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Abstract. In 2016, authors have studied Fourier series involving the
Aleph-function. In this paper, we make an application of integrals involv-
ing sine function, exponential function, the product of Kampé de Fériet
functions and the Aleph-function of two variables to evaluate Fourier
series. We also develop a multiple integral involving the Aleph-function
of two variables to make its application to derive a multiple exponen-
tial Fourier series. Some interesting particular cases and remarks are also
given.

1 Introduction and Preliminaries

Recently, I-function of two variables, [18], has been studied as a generalization
of the H-function of two variables developed by Gupta and Mittal [4] (see
also [13]). Singh and Joshi [20] investigated certain double integrals involving
the H-function of two variables. These integrals are of a highly general nature
and can be specialized to derive numerous known and new integral formulas,
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which hold significant importance in mathematical analysis and are potentially
useful in solving various boundary value problems. Srivastava and Singh [25]
extended these results to the I[-function of two variables as determined by
Sharma and Mishra [18].

More recently, Kumar [7] has introduced the Aleph-function of two vari-
ables (see also [19]), which is an extension of the I-function of two variables
by Sharma and Mishra [18]. The Aleph-function of two variables also gener-
alizes the Aleph-function of one variable introduced by Siidland et al. [26].
Systematic studies on the Aleph-function of one variable have been conducted
by Ram and Kumar [14], Kumar et al. [8, 9, 10, 11], Saxena et al. [16, 17] and
others.

The Aleph-function of two variables is defined using a double Mellin-Barnes
type integral as follows:
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0 (s1,52) and ¢; (s;) are defined by K. Sharma [19] (see also, [7]). The condi-
tions for the existence of equation (1) are provided as follows:
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The conditions for absolute convergence of double Mellin-Barnes type contour
integral (1) are as follows:

larg (z1)| < 2O and |arg (z2)] < ZA,

2 2

where
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Remark 1 If T, Ty, Tir — 1, the Aleph-function of two variables reduces to
the 1-function of two variables due to Sharma and Mishra [18].

Remark 2 If t, T/, Tir — 1 and r =1’ =1v" =1, the Aleph-function reduces
to the H-function of two variables introduced by Gupta and Mittal [4] (see also,

[13]).

The Kampé de Fériet hypergeometric function is represented as follows [1].

FF (X
KE (
H;H’
G Y

(e);(f ; ) Z Hk ()it T ( ) 12/:1 (f), x'y'

- (91)re [Ths i (), T

(10)
For further details, see Appell and Kampé de Fériet [1]. For brevity, we shall
use the following notations.
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where (oc)p denotes oy, -+ ,op; I'(a£b) represents T'(a+b),I'(a—b); h is
a positive integer: p < q and Re (w) > 0. We have the following results:
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where em)n:% ifm=n=#0,1im=n=0,0 else.

2 Main results

The integrals to be evaluate are:
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provided that R (w) > 0,p > 0,y > 0,01 > 0,02 > 0, |argzi| < 5O and
largzy| < A, where © and A are defined respectively by (8) and (9).

Theorem 2
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provided that R (wj) > 0,p; > 0,y; > 0,0‘j/ > O,crj” >0 forj=1,---,n,
largzi| < 5O and |argz;| < SA.

Proof. To prove (17), we express the Aleph-function of two variables into
the Mellin-Barnes contour integral with the help of (1) and the Kampé de
Fériet function in double series with the help of (10). Now, we change the
order of integration and summation, which is permissible under the conditions
stated with the integral and we evaluate the inner integral with the help of 1.
Now Interpreting the Mellin-Barnes contour integral in Aleph-function of two
variables, we obtain the desired result (17). The integral (18) is obtained by
the similar procedure. O

3 Exponential Fourier series

In this section, we give the exponential Fourier series of the product of Kampé
de Fériet hypergeometric function and the Aleph-function of two variables by
using the orthogonality property of exponential function.

Let

#(x) = (sinx)—! KEFF [ & (sinx)
(x) = (sinx) G:H:H B (SinX)zY
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f(x) is a continuous function and bounded variation with interval (0, 7t). Now,
multiplied by e!™ both sides in (19) and integrating it with respect x from 0
to 7 and then making an appeal to (15) and (17), we get
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Using (19) and (20), we obtain the following exponential Fourier series:

Theorem 3
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under the same conditions as (17).

4 Cosine Fourier series

In this section, we obtain the cosine Fourier series of the product of Kampé
de Fériet hypergeometric function and the Aleph-function of two variables by
using the orthogonality property (15) and (16).
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Integrating it with respect x from 0 to 7, we have
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Multiplying both sides in (22) by e™* and integrating it withrespect x from
0 to 7t and use the equations (15), (16) and (17), we obtain
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Using the equations (22), (23) and (24), we obtain the following cosine Fourier
series:
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under the same conditions as (17).

5 Sine Fourier series

In this section, we obtain the sine Fourier series of the product of Kampé
de Fériet hypergeometric function and the Aleph-function of two variables by
using the orthogonality property (15).
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(9);(M);(R') z; (sinx)?

3) (V) — (e 1 Ere [ «[sinx)?
3 (x) = (sinx)™~ Kevon < 8 (sinx)2Y




256 D. Kumar, F.Y. Ayant

= Z Cp sinpx. (26)
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Multiplying both sides in (26) e'™* and integrating it with respect x from 0 7t
and use the equations (15), and (17), we obtain
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Using the equations (26) and (27), we get the following sine Fourier series:

Theorem 5
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under the same conditions as (17).

6 Multiple exponential Fourier series

In this section, we obtain the multiple exponential Fourier series of the product
of Kampé de Fériet hypergeometric function and the Aleph-function of two
variables.

f(xq,--,xn) is a function that is continuous and of bounded variation in the
domain (0,7t) X - -+ x (0,71).
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We fix x1, - - - ,Xn_1 and multiplying both sides in (29) by e!™* and integrat-

ing with respect to x, from 0 to 7, we obtain
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Using (29) and (31), we obtain the multiple exponential Fourier series.
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under the same conditions that (18).
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7 Particular cases

By setting 1,---,Pfn = 0 in equations (18) and (32), we respectively obtain
the following multiple integral and multiple exponential Fourier series.

Corollary 1
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under the same conditions that (18) with B1,--+ ,Bn =0.
If ¢y = -+ = oy = 0 in equation (33), we obtain the following multiple

integral, defined as Corollary 3:
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Corollary 3
n
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Remark 3 We can also obtain the similar formulas

(i) with the multivariable H-function defined by Srivastava and Panda [23, 24],
for more details see also [3].

(ii) with the Aleph-function of one variable defined by Sidland et al. [26], see
Ayant and Kumar [2].

(iii) with the H-function defined by Inayat-Hussain [5, 6], see R.C. Singh and
Khan [21].

(iv) with the I-function defined by Saxena [15], see Singh and Khan [22].

8 Concluding Remarks

The Aleph-function of two variables and the Kampe de Fériet function pre-
sented in this paper are fundamentally simple in nature. By specializing the
parameters of these functions, we can derive various Fourier series expansions
related to other special functions, such as the I-function of two variables,
the H-function of two variables, the I-function, Fox’s H-function, Meijer’s G-
function, Wright’s generalized Bessel function, Wright’s generalized hyperge-
ometric function, MacRobert’s E-function, generalized hypergeometric func-
tions, the Bessel function of the first kind, the modified Bessel function, the
Whittaker function, the exponential function, the binomial function, and more.
Consequently, numerous unified integral representations can be obtained as
special cases of our results.

Conflicts of Interest: The authors declare that they have no conflicts of
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