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Abstract. In this paper, we define a stochastic integral of an antici-
pating integrand based on Ayed and Kuo’s approach [1]. This provides a
new concept of stochastic integration of non-adapted processes. In addi-
tion, under some conditions, we prove that our anticipating integral is a
near-martingale. Furthermore, we deal with some particular cases when
the Hurst parameter H > 3
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1 Introduction

Let B(t) be a Brownian motion and let {Ft; 0 ≤ t ≤ T} denote a filtration
such that:

1. f(t) is an Ft-adapted stochastic process, i.e. f(t) is Ft-measurable for
each 0 ≤ t ≤ T .

2. g(t) is instantly independent with respect to Ft, i.e. g(t) and {Ft} are
independent for each 0 ≤ t ≤ T .

Ayed and Kuo [1] defined the anticipating stochastic integral of the product
f(t)g(t) as:∫ T

0

f(t)g(t)dB(t) = lim
∥∆n∥→0

n∑
i=1

f(ti−1)g(ti)(B(ti) − B(ti−1)) (1)

provided that the convergence in probability exists, where ∆n = {0 = t0 <

t1 < .... < tn = T } is the partition of interval [0, T ].
Notice that the evaluation points are the left endpoints of subintervals for the
first process and the right endpoints for the second one.
This new approach has attracted the attention of many researchers. The

study of a class of stochastic differential equations with anticipating initial
conditions was treated in Khalifa et al. [7]. After that, the concept of near-
martingale property of anticipating stochastic integral was introduced in Kuo

et al. [8]. It has been proved that both

∫ t
0

f(B(s))g(B(T) − B(s))dB(t) and∫ T
t

f(B(s))g(B(T)−B(s))dB(t) are near-martingales with respect to the forward

filtration Ft = σ{B(s); 0 ≤ s ≤ t} and the backward filtration F (t) = σ{B(T) −
B(s); 0 ≤ s ≤ t}, respectively. Interesting literature on the near martingale
property can be found in Hwang et al. [6] and Hibino et al. [5]. Recently,
Belhadj et al. [2] introduced the anticipating stochastic integral with respect
to sub-fractional Brownian motion and discussed the conditions under which
this integral satisfies the near-martingale property.
Next, we consider the process

MH(t) = MH
t (a, b) = aB(t) + bBH(t), t ∈ R+, a, b ∈ R∗, (2)

where B and BH are independent standard and fractional Brownian mo-
tions, respectively. The latter is the centered Gaussian process with a Hurst
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parameter H ∈ (0, 1) and covariance function:

RH(s, t) =
1

2
[t2H + s2H + |t− s|2H], s, t ≥ 0. (3)

The linear combination MH is the so-called mixed fractional Brownian motion
(mfBm). This process has been firstly introduced by Chridito [3] to present
an interesting stochastic model in financial markets (by taking b = 1). The
stochastic properties of mfBm have been studied by Zili [13].
It is worth pointing out that, for H > 3

4 , the process M
H is a semimartingale

which is equivalent (in distribution) to aB (Chredito [3]), and for H < 1
4 , M

H

is equivalent (in distribution) to a bBH (Van Zanten [10]). Furthermore, we
mention that for H < 3

4 , the mixed fBm is not a semi-martingale. Therefore,
the techniques of stochastic calculus with respect to fBm should be employed
while dealing with a mixed fBm. In the case where H > 1

2 , we can use the
pathwise approach that allows us to write the integral as a limit of Riemann
sum (Young [11], Zähle[12], and Feyel and Pradelle [4] and the references
therein). In our study, we use this approach in order to give a definition of the
anticipating integral with respect to a mixed fractional Brownian motion MH

and study the near-martingale property.

