

∣

∣

∣

∫
∞

0

B
(1)
N (Fk(t))dt

∣

∣

∣

∣

>
x

σ2

)

≤ 2
σ2

x
e
− x2

2σ2
2 . (23)

We have

P

(

∣

∣

∣

∣

N1/2

(

TN

Nk
− 1

)∣

∣

∣

∣

>
A3(logN)1/2

N1/2
+ x

)
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≤ P

(

∣

∣

∣

∣

N1/2

(

TN

Nk
− 1

)

−
1

k

∫
∞

0

B
(1)
N (Fk(t))dt

∣

∣

∣

∣

>
A3(logN)1/2

N1/2
+ x

)

+P

(∣

∣

∣

∣

1

k

∫
∞

0

B
(1)
N (Fk(t))dt

∣

∣

∣

∣

> x

)

≤ B3e
−C3x + 2

σ2

xk
e−C4x

2

for x > 0,

where we have used Lemma 1 jointly with (23).

By Taylor expansions, we readily obtain
∣

∣

∣

∣

Fk

(

x
TN

Nk

)

− Fk(x)

∣

∣

∣

∣

= xfk(xN)

∣

∣

∣

∣

TN

Nk
− 1

∣

∣

∣

∣

, (24)

where

|xN − x| ≤ x

∣

∣

∣

∣

TN

Nk
− 1

∣

∣

∣

∣

.

Let 0 < δ < 1 and define AN(δ) by

AN(δ) =

{
ω :

∣

∣

∣

∣

TN

Nk
− 1

∣

∣

∣

∣

≤ δ

}
. (25)

Now, by choosing N sufficiently large so that

A3

N1/2
(logN)1/2 ≤ δ,

and using (24), we get that

P (Ac
N(δ)) ≤ e−x.

In addition, we have for each xN ∈ AN(δ),

xfk(xN) ≤
(1+ δ)m−1

Γ(k)
xke−(1−δ)x, (26)

which is bounded on [0,∞). Now, we let

A12 = A11. sup
0≤x<∞

(1+ δ)k−1

Γ(k)
xke−(1−δ)x. (27)

Recall the following elementary fact

P(A) ≤ P(Bc) + P(A ∩ B),
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then, for large enough N, we infer that we have

P

(

sup
0≤x<∞

∣

∣

∣

∣

Fk

(

x
TN

Nk

)

− Fk(x)

∣

∣

∣

∣

> A11N
−1/2

(

(logaN)1/2 + x
)

)

≤ P

(

Ac
N(δ)

)

+ P

(

AN(δ) and

{
sup

0≤x<∞

∣

∣

∣

∣

Fk

(

x
TN

Nk

)

− Fk(x)

∣

∣

∣

∣

> A11N
−1/2

(

(logaN)1/2 + x
)

})

≤ P
(

Ac
N(δ)

)

+ P

(

AN(δ) and

{
sup

0≤x<∞

xFk(xN)

∣

∣

∣

∣

TN

Nk
− 1

∣

∣

∣

∣

> A11N
−1/2

(

(logaN)1/2 + x
)

})

≤ B11e
−x + P

(

AN(δ) and

{∣
∣

∣

∣

TN

Nk
− 1

∣

∣

∣

∣

> A11N
−1/2

(

(logaN)1/2 + x
)

})

≤ B11e
−x.

(28)

Now, by (28) combined with Lemma 1.1.1 of [16] implies that

P

(

sup
0≤x<∞

∣

∣

∣

∣

B
(1)
N

(

Fk

(

x
TN

Nk

))

− B
(1)
N (Fk(x))

∣

∣

∣

∣

> N−1/4(A10(logaN)3/4 + x)

)

= P

(

sup
0≤x<∞

∣

∣

∣

∣

B
(1)
N

(

Fk(x) + Fk

(

x
TN

Nk

)

− Fk(x)

)

− B
(1)
N (Fk(x))

∣

∣

∣

∣

> N−1/4(A10(logaN)3/4 + x)
)

≤ P

(

sup
0≤t≤1−A12N−1/2(log aN)2

sup
0≤s≤A12N−1/2(log aN)2

∣

∣

∣
B
(1)
N (t+ s) − B

(1)
N (t)

∣

∣

∣

> x
(logN)3/4

N1/4

)

+ B11e
−x

≤ B12e
−x2/(2+ϵ) + B11e

−x. (29)

This completes the proof of Lemma 2. □

Proof of Theorem 2.

