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Abstract. We establish a Talenti-type comparison theorem for the
Dirichlet problem associated with Poisson’s equation on complete non-
compact Finsler manifolds having nonnegative Ricci curvature and Eu-
clidean volume growth. The proof relies on anisotropic symmetrization
arguments and leverages the sharp isoperimetric inequality recently es-
tablished by Manini [Preprint, arXiv:2212.05130, 2022 ]. In addition, we
characterize the rigidity of the comparison principle under the additional
assumption that the reversibility constant of the Finsler manifold is finite.
As application, we prove a Faber-Krahn inequality for the first Dirichlet
eigenvalue of the Finsler-Laplacian.

1 Introduction

Talenti’s comparison theorem [23] is a fundamental result that establishes a
relationship between the solutions of two elliptic boundary value problems:
the Poisson equation with Dirichlet boundary condition and a so-called ’sym-
metrized’ problem of similar kind. More precisely, given a bounded domain
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Ω ⊂ Rn and a nonnegative function f ∈ L2(Ω), one might consider the Dirich-
let problem {

−∆u = f in Ω,

u = 0 on ∂Ω,
(1)

and its ’symmetrized’ counterpart{
−∆v = f⋆ in Ω⋆,

v = 0 on ∂Ω⋆,
(2)

whereΩ⋆ denotes the Euclidean open ball centered at the origin and having the
same Lebesgue measure as Ω, while f⋆ : Ω⋆ → R is the Schwarz rearrangement
of f, see Kesavan [13, Chapter 1].
According to Talenti [23], if u and v are the weak solutions of the problems

(1) and (2), respectively, then one has that

u⋆(x) ≤ v(x), a.e. x ∈ Ω⋆,

where u⋆ : Ω⋆ → R is the Schwarz rearrangement of u.
The key ingredient of Talenti’s proof is the classical technique known as

Schwarz symmetrization, which turns out to be an invaluable method in ad-
dressing numerous isoperimetric and variational problems in the Euclidean
space. For example, with the help of this symmetrization procedure, Talenti’s
comparison principle has been extended to several boundary value problems,
see e.g., Alvino, Ferone and Trombetti [3], Alvino, Lions and Trombetti [2],
Alvino, Nitsch and Trombetti [3], and Talenti [24]. For a comprehensive in-
troduction to Talenti’s technique and its countless applications, we refer to
Kesavan [13] and references therein.
Recently, there has been an increasing endeavor to study similar comparison

results on complete Riemannian manifolds having Ricci curvature bounded
from below, see Chen and Li [8], Chen, Li and Wei [9], Colladay, Langford and
McDonald [11], and Mondino and Vedovato [16].
In particular, in 2023 Chen and Li [8] extended Talenti’s original compari-

son result to complete noncompact Riemannian manifolds having nonnegative
Ricci curvature and Euclidean volume growth. In their proof, they applied a
Schwarz-type symmetrization method ’from the manifold (M,g) to the Eu-
clidean space (Rn, | · |)’, obtaining a comparison result between the solution of
the Dirichlet problem {

−∆gu = f in Ω,

u = 0 on ∂Ω,
(3)
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defined in (M,g), where Ω ⊂ M is a bounded domain, f ∈ L2(Ω) is a nonneg-
ative function and ∆g denotes the Laplace-Beltrami operator induced by the
Riemannian metric g, and the solution of the ’symmetrized’ problem{

−∆v = f⋆ in Ω⋆,

v = 0 on ∂Ω⋆,
(4)

which is defined on the Euclidean symmetric rearrangement of Ω, namely
Ω⋆ ⊂ Rn.
More precisely, for the given bounded domain Ω ⊂ M from (3), one can

consider the Euclidean open ball Ω⋆ ⊂ Rn, which is centered at the origin
and Volg(Ω) = AVRgVole(Ω

⋆). Here, Volg and Vole stand for the Riemannian
volume induced by the metric g and the canonical Euclidean volume, while
AVRg denotes the positive asymptotic volume ratio of (M,g). Furthermore,
f⋆ : Ω⋆ 7→ [0,∞) stands for the Euclidean rearrangement function of f.
Then, due to Chen and Li [8, Theorem 1.1], if u and v are the weak solutions

of problems (3) and (4), respectively, then u⋆(x) ≤ v(x), a.e. x ∈ Ω⋆, where
u⋆ : Ω⋆ 7→ R is the Euclidean rearrangement of u. Moreover, equality holds
for a.e. x ∈ Ω⋆ if and only if (M,g) is isometric to the Euclidean space Rn

endowed with its canonical metric and Ω is isoperimetric to the Euclidean ball
Ω⋆.
In these types of symmetrization results, a crucial element lies in the ap-

plication of the sharp isoperimetric inequality. This inequality was recently
established for Riemannian manifolds having nonnegative Ricci curvature and
Euclidean volume growth by Brendle [6] and, alternatively, by Balogh and
Kristály [4], facilitating the application of symmetrization arguments on these
curved spaces.
The sharp isoperimetric inequality was newly extended to potentially non-

reversible Finsler manifolds with nonnegative n-Ricci curvature and Euclidean
volume growth by Manini [15], who also characterized the inequality’s rigidity
property. This breakthrough enables the utilization of rearrangement argu-
ments within the broader framework of Finsler geometry. However, in order to
fully integrate the general Finslerian context, the rearrangement needs to be
performed ’from the Finsler manifold to a Minkowski normed space’, laying
the foundation for a so-called anisotropic (or convex) symmetrization.
In light of these results, the main objective of the present paper is to ex-

tend the Talenti-type comparison result of Chen and Li [8] to complete Finsler
manifolds having nonnegative n-Ricci curvature and Euclidean volume growth.
This is achieved by the adaptation of the usual Euclidean rearrangement tech-
nique to the Finslerian context and the application of the sharp isoperimetric
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inequality available on Finsler manifolds. Moreover, we also prove a rigidity
property of the comparison principle in the spirit of Manini [15].