1.1 Practical application of our research work

Our study has a notable application in finance and economy. For instance, we
consider a financial stock market where the process f(t) is a quantity of the
stock at time t, adapted to Ft, the σ-field represents information available by
time t, and B(t) (the standard Brownian motion) characterizes the stock price

at time t. The integral

∫ T
0

f(t)dB(t) describes the change of the stock market

wealth over the trading period [0, T ]. By dividing the time integral into the

subintervals [ti−1, ti],

∫ T
0

f(t)dB(t) can be computed as a limit of Riemann-like

sums of f(ti−1)(B(ti) − B(ti−1)). The use of the left endpoint of subintervals
comes from the fact that f(t) depends on the past and present but not the
future. If one comes across the case where the quantity of stock f(t) is inde-
pendent of past and present, i.e for each t ∈ [0, T ]), f(t) is Ft-independent then
the future change in stocks can be known and one can use the right endpoint
ti as an evaluation point for the above stochastic integral. On the other hand,
it has been interesting, in recent years, to divide the noise of stock price into
two parts: the first describes the stochastic behavior of stock markets which
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is considered as a white noise, the other one represents the random state of
the stock price which has a long memory, this motivates researchers to take
such a situation into consideration and to provide a mixture of processes in
accordance with the requirements of the phenomena.
Furthermore, over the past, there has been an extensive studies on option

pricing. It has been shown that the distributions of logarithmic returns of
financial assets generally exhibit properties of self-similarity and long-term
dependence, and since the fractional Brownian motion has these two impor-
tant properties, it has the ability to capture the behavior of the underlying
asset price. The Black-Scholes model supposed that the volatility of the un-
derlying security is constant, while stochastic volatility models classified the
price of the underlying security as a random variable or, more generally, a
stochastic process. In turn, the dynamics of this stochastic process can be
driven by another process (usually by Brownian motion), see Thao et al. [9].
In a stochastic volatility model, the volatility randomly changes according to
stochastic processes. In our paper, the process used is the mixture between
fBm (fractional Brownian motion) and Bm(Brownian motion). The current
study helps to solve the stochastic differential equations (SDEs) driven by a
mixed fractional Brownian motion in the case of no adapted integrands which
contributes to the resolution of the phenomena linked to volatility in the above
situations.
This paper is arranged as follows. In Section 2, we present some preliminaries

on mixed fractional integral as well as pathwise integral with respect to mfBm.
In Section 3, we introduce a definition of stochastic integral of a product
of instantly independent process and adapted process with respect to MH,
H > 1

2 as a Riemann sum. Then, we discuss the near-martingale property of
our anticipating integral. Section 4 is devoted to some particular cases when
H > 3

4 . We conclude the paper in Section 5.

2 Preliminaries on mixed fractional Brownian mo-
tion

The fBm (BH(t); t ≥ 0) with a Hurst parameter H ∈ (0, 1) is a centered
Gaussian process with covariance function given by Equation (3). The main
properties of BH are self-similarity and the stationary of its increments, it
presents a long-range dependence when H > 1

2 . For H = 1
2 , B

H coincides with
the standard Brownian motion.
Note that the mixture MH reserves several properties of the fBm. We recall in
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this section some basic facts on mixed fractional Brownian motion, the proofs
are detailed in Zili [13].

Lemma 1 (Zili [13]). The mfBm satisfies the following properties:

� MH is a centered gaussian process;

� Second moment: for all t ∈ R+; E((MH
t (a, b))

2) = a2t+ b2t2H.

� Covariance function: for all t, s ≥ 0;

Cov(MH
t (a, b),M

H
s (a, b)) = a2min(t, s) +

b2

2

(
t2H + s2H − |t− s|2H

)
.

� The increments of the mfBm are stationary.

� Mixed self similarity:
(
MH

αt(a, b)
)
t≥0

and
(
MH

t (aα
1
2 , bα)

)
t≥0

have the

same distribution.

� Hölder continuity: for all T > 0 and β < 1
2 ∧ H, the mfBm has a modi-

fication which sample paths having a Hölder continuity, with order β on
the interval [0; T ] such that, for every α > 0 :

E
(∣∣∣MH(t) −MH(s)

∣∣∣α) ≤ Cα|t− s|α(
1
2
∧H), t, s ∈ [0; T ],

where Cα is a positive constant.

