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Abstract. We establish a new transcendence criterion of Ruban p-adic
continued fractions and we prove that a p-adic number whose sequence
of partial quotients is bounded in Qp and has a stammering continued
fraction expansion is either quadratic or transcendental where p is a
prime number.

1 Introduction

Continued fractions have a crucial role in number theory. In fact, the contin-
ued fraction expansion of algebraic numbers is considered an open and difficult
problem, as mentioned by Khintchine [5] in his conjecture, which is classified
among the complicated questions in number theory. It remains difficult to give
explicit and total answers, however, many authors have been able to establish
several continued fraction transcendence criteria. As an example, the first au-
thor to give examples of transcendental continued fractions having bounded
partial quotients was Maillet [8]. After that, Baker [2] improved Maillet’s re-
sults using conditions that are simpler and more explicit.
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Throughout this paper, A denotes a countable set, called the alphabet. A
sequence a = (an)n≥1 whose elements are from A is identified by the infinite
word a1 . . . an . . .. The number of letters composing a finite word W on the
alphabet A is called the length of W which is denoted by |W|.
In 2013, Bugeaud [3] studied the case of stammering continued fractions

given by the following theorem:

Theorem 1 Let a = (an)n≥1 be a sequence of positive integers not ultimately
periodic, (Un)n≥1, (Vn)n≥1 and (Wn)n≥1 three sequences of finite words such
that:

i) For every n ≥ 1, the word WnUnVnUn is a prefix of the word a;

ii) The sequence
(

|Vn|

|Un|

)
n≥1

is bounded;

iii) The sequence
(
|Wn|

|Un|

)
n≥1

is bounded;

iv) The sequence (|Un|)n≥1 is increasing.

Let

(
pn

qn

)
n≥1

denote the sequence of convergents to the real number α =

[0, a1, . . . , an, . . .]. Assume that the sequence (q
1
n
n )n≥1 is bounded. Then, α is

transcendental.

There exists a similar theory of continued fractions in the p-adic number field
Qp. In 1968, Schneider [12] gave an algorithm of p-adic continued fraction
expansion. After two years, Ruban [10] defined another definition which is more
alike the real case. Ever since, a lot of authors studied properties of Ruban’s
continued fractions. For instance, Ubolsri, Laohakosol, Deze and Wang [7, 4,
13, 14] established multiple Ruban continued fractions transcendence criteria.
Add to that, Ooto [9] showed that, for the Ruban continued fractions, the
analogue of Lagrange’s theorem is not true.
The aim of this paper is to study Bugeaud result’s analogue, previously

stated, for the p-adic continued fractions. The structure of this paper is as
follows. In Section 2, we introduce the field of p-adic numbers Qp, the p-
adic absolute value, the Ruban continued fractions and describe some of their
fundamental properties. In Section 3, we give our transcendance criterion in
Qp as well as its proof. Finally, we close by giving an example to highlight the
significance and influence of our finding.
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2 Continued fractions of p-adic numbers

Let p be a prime number. We denote by Qp the field of p-adic numbers with

Qp =

∑
i≥j

bip
i/bi ∈ {0, . . . , p− 1}, j ∈ Z

 .

We also denote by Zp the ring of the p-adic integers of Qp where

Zp =

∑
i≥0

bip
i/bi ∈ {0, . . . , p− 1}

 .

The p-adic valution vp is defined as follows

vp : Q −→ Z ∪ {+∞}

α 7→ {
+∞ if α = 0,
inf{i/bi ̸= 0} otherwise.

The field of p-adic numbers Qp is equipped with the p-adic absolute value,
called ultrametric absolute value, normalized to satisfy |p|p = 1

p and defined

by |α|p =
1

pvp(α)
and |0|p = 0.