2 Main results

To present our findings, let (M,F) be a noncompact, complete n(≥ 2)-dimen-
sional Finsler manifold with Ricn ≥ 0, equipped with the induced Finsler
metric dF : M ×M → R and the Busemann-Hausdorff volume form dvF. Let
rF ∈ [1,∞] denote the reversibility constant of (M,F), see Section 3.
The asymptotic volume ratio of (M,F) is expressed as

AVRF = lim
r→∞ VolF(BF(x, r))

ωnrn
,

where BF(x, r) = {z ∈ M : dF(x, z) < r} denotes the forward geodesic ball
centered at a fixed x ∈ M with radius r > 0, ωn = π

n
2 /Γ(1 + n

2 ) denotes
the volume of the n-dimensional Euclidean open unit ball, and VolF(S) =∫
S

dvF, for any measurable set S ⊂ M. Since Ricn ≥ 0, due to the Bishop-

Gromov volume comparison theorem (see Shen [22, Theorem 1.1]), we have
that AVRF ∈ [0, 1].
We suppose that (M,F) exhibits Euclidean volume growth, i.e., AVRF > 0.
On a bounded domain Ω ⊂ M, we consider the Dirichlet problem{

−∆Fu = f in Ω,

u = 0 on ∂Ω,
(P)

where ∆F is the Finsler-Laplace operator defined on (M,F) and f ∈ L2(Ω) is a
nonnegative function.
Now let (Rn, H) be a reversible Finsler manifold equipped with the canonical

volume form dvH, such that H is a normalized Minkowski norm, i.e., the set

WH(1) := {x ∈ Rn : H(x) < 1}

has measure VolH(WH(1)) = Vole(WH(1)) = ωn.
We consider the anisotropic rearrangement ofΩ ⊂ M with respect to (w.r.t.)

the norm H, which is defined as a Wulff-shape

Ω⋆
H = {x ∈ Rn : H(x) < R}

for some R > 0 such that VolF(Ω) = AVRFVolH(Ω
⋆
H).
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Our main result is a Talenti-type comparison principle concerning the solu-
tion of problem (P) and the Dirichlet problem{

−∆H∗v = f⋆H in Ω⋆
H,

v = 0 on ∂Ω⋆
H,

(P⋆)

where H∗ : Rn → R,

H∗(x) = sup
ξ∈Rn\{0}

⟨ξ, x⟩
H(ξ)

is the dual norm (i.e., the polar transform) of H, ∆H∗ is the Finsler-Laplace
operator associated to H∗, and f⋆H : Ω⋆

H → [0,∞) is the anisotropic rearrange-
ment of f w.r.t. the norm H. Namely,

f⋆H(x) = w (AVRFωnH(x)n)

for some nonincreasing function w : [0,VolF(Ω)] → [0,∞), such that for every
t ≥ 0,

VolF
(
{x ∈ Ω : f(x) > t}

)
= AVRF ·VolH

(
{x ∈ Ω⋆

H : f⋆H(x) > t}
)

holds true, see Section 4.
Specifically, we have the following theorem.

Theorem 1 Let (M,F) be a noncompact, complete n-dimensional Finsler
manifold with Ricn ≥ 0, n ≥ 2 and AVRF > 0. Assume that Ω ⊂ M is a
bounded domain and f ∈ L2(Ω) is a nonnegative function. Let H : Rn → [0,∞)
be an absolutely homogeneous, normalized Minkowski norm, and H∗ : Rn →
[0,∞) be its dual norm. Finally, let Ω⋆

H and f⋆H be the anisotropic rearrange-
ment w.r.t. H of the set Ω and the function f. If u : Ω → R and v : Ω⋆

H → R
are the weak solutions to problems (P) and (P⋆), respectively, then we have
that

u⋆
H(x) ≤ v(x), a.e. x ∈ Ω⋆

H, (5)

where u⋆
H : Ω⋆

H → R is the anisotropic rearrangement of u w.r.t. the norm H.
If, in addition, we suppose that rF < ∞ and for all x1, x2 /∈ ∂M and for all

geodesics γ : [0, 1] → M with γ(0) = x1 and γ(1) = x2, it holds that γ(t) /∈ ∂M,
for all t ∈ [0, 1], then we have the following rigidity property.
If equality holds in (5), then there exists (a unique) x0 ∈ M such that, up

to a negligible set, Ω = BF(x0, r) with r =
(

VolF(Ω)
AVRFωn

) 1
n
.
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Moreover, the Busemann-Hausdorff measure dvF has the following represen-
tation:

dvF =

∫
∂BF(x0,r)

mαq(dα), q ∈ P (∂BF(x0, r)) , mα ∈ M+(M),

where mα is concentrated on the geodesic ray from x0 through α, and mα can
be identified with nωnAVRFt

n−1L1 ⌞[0,∞) .