Feyel and Pradelle [4] showed that if f is α-Hölder, g is β-Hölder with

α + β > 1, then the Riemann-Stieltjes integral

∫ T
0

f(s)dg(s) exists and is β-

Hölder. Moreover, for every 0 < ε < α+ β− 1, we have∣∣∣∣ ∫ T
0

f(s)dg(s)

∣∣∣∣ ≤ C(α,β) ∥ f ∥[0,T ],α∥ g ∥[0,T ],β T 1+ε. (4)

Since mfBm has Hölder paths, then it is possible to define the stochastic
integral for processes with respect to it in pathwise sense. Particularly, if a
process (ut)t∈[0,T ] has α-Hölder paths for some α > 1−H, then the Riemann-

Stieltjes integral

∫ t
0

urdM
H
r is well defined and has β-Hölder paths, for every

β < H (see Young [11] and Zähle [12]).
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3 New anticipating integral

Based on the concept presented above, we give a definition of the stochastic
integral of the product f(t)g(t), following Definition 2.2 given in Kuo and Ayed
[1], by taking the mfBm MH as an integrator. Formally, we have

Definition 1 Let MH(t), H > 1
2 be a mixed fractional Brownian motion and

let Ft denote the σ-field generated by {MH(t), t ≥ 0}. For an adapted stochas-
tic process f(t) with respect to the filtration Ft, and an instantly indepen-
dent stochastic process g(t) with respect to the same filtration. We define the
stochastic integral of f(t)g(t) as:∫ T

0

f(t)g(t)dMH(t) = lim
∥∆n∥→0

n∑
i=1

f(ti−1)g(ti)(M
H(ti) −MH(ti−1)) (5)

provided that the convergence in probability exists.

It is quite clear that the anticipating integral (5) is not a Ft-martingale. Thus,
we have to check if this latter satisfies the near-martingale property presented
in Kuo et al. [8].

Definition 2 (Kuo et al. [8]). Let E|Xt| < ∞ for all t. We will say that Xt is
a near-martingale with respect to a forward filtration {Ft} if

E[Xt − Xs/Fs] = 0, ∀s < t. (6)

On the other hand, we say that Xt is a near-martingale with respect to a
backward filtration {F (t)} if

E[Xt − Xs/F (t)] = 0, ∀s < t. (7)

Next, we have to prove that the processes Xt and Yt defined by (8) and (13)
respectively, are near-martingales for an adapted process f(t) and centered
instantly independent process g(t) with respect to the forward filtration

Ft = σ{B(s),MH(s); 0 ≤ s ≤ t},

Theorem 1 Let Ft be a forward filtration and let f(x) and g(x) be continuous
functions such that:

1. E
[ ∫ T

0

f(B(t))g(B(T) − B(t))dMH(t)
]
< +∞,
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2. E
[
g(B(T) − B(t))

]
= 0.

Then,

Xt =

∫ t
0

f(B(s))g(B(T) − B(s))dMH(s); 0 ≤ t ≤ T (8)

exists and is a near-martingale with respect to the forward filtration Ft.

Proof. We need to verify that E[Xt − Xs/Fs] = 0, for 0 ≤ s ≤ t. Notice that

Xt − Xs =

∫ t
s

f(B(u))g(B(T) − B(u))dMH
u .

Let ∆n = {s = t0 < t1 < ... < tn−1 < tn = t} be a partition of the interval [s, t]
and let ∆MH

i = MH(ti) −MH(ti−1). Then, we have:

E[Xt − Xs/Fs] = E

[ ∫ t
s

f(B(u))g(B(T) − B(u))dMH(u)/Fs

]
. (9)

Making use of Definition 1, we get

E[Xt − Xs/Fs] = E

[
lim

∥∆n∥→0

n∑
i=1

f(B(ti−1))g(B(T) − B(ti))∆M
H
i /Fs

]
= lim

∥∆n∥→0

n∑
i=1

E

[
f(B(ti−1))g(B(T) − B(ti))∆M

H
i /Fs

]
.