Let α ∈ Qp. Then, α can be written in the form

α = b−m
1

pm
+ b−m+1

1

pm−1
+ . . .+ b0 + b1p+ . . .

with m ∈ Z, b−m ̸= 0 and bi ∈ {0, . . . , p− 1}.
Define

[α]p = b−m
1

pm
+ b−m+1

1

pm−1
+ . . .+ b0,

as the p-adic floor part of α.
Set a0 = [α]p. If α ̸= a0, then α becomes

α = α0 = a0 +
1

α1
,

where α1 ∈ Qp, |α1|p ≥ p and [α1]p ̸= 0. In the same way, if α1 ̸= a1, with
a1 = [α1]p, then

α1 = a1 +
1

α2
,
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where α2 ∈ Qp. We continue the above process provided αn ̸= an := [αn]p.
Finally, it follows that α can be written as

α = a0 +
1

a1 +
1

. . . +
1

an−1 +
1

αn

,

where ak = [αk]p is called a partial quotient of α and αn is the nth complete
quotient of α.
We note α = [a0, . . . , an]p which is defined as the finite Ruban continued
fraction.
Otherwise, if we have α = [a0, . . . , an, . . .]p then it is called an infinite Ruban

continued fraction, where a0 ∈ Z
[
1
p

]
∩ [0, p) and an ∈ Z

[
1
p

]
∩ (0, p), ∀ n ≥ 1.

For an infinite Ruban continued fraction α = [a0, . . . , an, . . .]p, we define non-
negative rational numbers pn and qn by using recurrence equations as follows

p−1 = 1, q−1 = 0, p0 = a0, q0 = 1

and for any n ≥ 1, we have{
pn = anpn−1 + pn−2,

qn = anqn−1 + qn−2.

In Qp, pn and qn are not integers. Thus, we introduce the following notations:

Notation 1 For any n ≥ 1, we set{
p ′
n = |pn|ppn,

q ′n = |qn|pqn.

It is clear that p ′
n and q ′n are both integers.

The Ruban continued fraction has the following properties, for all n ≥ 0, we
have

�

pn

qn
= [a0, . . . , an]p,

� α = [a0, . . . , an−1, αn]p =
αnpn−1 + pn−2

αnqn−1 + qn−2
,

� pn−1qn − pnqn−1 = (−1)n.
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pn

qn
is called the nth convergent of α and we have in Qp, lim

n→+∞ pn

qn
= α.

Lemma 1 [13] Let α = [a0, . . . , an, . . .]p be a p-adic number. Let

(
pn

qn

)
n≥0

denote the sequence of convergents of α. Then, we have

� |qn|p = |a1 . . . an|p, ∀ n ≥ 1,

�

{
|pn|p = |a0 . . . an|p ∀ n ≥ 1, if a0 ̸= 0,
|p1|p = 1, |pn|p = |a2 . . . an|p ∀ n ≥ 2, otherwise

� |qn|p ≥ pn, ∀n ≥ 1,

�

{
|pn|p ≥ pn, if a0 ̸= 0,
|pn|p ≥ pn−1, otherwise

∀n ≥ 1

�

{
|qn|p < |qn+1|p,

|pn|p < |pn+1|p,
∀n ≥ 0

�

∣∣∣∣α−
pn

qn

∣∣∣∣
p

< |qn|
−2
p , ∀ n ≥ 0.

Lemma 2 [9] If β = [b0, . . . , bn, . . .]p is a Ruban continued fraction having
the same first (n+ 1) partial quotients as α = [a0, . . . , an, . . .]p, then

|α− β|p ≤ |qn|
−2
p .

Wang [13] and Laohakosol [6] gave a characterization of rational numbers
having Ruban continued fractions as follows.

Proposition 1 Let α be a p-adic number. Then α is rational if and only if
its Ruban continued fraction expansion is finite or ultimately periodic with a
period equal to p− p−1.

3 Results

The purpose of our main result is to deal with stammering p-adic continued
fractions with bounded partial quotients in Qp.
Let a = (ai)i≥1 be a sequence of elements from an alphabet A. We say that

a satisfies Condition (⋆) if a is not ultimately periodic and if there exist two
sequences of finite words (Un)n≥1 and (Vn)n≥1 such that:
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i) For every n ≥ 1, the word UnVnUn is a prefix of the word a;

ii) The sequence
(

|Vn|

|Un|

)
n≥1

is bounded;

iii) The sequence (|Un|)n≥1 is increasing.

We denote by A = max{ai/i ≥ 1} and B = A+
√
A2+4
2 .