The proof relies on an anisotropic rearrangement argument similar to the
one outlined in Kristály, Mester and Mezei [14], along with the sharp and rigid
isoperimetric inequality due to Manini [15]. Although the general strategy of
the Schwarz-type symmetrization is well-established (see Talenti [23] or Chen
and Li [8]), a meticulous adaptation is necessary in order to fully characterize
the Finslerian setting.
As a consequence of Theorem 1, we derive the following Faber-Krahn-type

inequality concerning the first Dirichlet eigenvalue of the Finsler-Laplacian ∆F.
For similar eigenvalue comparison results, refer to the works of Ge and Shen
[12] and Yin and He [25]. Here, we introduce an alternative approach by using
anisotropic rearrangement and the Talenti comparison result. In addition, we
also provide a characterization of the equality case, which follows directly from
Theorem 1.

Theorem 2 Let (M,F) be a noncompact, complete n-dimensional Finsler
manifold with Ricn ≥ 0, n ≥ 2 and AVRF > 0. Assume that Ω ⊂ M is a
bounded domain. Let H : Rn → [0,∞) be an absolutely homogeneous, normal-
ized Minkowski norm, H∗ : Rn → [0,∞) its dual norm, and Ω⋆

H ⊂ Rn the
anisotropic rearrangement of Ω w.r.t. the norm H.
Let us consider the eigenvalue problem{

−∆Fu = λ1(Ω)u, in Ω,

u = 0, on ∂Ω,
(EP)

where λ1(Ω) denotes the first Dirichlet eigenvalue of the Finsler-Laplacian ∆F.
Then, we have that

λ1 (Ω
⋆
H) ≤ λ1(Ω), (6)

where λ1 (Ω
⋆
H) is the first eigenvalue associated with the eigenvalue problem{

−∆H∗v = λ1(Ω
⋆
H)v, in Ω⋆

H,

v = 0, on ∂Ω⋆
H.

(EP⋆)
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If, in addition, we suppose that rF < ∞ and for all x1, x2 /∈ ∂M and for all
geodesics γ : [0, 1] → M with γ(0) = x1 and γ(1) = x2, it holds that γ(t) /∈ ∂M,
for all t ∈ [0, 1], then we have the following rigidity property.
If equality holds in (6), then there exists (a unique) x0 ∈ M such that,

up to a negligible set, Ω = BF(x0, r) with r =
(

VolF(Ω)
AVRFωn

) 1
n
. Moreover, the

Busemann-Hausdorff measure dvF has the following representation:

dvF =

∫
∂BF(x0,r)

mαq(dα), q ∈ P (∂BF(x0, r)) , mα ∈ M+(M),

where mα is concentrated on the geodesic ray from x0 through α, and mα can
be identified with nωnAVRFt

n−1L1 ⌞[0,∞) .

The paper is organized as follows. In Section 3 we briefly present the funda-
mental notions of Finsler geometry that are used throughout the paper. Section
4 recalls the sharp isoperimetric inequality due to Manini [15], then presents
the anisotropic rearrangement method applied in our arguments. Finally, in
Section 5 we present the proof of Theorem 1 and 2.

3 Preliminaries on Finsler geometry

This section summarizes the fundamental notions of Finsler geometry neces-
sary for our further developments. For a comprehensive presentation of the
subject, see Bao, Chern and Shen [5], Ohta and Sturm [18] and Shen [21].
Let M be a connected n-dimensional differentiable manifold and TM =

∪x∈M
{
(x, y) : y ∈ TxM

}
the tangent bundle of M.

The pair (M,F) is called a Finsler manifold if F : TM → [0,∞) is a continuous
function such that

(i) F is C∞ on TM \ {0};

(ii) F(x, λy) = λF(x, y) for all λ ≥ 0 and all (x, y) ∈ TM;

(iii) the n × n Hessian matrix
(
gij(x, y)

)
:=

(
1
2

∂2

∂yi∂yj F
2(x, y)

)
is positive

definite for all (x, y) ∈ TM \ {0}.

Note that in general, F(x, y) ̸= F(x,−y). If (M,F) is a Finsler manifold such
that F(x, λy) = |λ|F(x, y), for every λ ∈ R and (x, y) ∈ TM, we say that the
Finsler manifold is reversible. Otherwise, (M,F) is called nonreversible.
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The reversibility constant of (M,F) is defined by the number

rF = sup
x∈M

sup
y∈TxM\{0}

F(x, y)

F(x,−y)
∈ [1,∞],

measuring how much the manifold deviates from being reversible, see Rade-
macher [19]. Specifically, rF = 1 if and only if (M,F) is a reversible Finsler
manifold.
A smooth curve γ : [a, b] → M is called a geodesic if its velocity field

γ̇ is parallel along the curve, i.e., Dγ̇γ̇ = 0, where D denotes the covariant
derivative induced by the Chern connection, see Bao, Chern and Shen [5,
Chapter 2]. (M,F) is said to be complete if every geodesic γ : [a, b] → M can
be extended to a geodesic defined on R.
The Finslerian distance function dF : M×M → [0,∞) is defined by

dF(x1, x2) = inf
γ∈Γ(x1,x2)

∫b
a

F
(
γ(t), γ̇(t)

)
dt,

where Γ(x1, x2) denotes the set of all piecewise differentiable curves γ : [a, b] →
M such that γ(a) = x1 and γ(b) = x2. Clearly, dF(x1, x2) = 0 if and only if
x1 = x2, and dF verifies the triangle inequality. However, in general, dF is not
symmetric. In fact, we have that dF is symmetric if and only if (M,F) is a
reversible Finsler manifold.
For a point x ∈ M and a number r > 0, the forward open geodesic ball with

center x and radius r is defined as

BF(x, r) = {z ∈ M : dF(x, z) < r}.