(10)
It is sufficient to show that every component of the last sum is zero. Recall

that f(B(ti−1)) is Fti−1
-measurable and g(B(T)−B(ti)) is independent of Fti−1

.
Using the properties of conditional expectation, we obtain

E

[
f(B(ti−1))g(B(T) − B(ti))∆M

H
i /Fs

]
= E

[
E
[
f(B(ti−1))g(B(T) − B(ti))∆M

H
i /Fti

]
/Fs

]
= E

[
f(B(ti−1))∆M

H
i E

[
g(B(T) − B(ti))/Fti

]
/Fs

]
.

(11)

Making use of the independence of Brownian increments and the zero expec-
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tation of g(B(T) − B(ti)), we get

E

[
f(B(ti−1))g(B(T) − B(ti))∆M

H
i /Fs

]
= E

[
f(B(ti−1))∆M

H
i E

[
g(B(T) − B(ti))

]
/Fs

]
= E

[
g(B(T) − B(ti))

]
E

[
f(B(ti−1))∆M

H
i /Fs

]
= 0.

(12)

Thus, Xt is a near-martingale with respect to Ft. □

Theorem 2 Let Ft be a forward filtration and let f(x) and g(x) be continuous
functions such that:

1. E
[ ∫ T

0

f(B(t))g(B(T) − B(t))dMH(t)
]
< +∞

2. E
[
g(B(T) − B(t))

]
= 0.

Then,

Yt =

∫ T
t

f(B(s))g(B(T) − B(s))dMH(s), 0 ≤ t ≤ T (13)

exists and is a near-martingale with respect to the forward filtration Ft.

Proof. For 0 ≤ s < t ≤ T , we have

Yt − Ys = −

∫ t
s

f(B(u))g(B(T) − B(u))dMH(u) = −(Xt − Xs),

where Xt is given in Equation (8). Thus, Yt is a near-martingale with respect
to Ft. □

Next, we prove that Xt and Yt given in Equations (14) and (17) respectively,
are near-martingales for a centered adapted process f(t), and instantly inde-
pendent process g(t) with respect to the backward filtration

F (t) = σ{B(T) − B(s),MH(T) −MH(s), 0 ≤ s ≤ t}.

Theorem 3 Let F (t) be a backward filtration and let f(x) and g(x) be contin-
uous functions such that:

1. E
[ ∫ T

0

f(B(t))g(B(T) − B(t))dMH(t)
]
< +∞,
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2. E
[
f(B(t))

]
= 0.

Then,

Xt =

∫ t
0

f(B(s))g(B(T) − B(s))dMH(s), 0 ≤ t ≤ T (14)

exists and is a near-martingale with respect to the backward filtration F (t).

Proof. According to the proof of Theorem 1, we have to show that

E

[
f(B(ti−1))g(B(T) − B(ti))∆M

H
i /F (t)

]
= 0,

where 0 ≤ s < t ≤ T and s = t0 < t1 < .... < tn−1 < tn = t.
It is well known that the increments MH

T −MH
ti−1

and MH
T −MH

ti
are F (ti−1)-

measurable, then we have

∆MH
i = (MH

T −MH
ti−1

) − (MH
T −MH

ti
) ∈ F (ti−1).

By the F (ti−1)- measurability of ∆MH
i and the conditional expectation prop-

erties, we obtain

E

[
f(B(ti−1))g(B(T) − B(ti))∆M

H
i /F (t)

]
= E

[
E
[
f(B(ti−1))g(B(T) − B(ti))∆M

H
i /F (ti−1)

]
/F (t)

]
= E

[
g(B(T) − B(ti))∆M

H
i E

[
f(B(ti−1))/F (ti−1)

]
/F (t)

]
.