We are going to give the main steps of the proof. Assume first that n = Nk.
Keep in mind the representation (10) for the empirical process of k-spacings.
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We are aimed to prove the following, for N ≥ 1, x > 0,

P

(

sup
0≤x≤∞

|α1
N(x) − V∗

N(x)| ≥ N−1/2(A3(logN)3/4 + x)

)

≤ B3 exp(−C3x),

(30)
where

V∗
N(x) = B

(1)
N (Fk(x)) −

1

k
xfk(x)

∫
∞

0

B
(1)
N (Fk(y))dy. (31)

By second-order Taylor expansion in the second term of (10), we get

sup
0≤x<∞

|α1
N(x) − V∗

N(x)| ≤ I
(1)
N + I

(2)
N + I

(3)
N + I

(4)
N , (32)

with

I
(1)
N = sup

0≤x<∞

|βN

(

x
TN

Nk

)

− B
(1)
N

(

Fk

(

x
TN

Nk

))

|,

I
(2)
N = sup

0≤x<∞

|B
(1)
N

(

Fk

(

x
TN

Nk

))

− B
(1)
N (Fk(x))|,

I
(3)
N = N1/2

(

TN

Nk
− 1

)2

sup
0≤x<∞

|x2f ′k(xN)|,

I
(4)
N = sup

0≤x<∞

∣

∣

∣

∣

xfk(xN)

k

∣

∣

∣

∣

(

N1/2

(

TN

Nk
− 1

)

−

∫
∞

0

tdB
(1)
N (Fk(t))

)

,

where

|xN − x| ≤ x

∣

∣

∣

∣

TN

Nk
− 1

∣

∣

∣

∣

.

The behavior of I
(1)
N , is obtained from Theorem 6. The behavior of I

(2)
N , is

obtained from Lemma 2, the behavior of I
(4)
N is obtained from Lemma 1. For

the behavior of I
(3)
N , we have

P

(∣

∣

∣

∣

TN

Nk
− 1

∣

∣

∣

∣

≥
A33√
Nk

)

≤ P

(

TN ≥ A33

√
Nk+Nk

)

+P

(

−TN ≥ A33

√
Nk+Nk

)

≤ 2e−Nk.

The last inequality was obtained from page 29 of [14]. Let us define

Bδ
N =

{
ω :

∣

∣

∣

∣

TN

Nk
− 1

∣

∣

∣

∣

≤ δ

}
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in the same spirit of the Aδ
N of [7], on Bδ

N, we have

sup
0≤x<∞

|x2f ′k(xN)| = M(1) < ∞,

and consider also N large enough to make A33√
Nk

≤ δ, then

p

(

(

TN

Nk
− 1

)2

sup
0≤x<∞

|x2f ′k(xN)| ≥
1

Nk

)

≤ P

(

B̄δ
N

)

+ P

(

Bδ
N and

(

TN

Nk
− 1

)2

≥
A34

Nk

)

≤ 2e−Nk ≤ 2e−x, (33)

for large enough N.
Hence together with Lemma 4.4.4 of [16], we can define a sequence of Gaus-

sian processes {VNk(x) : 0 ≤ x < ∞}, N = 1, 2, . . . , such that for each N, we
have

{αNk(x), VNk(y) : 0 ≤ x, y < ∞}
d
={α1

N(x), V
∗
N(y) : 0 ≤ x, y < ∞}. (34)

This completes the proof Theorem 2 for the case where n = Nk.

Now, we prove the general case where k(N − 1) < n < Nk. It follows from
(5) that

{αn(x), 0 ≤ x < ∞}

d
=

{
N1/2

(

GN,k

(

x
Sn

Nk

)

− Fk(x)

)

, 0 ≤ x < ∞
}
, (35)

where

GN,k(x) =
1

N

N−1∑

i=1

1{Yi<x} +
1

N
1{

∑n
ℓ=(N−1)k+1 Eℓ<x}. (36)

Notice that we have the following fact

sup
0≤x<∞

∣

∣

∣

∣

GN,k

(

x
Sn

Nk

)

−GN−1

(

x
Sn

Nk

)
∣

∣

∣

∣

≤
1

N
+

1

N(N− 1)
, (37)

and
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P

(
∣

∣

∣

∣

Sn

Nk
−

TN−1

k(N− 1)

∣

∣

∣

∣

> A18N
−1/2

)

≤ B18e
−x, (38)

for N large enough and x ≥ 0, where we have used (33). Set

P = P

(

sup
0≤x<∞

∣

∣

∣

∣

N1/2

(

GN,k

(

x
Sn

Nk

)

− Fk(x)

)

− V∗
N−1(x)

∣

∣

∣

∣

> A19N
−1/2(logaN)1/2

)

. (39)

By the use of (30) in connection with (37), we infer that

P ≤ P

(

sup
0≤x<∞

N1/2

∣

∣

∣

∣

Fk

(

x
Sn

TN−1

)

− Fk(x)

∣

∣

∣

∣

> A20N
−1/2(logaN)1/2

)

+P

(

sup
0≤x<∞

N1/2

∣

∣

∣

∣

V∗
N−1

(

x
Sn

TN−1

)

− V∗
N−1(x)

∣

∣

∣

∣

> A21N
−1/2(logaN)1/2

)

+B3N
−ε. (40)

Once more, by a first order of the Taylor expansion, we have

N1/2

∣

∣

∣

∣

Fk

(

x
Sn

TN−1

)

− Fk(x)

∣

∣

∣

∣

= xfk(xN).N
1/2

∣

∣

∣

∣

Sn − TN−1

TN−1

∣

∣

∣

∣

, (41)

where

|xN − x| ≤ x

∣

∣

∣

∣

Sn − TN−1

TN−1

∣

∣

∣

∣

.