For a fixed point x ∈ M let y, v ∈ TxM be two linearly independent tangent
vectors. The flag curvature is defined as

Ky(y, v) =
gy(R(y, v)v, y)

gy(y, y)gy(v, v) − gy(y, v)2
,

where g is the fundamental tensor induced by the Hessian matrices (gij) and
R is the Chern curvature tensor, see Bao, Chern and Shen [5, Chapter 3].
The Ricci curvature at the point x ∈ M and in the direction y ∈ TxM is

defined by

Ricx(y) = F2(x, y)

n−1∑
i=1

Ky(y, ei),
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where {e1, · · · , en−1,
1

F(x,y)y} is an orthonormal basis of TxM with respect to g.

The density function σF : M → [0,∞) is defined by

σF(x) =
ωn

Vole(B(x, 1))
,

where ωn = π
n
2 /Γ(1+ n

2 ) is the volume of the n-dimensional Euclidean open
unit ball, Vole denotes in the sequel the canonical Euclidean volume, and

B(x, 1) =

{
(yi) ∈ Rn : F

(
x,

n∑
i=1

yi ∂

∂xi

)
< 1

}
⊂ Rn.

The canonical Busemann-Hausdorff volume form on (M,F) is defined as

dvF(x) = σF(x)dx
1 ∧ · · ·∧ dxn,

see Shen [21, Section 2.2]. Note that in the following we may omit the pa-
rameter x for the sake of brevity. The Finslerian volume of a measurable set
Ω ⊂ M is given by VolF(Ω) =

∫
Ω dvF.

The mean distortion of (M,F) is defined by µ : TM \ {0} → (0,∞),

µ(x, y) =

√
det

[
gij(x, y)

]
σF(x)

,

while the mean covariation is given by S : TM \ {0} → R,

S(x, y) =
d

dt

(
ln µ

(
γ(t), γ̇(t)

))∣∣∣
t=0

,

where γ is the geodesic with γ(0) = x and γ̇(0) = y.
We say that (M,F) has nonnegative n-Ricci curvature, denoted by Ricn ≥ 0,

if Ricx(y) ≥ 0 for all (x, y) ∈ TM and the mean covariation S is identically
zero. Examples of Finsler manifolds with vanishing mean covariation include
the so-called Berwald spaces, which, in particular, contain both Riemannian
manifolds and Minkowski spaces, see Shen [22].
As previously introduced, the asymptotic volume ratio of (M,F) is defined

by

AVRF = lim
r→∞ VolF(BF(x, r))

ωnrn
,

where x ∈ M is arbitrarily fixed. Note that AVRF is well-defined, being inde-
pendent of the choice of the point x ∈ M.
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On the one hand, an n-dimensional Finsler manifold (M,F) equipped with
the canonical volume form dvF satisfies the condition that for every x ∈ M,

lim
r� 0

VolF(BF(x, r))

ωnrn
= 1.

On the other hand, if (M,F) is a complete Finsler manifold having Ricn ≥ 0,
the Bishop-Gromov volume comparison principle asserts that the function
r 7→ VolF(BF(x,r))

rn is nonincreasing on (0,∞), see Shen [22, Theorem 1.1]. Con-
sequently, it follows that if Ricn ≥ 0, then AVRF ∈ [0, 1].
The polar transform F∗ : T∗M → [0,∞) is defined as the dual metric of F,

namely

F∗(x, α) = sup
y∈TxM\{0}

α(y)

F(x, y)
,

where T∗M = ∪x∈M
{
(x, α) : α ∈ T∗

xM
}

is the cotangent bundle of M and
T∗
xM is the dual space of TxM.
The Legendre transform is defined by J∗ : T∗M → TM,

J∗(x, α) =

n∑
i=1

∂

∂αi

(
1

2
F∗2(x, α)

)
∂

∂xi
,

for every α =
∑n

i=1 α
idxi ∈ T∗

xM. Note that if J∗(x, α) = (x, y), then

F(x, y) = F∗(x, α) and α(y) = F∗(x, α)F(x, y).

Let u : M → R be a differentiable function in the distributional sense.
The gradient of u is defined as ∇Fu(x) = J∗(x,Du(x)), where Du(x) ∈ T∗

xM

denotes the (distributional) derivative of u at the point x ∈ M.
Using the properties of the Legendre transform, it follows that

F(x,∇Fu(x)) = F∗(x,Du(x)) and Du(x)
(
∇Fu(x)

)
= F∗(x,Du(x))2.