(15)
Furthermore, B(T)−B(s) is independent of Fti−1

and measurable with respect
to F (ti−1) for each s > ti−1. This involves the independence of F (ti−1) and Fti−1

.
Consequently, f(B(ti−1)) is independent of F (ti−1) since it is Fti−1

measurable.
Hence,

E

[
f(B(ti−1))g(B(T) − B(ti))∆M

H
i /F (t)

]
= E

[
g(B(T) − B(ti))∆M

H
i E

[
f(B(ti−1))

]
/F (t)

]
= E

[
f(B(ti−1))

]
E

[
g(B(T) − B(ti))∆M

H
i /F (t)

]
= 0.

(16)

□
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Theorem 4 Let F (t) be a backward filtration and let f(x) and g(x) be contin-
uous functions such that:

1. E
[ ∫ T

0

f(B(t))g(B(T) − B(t))dMH(t)
]
< +∞,

2. E
[
f(B(t))

]
= 0.

Then,

Yt =

∫ T
t

f(B(s))g(B(T) − B(s))dMH(s), 0 ≤ t ≤ T (17)

exists and is a near-martingale with respect to the backward filtration F (t).

Proof. From Theorem 3, we have Yt − Ys = −(Xt − Xs). This completes the
proof of the Theorem. □

4 Some results in the case where H ∈
(
3
4
, 1
)

This section presents some results establishing the relationship between stan-
dard Bm and mixed-fBm in the case where H > 3

4 . We show that our anticipat-
ing integral with respect to MH can be written as a Riemann sum depending
on standard Bm satisfying the near martingale property.

Proposition 1 Let MH(t);H > 3
4 be a mixed fractional Brownian motion

and Ft = σ{MH(t), t ≥ 0}. For an Ft-adapted stochastic process f(t) and an
Ft-instantly independent stochastic process g(t), we have∫ T

0

f(t)g(t)dMH(t) = a lim
∥∆n∥→0

n∑
i=1

f(ti−1)g(ti)(B
H(ti) − BH(ti−1)) (18)

provided that the convergence in probability exists.

Proof. The proof is a direct result of Theorem 1.7 of Cheridito [3]. □

Proposition 2 Let Ft be a forward filtration, F (t) denotes the backward fil-
tration and let f(x) and g(x) be continuous functions such that:

E
[ ∫ T

0

f(B(t))g(B(T) − B(t))dMH(t)
]
< +∞.
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Then,

Xt =

∫ t
0

f(B(s))g(B(T) − B(s))dMH(s); 0 ≤ t ≤ T, (19)

and

Yt =

∫ T
t

f(B(s))g(B(T) − B(s))dMH(s); 0 ≤ t ≤ T (20)

exist and are near-martingales with respect to Ft and F (t) respectively.

Proof. The proof of this proposition is based on Theorem 1.7 in Chridito [3]
and Theorems 3.5-3.8 given in Kuo et al. [8]. □

In what follows, we give some examples at which we evaluate some antici-
pating stochastic integrals with respect to mixed fractional Brownian motion
when H > 3

4 , using the result obtained in the Proposition 1.

Example 1 Consider the following integral∫ t
0

B(T)2dMH(s), 0 ≤ t ≤ T. (21)

The integrand B(T)2 is decomposed as

B(1)2 = [(B(T) − B(s))]2 + 2B(s)[B(T) − B(s)] + B(s)2. (22)

In addition, the integral converges in probability to

n∑
i=1

(
[(B(T)−B(si))]

2+2B(si−1)[B(T)−B(si)]+B(si−1)
2
)
(MH(si)−MH(si−1)).

As MH and aB are equivalent (in law), then the above sum can be expressed
as

a

n∑
i=1

(
[(B(T) − B(si))]

2 + 2B(si−1)[B(T) − B(si)] + B(si−1)
2
)
(B(si) − B(si−1)).

Therefore, we have∫ t
0

B(T)2dMH(s) = aB(T)2B(t) − 2aB(T)t, 0 ≤ t ≤ T.