By combining Lemma 1 with (38), it follows that

P

(∣

∣

∣

∣

Sn

TN−1
− 1

∣

∣

∣

∣

> A22N
−1/2

)

≤ B22e
−x. (42)

By arguing similarly as in the proof (28), we obtain that

P

(

sup
0≤x<∞

N1/2

∣

∣

∣

∣

Fk

(

x
Sn

TN−1

)

− Fk(x)

∣

∣

∣

∣

> A20N
−1/2(logaN)1/2

)

≤ B20e
−x.

(43)
Now, by definition (31), (43), and through a similar argument as that used at
the end of the proof of Lemma 2, we get

P

(

sup
0≤x<∞

N1/2

∣

∣

∣

∣

V∗
N−1

(

x
Sn

TN−1

)

− V∗
N−1(x)

∣

∣

∣

∣

> A21N
−1/2(logaN)1/2

)

≤ B21e
−x.

(44)
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Then, making use of the equations (40), (43) and (44), we obtain

P

(

sup
0≤x<∞

∣

∣

∣

∣

N1/2

(

GN,k

(

x
Sn

Nk

)

− Fk(x)

)

− V∗
N−1(x)

)

∣

∣

∣

∣

∣

> A23N
−1/2(logaN)1/2

)

≤ B23e
−x. (45)

Again, by Lemma 4.4.4 of [16] and (35), we can get a sequence of Gaussian
processes {Vn(x) : 0 ≤ x < ∞}, k(N − 1) < n < Nk,N = 1, 2 . . ., such that for
each N, we have

{αn(x), Vn(y) : 0 ≤ x, y < ∞}

d
=

{
N1/2

(

GN,k

(

x
Sn

Nk

)

− Fk(x)

)

, V∗
N−1(y) : 0 ≤ x, y < ∞

}
.

The last equation completes the proof of Theorem 2. □

Proof of Theorem 5

This Theorem follows the proof of Theorem 1.1 of [15] and is based on the
following two technical lemmas.

Recall that the Gaussian processes {V∗
N(x) : 0 ≤ x ≤ ∞, n ≥ 1} is such that

V∗
N(x) = B

(1)
N (Fk(x)) −

1

k
xfk(x)

∫
∞

0

B
(1)
N (Fk(y))dy,

satisfies
EV∗

N(x) = 0, (46)

and

EV∗
N(x)V

∗
N(y) = min (Fk(x), Fk(y)) − Fk(x)Fk(y) −

1

k
xyFk(x)Fk(y). (47)

Lemma 3 For all x > 0

P (∥V∗
N)∥ ≥ x) ∼ 2e−2x2 , as x → ∞.

Proof of Lemma 3 Recall that from (23), we have the inequality

P

(

1

kσ2

∣

∣

∣

∣

∫
∞

0

B
(1)
N (Fk(t))dt

∣

∣

∣

∣

> u

)

≤ 2
σ2

uk
e
− u2

2σ2
2 . (48)
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This last relation, jointly with (26) gives the behavior of

P

(

sup
0≤x≤∞

∣

∣

∣

∣

xfk(x)

kσ2

∫
∞

0

B
(1)
N (Fk(t))dt

∣

∣

∣

∣

> u

)

.

Moreover, it is well known that for all x > 0,

P (∥B(t)∥ ≥ x) = 2

∞∑

k=1

(−1)k+1e−2k2x2 .

In particular,

P (∥B(t)∥ ≥ x) ∼ 2e−2x2 ,

see, for instance, Lemma 2.1 of [15]. This result completes the proof of
Lemma 3. □

Inspired from Proposition 2.1 of [15], we have

Lemma 4 Let a > −1, an = o(1/ logn), then

lim
ϵ↘

√

a+1
2

(

1−
a+ 1

4ϵ2

)1/2 ∞∑

n=1

na
E

{
∥VN − (ϵ+ an)

√

2 logn∥
}

+
=

√

π/2

a+ 1
.

Proof of Lemma 4. The proof follows the lines of the proof of Proposition
2.1 of [15] by tacking VN in the place of B. □

For p < −1/2, we have

E

{

sup
0≤x<∞

|Vn(x)|−
(

ϵ
√

2 logn+ (logn)p
)

}

+

−E

{

sup
0≤x<∞

|αn(x) − VN(x)|− (logn)p

}

+

≤ E

{

sup
0≤x<∞

|αn(x)|− ϵ
√

2 logn

}

+

≤ E

{

sup
0≤x<∞

|Vn(x)|−
(

ϵ
√

2 logn− (logn)p
)

}

+

−E

{

sup
0≤x<∞

|αn(x) − VN(x)|− (logn)p

}

+

.

The rest of the proof follows the line of the proof of Theorem 1.1 of [15].□
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