In local coordinates, one has that

Du(x) =

n∑
i=1

∂u

∂xi
(x)dxi and ∇Fu(x) =

n∑
i,j=1

g∗ij(x,Du(x))
∂u

∂xi
(x)

∂

∂xj
,

where (g∗ij) is the Hessian matrix
(
g∗ij(x, α)

)
=

(
1
2

∂2

∂αi∂αj F
∗2(x, α)

)
, see Ohta

and Sturm [18, Lemma 1.1]. In general, the gradient operator ∇F is not linear.
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Given a vector field V on M, the divergence of V is defined in local coordi-
nates as divV(x) = 1

σF(x)

∑n
i=1

∂
∂xi

(σF(x)V
i(x)).

The Finsler-Laplace operator is defined by

∆Fu(x) = div (∇Fu(x)) .

Note that ∆F is usually not linear. However, in the particular case when
(M,F) = (M,g) is a Riemannian manifold, ∆F coincides with the usual Laplace-
Beltrami operator ∆g.
The divergence theorem implies that∫

M

φ(x)∆Fu(x) dvF = −

∫
M

Dφ(x)
(
∇Fu(x)

)
dvF, (7)

for all φ ∈ C∞
0 (M), see Ohta and Sturm [18].

In the specific case when (Rn, H) is a reversible Finsler manifold, then H

is actually a smooth, absolutely homogeneous norm on Rn. Consequently, the
polar transform of H is in fact its dual norm H∗ : Rn → [0,∞),

H∗(x) = sup
ξ∈Rn\{0}

⟨ξ, x⟩
H(ξ)

.

In this case, the Finsler-Laplace operator ∆H∗ associated with the norm H∗

is given by
∆H∗u = div (H∗(∇u)∇ξH

∗(∇u)) ,

where∇ξ stands for the gradient operator with respect to the variables ξ ∈ Rn.
Due to Cianchi and Salani [10, Lemma 3.1], we have the following relation

between the norms H and H∗:

H∗ (∇ξH(ξ)) = 1, for all ξ ∈ Rn\{0}. (8)

Finally, let Ω ⊂ M be an open subset. The Sobolev space on Ω associ-
ated with the Finsler structure F and the Busemann-Hausdorff measure dvF is
defined by

W1,2
F (Ω) =

{
u ∈ W1,2

loc(Ω) :

∫
Ω

F∗(x,Du(x))2 dvF < +∞}
,

while W1,2
0,F(Ω) is the closure of C∞

0 (Ω) with respect to the norm

∥u∥W1,2
F (Ω) =

(∫
Ω

|u(x)|2 dvF +

∫
Ω

F∗(x,Du(x))2 dvF

) 1
2

.
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4 Anisotropic symmetrization

In the following, let (M,F) be a noncompact, complete n(≥ 2)-dimensional
Finsler manifold having Ricn ≥ 0, equipped with the induced Finsler metric
dF and the Busemann-Hausdorff volume form dvF. In this case, (M,dF, dvF) is
a metric measure space which satisfies the CD(0, n) condition, see Ohta [17].
We further suppose that (M,F) has Euclidean volume growth, i.e., AVRF > 0.

For this geometric setting, the sharp isoperimetric inequality has been recently
established by Manini [15, Theorem 1.3]. In particular, for every bounded open
set Ω ⊂ M, one has the following isoperimetric inequality:

PF(∂Ω) ≥ nω
1
n
n AVR

1
n

F VolF(Ω)
n−1
n . (9)

Here PF(∂Ω) denotes the anisotropic perimeter of Ω, defined as PF(∂Ω) =∫
∂Ω

dσF, where dσF is the (n − 1)-dimensional Lebesgue measure induced by

dvF. It is noteworthy that inequality (9) holds true in the general Finsle-
rian setting, unrestricted by any reversibility assumption regarding the Finsler
structure F.
Moreover, due to Manini’s rigidity result [15, Theorem 1.4], the equality

in (9) can be characterized by introducing the additional assumption that the
reversibility constant rF of (M,F) is finite. More precisely, one has the following
theorem.

Theorem 3 ([15, Theorem 1.4]) Let (M,F,m) be a Finsler manifold (possibly
with boundary) satisfying the CD(0, n) condition for some n > 1, such that
AVRF > 0, rF < ∞ and all closed forward geodesic balls are compact. Assume
that for all x1, x2 /∈ ∂M and for all geodesics γ : [0, 1] → M such that γ(0) = x1
and γ(1) = x2, it holds that γ(t) /∈ ∂M, for every t ∈ [0, 1]. Let Ω ⊂ X be a
bounded Borel set that saturates the isoperimetric inequality

P(∂Ω) ≥ nω
1
n
n AVR

1
n

F m(Ω)
n−1
n .

Then there exists (a unique) x ∈ M such that, up to a negligible set,

Ω = BF(x, r) with r =

(
m(Ω)

AVRFωn

) 1
n

.

Moreover, the measure m has the following representation:

m =

∫
∂BF(x,r)

mαq(dα), q ∈ P (∂BF(x, r)) , mα ∈ M+(M),
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with mα concentrated on the geodesic ray from x through α, and mα can be
identified with nωnAVRFt

n−1L1 ⌞[0,∞) .