In general, for any n ∈ N∗, it is easy to check that∫ t
0

B(T)ndMH(s) = aB(T)nB(t) − anB(T)n−1t, 0 ≤ t ≤ T.



216 A. Belhadj, A. Kandouci, A.A. Bouchentouf

Example 2 Consider the integrand B(s)B(T), equivalently,

B(s)(B(T) − B(s)) + B(s)2.

Then,∫ t
0

B(s)B(T)dMH(s)

= a lim
∥∆n∥→0

n∑
i=1

(
B(si−1)(B(T) − B(si)) + B(si−1)

2
)
(B(si) − B(si−1))

=
a

2
B(T)(B(t)2 − t) − a

∫ t
0

B(s)ds, 0 ≤ t ≤ T.

(23)
In the same manner, an integrand of the form ϕ(B(s))B(T) can be decomposed
as

ϕ(B(s))(B(T) − B(s)) + ϕ(B(s))B(s),

for any continuous function ϕ(x). Therefore, the integral∫ t
0

ϕ(B(s))B(T)dMH(s), 0 ≤ t ≤ T

converges in probability to

aB(T)

n∑
i=1

(ϕ(B(si−1))(B(si) − B(si−1)) − a

n∑
i=1

ϕ(B(si−1))(B(si) − B(si−1))
2,

which is equivalent to

aB(T)

∫ t
0

ϕ(B(s))dB(s) − a

∫ t
0

ϕ(B(s))ds.

Example 3 The integral∫ t
0

eB(T)dMH(s), 0 ≤ t ≤ T (24)

is the limit of the sum

eB(T)
n∑
i=1

e(B(si)−B(si−1))(M(si) −M(si−1)).
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Using Taylor series expansions of exponential function, Equation (24) con-
verges in probability to

aeB(T)
n∑
i=1

(
1− (B(si) − B(si−1)) −

1

2
(B(si) − B(si−1))

2

+o((B(si) − B(si−1))
2)(B(si) − B(si−1)).

Consequently,∫ t
0

eB(T)dMH(s) = aeB(T)(B(t) − t), 0 ≤ t ≤ T.

5 Conclusion

In this paper, we introduced an anticipating stochastic integral with respect
to a mixed fractional Brownian motion (mfBm) in the case where H > 1

2 ,

based on Ayed and Kuo’s approach [1]. This gives a new concept of stochastic
integration of non-adapted processes. Under some conditions, we showed that
our anticipating integral turns out to be a near-martingale. In addition, few
specific cases when H > 3

4 have been treated. The present study has a useful
application in many areas including finance and economy. For further works, it
will be interesting to deal with anticipating stochastic integrals with respect to
a weighted fractional Brownian motion and Lévy fractional Brownian motion.
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[6] C. R. Hwang, H. H. Kuo, K. Saitô and J. Zhai, Near-martingale prop-
erty of anticipating stochastic integration, Communications on Stochastic
Analysis. 11 (2017), 491–504.

[7] N. Khalifa, H. H. Kuo, Linear stochastic differential equations with an-
ticipating initial conditions, Communications on Stochastic Analysis, 7
(2013), 245–253.

[8] H. H. Kuo, A. Sae-Tang, B.Szozda, A stochastic integral for adapted
and instantly independent stochastic processes, In: Stochastic Processes,
Finance and Control: A Festschrift in Honor of Robert J Elliott (S. N.
Cohen, D. Madan, T. K. Siu and H. Yang, eds.), World Scientific, (2012),
53–71.

[9] H. T. P.Thao, T. H. Thao, Estimating Fractional Stochastic Volatility,
The International Journal of Contemporary Mathematical Sciences. 82
(38)(2012), 1861–1869.

[10] H. Van Zanten, When is a linear combination of independent fBm’s equiv-
alent to a single fBm, Stochastic processes and their applications, 117(1)
(2007), 57–70.

[11] L. C. Young, An inequality of the hölder type, connected with stieltjes
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