We begin now by our main result given by the following theorem:

Theorem 2 Let p be a prime number. Let a = (ai)i≥1 be a sequence of ra-

tional numbers in Z
[
1
p

]
∩ (0, p) not ultimately periodic satisfying Condition

(⋆) and α = [0, a1, . . . , ai, . . .]p be a p-adic number. Assume that −vp(ai) is
bounded. If

logB

log p
<

1

4

then α is either quadratic or transcendental.

We show an immediate consequence of Theorem 2.

Corollary 1 Let p ≥ 7 be a prime number. Let a = (ai)i≥1 be a sequence of

rational numbers in Z
[
1
p

]
∩ (0, p) not ultimately periodic such that −vp(ai)

is bounded. If A ≤ 1 then the p-adic number α = [0, a1, . . . , ai, . . .]p is either
quadratic or transcendental.

The primary tool used for the proof of Theorem 2 is the following version
of the Schmidt Subspace Theorem, established by Schlickewei [11], which is
recalled below:

Theorem 3 [11] Let p be a prime number, L1,∞, . . . , Lm,∞ be m linearly inde-
pendent forms in the variable x = (x1, . . . , xm) with real algebraic coefficients.
Let L1,p, . . . , Lm,p be m linearly independent forms with algebraic p-adic co-
efficients and in the same variable x = (x1, . . . , xm) and let ε > 0 be a real
number. Then, the set of solutions x ∈ Zm of the inequality:

m∏
i=1

(|Li,∞(x)||Li,p(x)|p) ≤ (max{|x1|, . . . , |xm|})
−ε

lies in finitely many proper subspaces of Qm.

The following lemma is also required for the proof of Theorem 2.



On stammering p-adic Ruban continued fractions 225

Lemma 3 [1] Suppose that ai ∈ Q∗
+ and {ai/i ∈ N} is bounded. Set A =

max{ai/i ∈ N} and B = A+
√
A2+4
2 . Then, for all n ≥ 0, we have

pn ≤ Bn+1 and qn ≤ Bn.

Proof. By induction on n. □

Proof of Theorem 2. Assume that the p-adic number α = [0, a1, . . . , ai, . . .]p
is algebraic of degree at least three. Set un = |Un| and vn = |Vn|, for n ≥ 1.
α admits infinitely many good quadratic approximants, set then the quadratic
number αn = [0,Un, Vn]p = [0,Un, Vn, Un, Vn, . . .]p.
Since α and αn have the same first (2un + vn + 1) partial quotients, then we
get from Lemma 2 that

|α− αn|p ≤ |q2un+vn |
−2
p . (1)

Furthermore, αn is a root of the polynomial

Pn(X) = qun+vnX
2 − (pun+vn − qun+vn−1)X− pun+vn−1.

Since |α|p ≤ 1 and |αn|p ≤ 1 then |pi|p ≤ |qi|p, for i ≥ 1. We have

|qun+vnα− pun+vn |p < |qun+vn |
−1
p (2)

likewise,
|qun+vn−1α− pun+vn−1|p < |qun+vn−1|

−1
p . (3)

Because αn is a root of the polynomial Pn(X) then Pn(αn) = 0. Using (1), (2)
and (3), we obtain

|Pn(α)|p = |Pn(α) − Pn(αn)|p

= |(qun+vn(α− αn)(α+ αn) − (pun+vn − qun+vn−1)(α− αn)|p

= |α− αn|p|(qun+vn(α+ αn) − (pun+vn − qun+vn−1)|p

≤ |qun+vn |p|q2un+vn |
−2
p . (4)

We consider the four following independent linear forms with algebraic p-adic
coefficients 

L1,p(X1, X2, X3, X4) = α2X1 − α(X2 − X3) − X4,

L2,p(X1, X2, X3, X4) = αX1 − X2,

L3,p(X1, X2, X3, X4) = αX3 − X4,

L4,p(X1, X2, X3, X4) = X3,
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and the following independent linear forms with algebraic real coefficients

Li,∞(X1, X2, X3, X4) = Xi, for 1 ≤ i ≤ 4.