In particular, if the measure chosen on (M,F) is the Busemann-Hausdorff
measure dvF, then, by Theorem 3, an extremizer set of the isoperimetric in-
equality (9) satisfies that

Ω = BF(x, r), where r =

(
VolF(Ω)

AVRFωn

) 1
n

. (10)

In order to leverage Manini’s results, we adapt the classical Schwarz sym-
metrization technique (see e.g., Kesavan [13]) to accommodate the Finslerian
context. For similar concepts of anisotropic (or convex) rearrangements, we
refer to Alvino, Ferone, Trombetti and Lions [1], Kristály, Mester and Mezei
[14] and Schaftingen [20].
Let us consider a reversible Finsler manifold (Rn, H) endowed with the

canonical volume form dvH. In addition, we assume, without loss of gener-
ality, that the set

WH(1) := {x ∈ Rn : H(x) < 1}

has measure Vole(WH(1)) = ωn, i.e., H is a normalized Minkowski norm.
Consequently, we have that the density function of (Rn, H), σH = 1 is constant,
which yields dvH(x) = dx. Accordingly, it turns out that VolH(WH(1)) =
Vole(WH(1)) = ωn and AVRH = 1.
Our goal is to apply a so-called anisotropic (or convex) rearrangement

technique ’from the Finsler manifold (M,F) to the Minkowski normed space
(Rn, H)’.
In the following, let Ω ⊂ M be a bounded domain.
The anisotropic rearrangement of Ω w.r.t. the normalized Minkowski norm

H is a Wulff-shape

Ω⋆
H = {z ∈ Rn : H(z) < R} =: WH(R),

where R > 0 is determined such that

VolF(Ω) = AVRFVolH(Ω
⋆
H) = AVRFVole(Ω

⋆
H).

Remark 1 Clearly, in the particular case when H is the standard Euclidean
norm |·|, the anisotropic rearrangement of Ω w.r.t. |·| is precisely the usual Eu-
clidean symmetric rearrangement, which is an n-dimensional open Euclidean
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ball centered at the origin and having radius

R =

(
VolF(Ω)

AVRFωn

) 1
n

.

In this case, if Ω ⊂ M is an extremizer of the isoperimetric inequality (9),
it turns out that the metric balls Ω and Ω⋆

|·| have equal radii, see (10).

Now let u : Ω → R be a nonnegative, measurable function.
The distribution function of u : Ω → [0,∞) is defined by the function

µu : [0,∞) → [0,VolF(Ω)],

µu(t) = VolF
(
{x ∈ Ω : u(x) > t}

)
.

It can be seen that µu is decreasing and µu(t) = 0, for all t ≥ ess supΩu.
The decreasing rearrangement of u is defined by u♯ : [0,VolF(Ω)] → [0,∞),

u♯(s) =

{
ess supΩu, if s = 0,

inf {t : µu(t) ≤ s} , if 0 < s ≤ VolF(Ω).

Finally, the anisotropic rearrangement of u w.r.t. the normalized Minkowski
norm H is given by u⋆

H : Ω⋆
H → [0,∞),

u⋆
H(x) = u♯(AVRFωnH(x)n). (11)

By the previous definition, it follows that for every t ≥ 0, one has that

VolF
(
{x ∈ Ω : u(x) > t}

)
= AVRF ·VolH

(
{x ∈ Ω⋆

H : u⋆
H(x) > t}

)
,

which implies that µu(t) = AVRF · µu⋆
H
(t), for all t ≥ 0.

By the layer cake representation, it follows that

∥u∥Lp(Ω) = ∥u♯∥Lp(0,VolF(Ω)) = AVR
1
p

F ∥u
⋆
H∥Lp(Ω⋆

H),

for every p ∈ [1,∞].
Similarly to Kesavan [13, Theorem 1.2.2], one can prove the following Hardy-

Littlewood-Pólya-type inequality: if u, g ∈ L2(Ω) are nonnegative functions,
then ∫

Ω

u(x)g(x)dvF ≤
∫VolF(Ω)

0

u♯(s)g♯(s)ds =

∫
Ω⋆

H

u⋆
H(x)g

⋆
H(x)dvH.
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In particular, one has that∫
{x∈Ω:u(x)>t}

g(x)dvF ≤
∫µu(t)

0

g♯(s)ds, (12)

for any t ∈ [0,∞) fixed.

Remark 2 For a fixed function u : Ω → [0,∞), one can define multiple
anisotropic rearrangements of u w.r.t. various Minkowski norms. However, by
definition, these all will be equimeasurable in the following sense: if u⋆

H1
and

u⋆
H2

are the anisotropic rearrangements of u w.r.t. two different absolutely
homogeneous, normalized Minkowski norms H1 and H2, then for any p ∈
[1,∞],

∥u⋆
H1

∥Lp(Ω⋆
H1

) = ∥u⋆
H2

∥Lp(Ω⋆
H2

).

In the particular case when (M,F) = (M,g) is a Riemannian manifold
and H(x) = |x| is the standard Euclidean norm, u⋆

|·| turns out to be the clas-
sical radially symmetric rearrangement of u. This type of rearrangement is
employed by Chen and Li [8] in their comparison result on Riemannian man-
ifolds. Therefore, our findings effectively extend the results of Chen and Li [8]
to the broader, Finslerian framework.
In the Finslerian case, however, it is indicated to substitute the classical Eu-

clidean symmetrization with the anisotropic rearrangement (11). This choice
is motivated by the fact that the minimizers of the isoperimetric inequality (9),
when analyzed within a Minkowski space (Rn, H), correspond to Wulff-shapes
associated with H (up to translations), see Cabré, Ros-Oton, and Serra [7,
Theorem 1.2] or Manini [15, Theorem 1.5].

5 Proof of Theorems 1&2

This section contains the proof of the Talenti comparison principle from The-
orem 1 and the Faber-Krahn inequality from Theorem 2. The key ingredients
are the anisotropic rearrangement technique presented in Section 4 and the
sharp isoperimetric inequality (9). For the characterization of the equality
case, we use the rigidity result from Theorem 3.
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Proof of Theorem 1.

Step 1. We start by studying the solution of the Dirichlet problem defined
on (M,F), namely, {

−∆Fu = f in Ω,

u = 0 on ∂Ω.
(P)

Let u : Ω ⊂ M → R be the weak solution of (P). Since f ∈ L2(Ω) is a non-
negative function, by the maximum principle, it follows that u is nonnegative
on Ω.
We consider the distribution function µu : [0,∞) → [0,VolF(Ω)] of u, and

for any 0 ≤ t ≤ ess supΩ u fixed, we define the level sets

Ωt = {x ∈ Ω : u(x) > t} and Γt = {x ∈ Ω : u(x) = t}.

Note that by Sard’s theorem, we have that Γt = ∂Ωt.
Then, we have that µu(t) = VolF(Ωt) and PF(Γt) = −µ ′

u(t), see Section 4.
Applying the co-area formula given by Shen [21, Theorem 3.3.1], we can

prove that ∫
Γt

F∗(x,Du(x))dσF = −
d

dt

∫
Ωt

F∗(x,Du(x))2dvF (13)

and ∫
Γt

1

F∗(x,Du(x))
dσF = −

d

dt

∫
Ωt

dvF = −µ ′
u(t) . (14)

Since u is the weak solution of (P), by (7) we have that∫
Ω

Dφ(x)
(
∇Fu(x)

)
dvF =

∫
Ω

f(x)φ(x) dvF, (15)

for every test function φ ∈ W1,2
0,F(Ω).

For a fixed t > 0 and h > 0, we define the function

φh(x) =


0, if 0 ≤ u(x) ≤ t,
u(x)−t

h , if t < u(x) ≤ t+ h,

1, if u(x) > t+ h.

By choosing φh as test funcion in (15) and taking the limit h → 0, we obtain

−
d

dt

∫
Ωt

F∗(x,Du(x))2dvF =

∫
Ωt

f(x)dvF. (16)
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Let f♯ : [0,VolF(Ω)] → [0,∞) be the decreasing rearrangement of f. Combin-
ing (13), (16) and the Hardy-Littlewood-Pólya-type inequality (12), it follows
that ∫

Γt

F∗(x,Du(x))dσF =

∫
Ωt

f(x)dvF ≤
∫µu(t)

0

f♯(s)ds. (17)

By applying the isoperimetric inequality (9) to the set Ωt, then using the
Cauchy-Schwarz inequality and relations (14) and (17), we obtain that

n2(ωnAVRF)
2
nVolF(Ωt)

2− 2
n ≤ PF(Γt)

2 =

(∫
Γt

dσF

)2

(18)

≤
∫
Γt

1

F∗(x,Du(x))
dσF ·

∫
Γt

F∗(x,Du(x))dσF

≤ −µ ′
u(t)

∫µu(t)

0

f♯(s)ds.

Hence, since µu(t) = VolF(Ωt), we have that

1 ≤ n−2(ωnAVRF)
− 2

nµu(t)
2
n
−2

(
−µ′

u(t)
) ∫µu(t)

0

f♯(s)ds.

Integrating from 0 to t and applying a change of variables yields

t ≤ n−2(ωnAVRF)
− 2

n

∫ t
0

µu(τ)
2
n
−2

(
−µ′

u(τ)
) ∫µu(τ)

0

f♯(s)dsdτ

= n−2(ωnAVRF)
− 2

n

∫VolF(Ω)

µu(t)
η

2
n
−2

∫η
0

f♯(s)dsdη.

Using the definition of the decreasing rearrangement u♯ : [0,VolF(Ω)] →
[0,∞) of u, we obtain that

u♯(ξ) ≤ n−2(ωnAVRF)
− 2

n

∫VolF(Ω)

ξ

η
2
n
−2

∫η
0

f♯(s)dsdη. (19)

Step 2. Now we turn to the Dirichlet problem defined on (Rn, H), namely,{
−∆H∗v = f⋆H in Ω⋆

H

v = 0 on ∂Ω⋆
H,

(P⋆)

where Ω⋆
H ⊂ Rn is a Wulff-shape such that

VolF(Ω) = AVRFVolH(Ω
⋆
H), (20)
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while f⋆H : Ω⋆
H → [0,∞) is the anisotropic rearrangement of f w.r.t. the norm

H, i.e.,
f⋆H(x) = f♯(AVRFωnH(x)n),

where f♯ is the decreasing rearrangement of f.
We can associate to (P⋆) the energy functional E : W1,2

0,H(Ω
⋆
H) → R, defined

as

E(v) = 1

2

∫
Ω⋆

H

H∗(∇v(x))2dvH −

∫
Ω⋆

H

f⋆H(x)v(x) dvH.