Keeping Notations 1, we evaluate the product of these linear forms on the
quadruple Xn = (X1, X2, X3, X4) with X1 = q ′un+vn , X2 = p ′

un+vn , X3 = q ′un+vn−1

and X4 = p ′
un+vn−1, we get from (2), (3) and (4)

4∏
i=1

|Li,p(Xn)|p ≤ 1

|qun+vn |
4
p|q2un+vn |

2
p

.

Hence, from Lemma 1 we get

4∏
i=1

|Li,p(Xn)|p ≤ 1

|qun+vn |
4
pp

2(2un+vn)
≤ 1

|qun+vn |
4
pp

un+vn
.

In addition, we have

4∏
i=1

|Li,∞(Xn)|∞ = |q ′un+vn |∞|p ′
un+vn |∞|q ′un+vn−1|∞|p ′

un+vn−1|∞
≤ |qun+vn |

4
pq

4
un+vn .

By Lemma 3, we obtain

4∏
i=1

|Li,∞(Xn)|∞ ≤ |qun+vn |
4
pB

4(un+vn).

This easily implies that

4∏
i=1

(|Li,∞(Xn)|∞ |Li,p(Xn)|p) ≤
B4(un+vn)

pun+vn
.

Since −vp(ai) ≤ k, ∀ i ≥ 1, then we have

|Xn|
ε∞ = |qun+vn |

ε
p qε

un+vn ≤ pkε(un+vn)Bε(un+vn).

It follows then that

|Xn|
ε∞

4∏
i=1

(|Li,∞(Xn)|∞ |Li,p(Xn)|p) ≤
(

B4+ε

p1−kε

)un+vn

≤

[(
B4+ε

p1−kε

)1+ vn
un

]un

.
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From the hypothesis of Theorem 2, by choosing ε = 1
k2

and the fact that 4k2+1
k(k−1)

decreases to 4 as k grows, we can choose k large enough in such a way that
−vp(ai) ≤ k, ∀ i ≥ 1 and log p

logB > 4k2+1
k(k−1) . Therefore, we obtain

4∏
i=1

(|Li,∞(Xn)|∞ |Li,p(Xn)|p) ≤ |Xn|
−ε∞ .

It follows then from Theorem 3 that the points Xn = (X1, X2, X3, X4) lie in a
finite number of proper subspaces of Q4. Hence, there exist a non-zero integer
quadruple (x1, x2, x3, x4) and an infinite set of distinct positive integers N1

such that

x1X1 + x2X2 + x3X3 + x4X4 = 0.

By this equation, we get

x1qun+vn + x2pun+vn + x3qun+vn−1 + x4pun+vn−1 = 0. (5)

It is clear that (x1, x2) ̸= (0, 0) since otherwise, by letting n tend to infinity
along N1, we would get that α is rational.
Dividing (5) by qun+vn , we get

x1 + x2
pun+vn

qun+vn

+ x3
qun+vn−1

qun+vn

+ x4
pun+vn−1

qun+vn−1
.
qun+vn−1

qun+vn

= 0. (6)

By letting n tend to infinity along N1, we obtain from (6) that

x1 + x2α+ x3β+ x4αβ = 0,

with β := lim
n→+∞ qun+vn−1

qun+vn
. We can observe that β is irrational since otherwise,

α would be rational.
For every sufficiently large integer n in N1, we obtain

|qun+vnβ− qun+vn−1|p ≤ |qun+vn−1|
−1
p . (7)

Let us consider now the six linearly independent forms with algebraic real and
p-adic coefficients

L ′
1,p(Y1, Y2, Y3) = αY1 − Y3,

L ′
2,p(Y1, Y2, Y3) = βY1 − Y2,

L ′
3,p(Y1, Y2, Y3) = Y2.

L ′
i,∞(Y1, Y2, Y3) = Yi, for 1 ≤ i ≤ 3,
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Keeping Notations 1, we evaluate the product of these linear forms on the
triple Yn = (Y1, Y2, Y3) with Y1 = q ′un+vn , Y2 = q ′un+vn−1 and Y3 = p ′

un+vn . We
get from (7) and Lemma 3 that

|Yn|
ε∞

3∏
i=1

(
∣∣L ′

i,∞(Yn)
∣∣∞ ∣∣L ′

i,p(Yn)
∣∣
p
) ≤

(
B3+ε

p1−kε

)un+vn

≤

[(
B4+ε

p1−kε

)1+ vn
un

]un

.