Let v : Ω⋆
H → R be the weak solution of problem (P⋆). By the maximum

principle, we have that v is nonnegative on Ω⋆
H.

Since the anisotropic rearrangements Ω⋆
H and f⋆H are constructed w.r.t. the

Minkowski norm H, we can suppose (by abuse of notation) that the solution
of (P⋆) satisfies

v(x) = v(H(x)) on Ω⋆
H.

Then, by relation (8), we have that

H∗(∇v(x)) = H∗(v ′(H(x))∇H(x)
)
= −v ′(H(x))H∗(∇H(x)) = −v ′(H(x)).

Consequently, we obtain that

E(v) = 1

2

∫
Ω⋆

H

v ′(H(x))2dvH −

∫
Ω⋆

H

f♯(AVRFωnH(x)n)v(H(x)) dvH

= nωn

{
1

2

∫R
0

v ′(ρ)2ρn−1dρ−

∫R
0

f♯(AVRFωnρ
n)v(ρ)ρn−1 dρ

}
,

where R > 0 is determined such that the Wulff-shape Ω⋆
H = WH(R) satisfies

(20).
Since v is the critical point of E , it follows that v satisfies the ordinary

differential equation

(v ′(ρ)ρn−1) ′ + f♯(AVRFωnρ
n)ρn−1 = 0, (21)

together with the boundary conditions

v(R) = v ′(0) = 0.

Integrating (21) from 0 to r and applying a change of variables yields

−rn−1v ′(r) =

∫ r
0

f♯(AVRFωnρ
n)ρn−1dρ
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= (AVRFnωn)
−1

∫AVRFωnrn

0

f♯(s)ds.

Then, integrating from r to R and using a change of variable again yields
that

v(r) = (AVRFnωn)
−1

∫R
r

ρ1−n

∫AVRFωnρn

0

f♯(s)dsdρ

= n−2(ωnAVRF)
− 2

n

∫AVRFVolH(Ω⋆
H)

AVRFωnrn
η

2
n
−2

∫η
0

f♯(s)dsdη.

Hence, we obtain that v = v⋆H and

v♯(ξ) = n−2(ωnAVRF)
− 2

n

∫AVRFVolH(Ω⋆
H)

AVRFξ

η
2
n
−2

∫η
0

f♯(s)dsdη.

where v♯ : [0,VolH(Ω
⋆
H)] → [0,∞) is the decreasing rearrangement of v.

Step 3. Using relations (19) and (20), we obtain that

u♯(AVRFξ) ≤ v♯(ξ), a.e. ξ ∈ [0,VolH(Ω
⋆
H)]. (22)

Keeping in mind the definitions of the anisotropic rearrangements u⋆
H and

v⋆H = v (see (11)), it follows that

u⋆
H(x) = u♯(AVRFωnH(x)n) ≤ v♯(ωnH(x)n) = v⋆H(x),

a.e. x ∈ Ω⋆
H, which concludes the proof of inequality (5).

Step 4. If u⋆
H(x) = v(x), for a.e. x ∈ Ω⋆

H, it follows that we have equality in
(22), which in turn implies that equality holds in (19), as well. Consequently,
we obtain that equality is achieved in the isoperimetric inequality (18) for
every level set Ωt. In particular, for t = 0 we have that

PF(∂Ω) = nω
1
n
n AVR

1
n

F VolF(Ω)
n−1
n .

Therefore, we can apply Theorem 3, which completes the proof.

Proof of Theorem 2.

Let u : Ω ⊂ M → R be the eigenfunction associated with the first eigenvalue
λ1(Ω) of (EP), and consider the anisotropic rearrangement function of u w.r.t.
the norm H, i.e., u⋆

H : Ω⋆
H ⊂ Rn → R.
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Given λ1(Ω) and u⋆
H, we can define the Dirichlet problem{

−∆H∗v = λ1(Ω)u⋆
H, in Ω⋆

H,

v = 0, on ∂Ω⋆
H.

(23)

If v : Ω⋆
H → R is a solution of problem (23), then, by Theorem 1, it follows

that
u⋆
H(x) ≤ v(x), a.e. x ∈ Ω⋆

H. (24)

Consequently, we have that∫
Ω⋆

H

u⋆
H(x)v(x)dvH ≤

∫
Ω⋆

H

v(x)2dvH. (25)

Multiplying by v the equation from (23), then integrating on Ω⋆
H and using

relation (7), we obtain that∫
Ω⋆

H

H∗(∇v(x))2dvH = λ1(Ω)

∫
Ω⋆

H

u⋆
H(x)v(x)dvH.

Therefore, by applying (25) and the variational characterization of the first
eigenvalue of problem (EP⋆) (see Shen [21, page 176]), it follows that

λ1(Ω) =

∫
Ω⋆

H

H∗(∇v(x))2dvH∫
Ω⋆

H

u⋆
H(x)v(x)dvH

≥

∫
Ω⋆

H

H∗(∇v(x))2dvH∫
Ω⋆

H

v(x)2dvH

≥ λ1 (Ω
⋆
H) ,

which completes the proof of (6).
If equality holds in (6), then we have equalities in all of the above inequal-

ities. In particular, we have equality in (24). Thus we can apply the rigidity
result of Theorem 1, which concludes the proof. □
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