From the hypothesis of Theorem 2, we can choose ε = 1
k2

such that for n large
enough, we get

3∏
i=1

(
∣∣L ′

i,∞(Yn)
∣∣∞ ∣∣L ′

i,p(Yn)
∣∣
p
) ≤ |Yn|

−ε∞ .

It follows then from Theorem 3 that the points Yn = (Y1, Y2, Y3) lie in a finite
number of proper subspaces of Q3. Hence, there exist a non-zero integer triple
(y1, y2, y3) and an infinite set of distinct positive integers N2 ⊂ N1 such that

y1Y1 + y2Y2 + y3Y3 = 0.

From this equation, we obtain

y1qun+vn + y2qun+vn−1 + y3pun+vn = 0. (8)

Dividing (8) by qun+vn and letting n tend to infinity along N2, we obtain

y1 + y2β+ y3α = 0. (9)

To get another equation connecting α and β, let us consider the six linearly
independent forms with algebraic real and p-adic coefficients

L ′′
1,p(Z1, Z2, Z3) = αZ2 − Z3,

L ′′
2,p(Z1, Z2, Z3) = βZ1 − Z2,

L ′′
3,p(Z1, Z2, Z3) = Z2.

L ′′
i,∞(Z1, Z2, Z3) = Zi, for 1 ≤ i ≤ 3,

Keeping Notations 1, we evaluate the product of these linear forms on the
triple Zn = (Z1, Z2, Z3) with Z1 = q ′un+vn , Z2 = q ′un+vn−1 and Z3 = p ′

un+vn−1.
We get from (7) and Lemma 3 that

|Zn|
ε∞

3∏
i=1

(
∣∣L ′′

i,∞(Zn)
∣∣∞ ∣∣L ′′

i,p(Zn)
∣∣
p
) ≤

(
B3+ε

p1−kε

)un+vn

≤

[(
B4+ε

p1−kε

)1+ vn
un

]un

.
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From the hypothesis of Theorem 2, we can choose ε = 1
k2

such that for n large
enough, we obtain

3∏
i=1

(
∣∣L ′′

i,∞(Zn)
∣∣∞ ∣∣L ′′

i,p(Zn)
∣∣
p
) ≤ |Zn|

−ε∞ .

It follows then from Theorem 3 that the points Zn = (Z1, Z2, Z3) lie in a finite
number of proper subspaces of Q3. Hence, there exist a non-zero integer triple
(z1, z2, z3) and an infinite set of distinct positive integers N3 ⊂ N2 such that

z1Z1 + z2Z2 + z3Z3 = 0.

By this equation, we get

z1qun+vn + z2qun+vn−1 + z3pun+vn−1 = 0. (10)

Dividing (10) by qun+vn−1 and letting n tend to infinity along N3, we obtain

z1
β

+ z2 + z3α = 0. (11)

We deduce from (9) and (11) that

(y3α+ y1)(z3α+ z2) = y2z1.

As we have β is irrational, we obtain from (9) and (11) that y3z3 ̸= 0. Thus,
α is an algebraic number of degree at most two, which is a contradiction with
the assumption that α has a degree at least three. Consequently, α is tran-
scendental and the proof of Theorem 2 is reached.

Proof of Corollary 1.

We have p ≥ 7, therefore p > ϕ4 ≃ 6, 85, with ϕ is the golden ratio.
Besides, we have A ≤ 1, then B ≤ ϕ. Thus we obtain from Theorem 2 that

4 <
log p

logB
. This brings us to the end of the proof.

Example 1 Let p = 7. Let (An)n≥0 be a sequence of blocks defined as follows: A0 = 1 1
p ,

An = An−1 An−1 1 . . . 1︸ ︷︷ ︸
n times

An−1.
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An−1 is a prefix of An, then set A = lim
n→+∞An. As stated in Corollary 1,

(An)n≥0 satisfies Condition (⋆). Therefore, α = [0,A]7 is either quadratic or
transcendental in Q7.
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