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Abstract. We utilize Hardy-Rogers contraction and CJM−contraction
in a C∗−algebra valued partial metric space to create an environment to
establish a fixed point.

Next, we present examples to elaborate on the novel space and val-
idate our result. We conclude the paper by solving a boundary value
problem and a matrix equation as applications of our main results which
demonstrate the significance of our contraction and motivation for such
investigations.

1 Introduction and preliminaries

Recently Chandok et al. [3] acquainted with the C∗−algebra valued partial
metric combining the notions of partial metric (Matthews [12]) and C∗−algebra
valued metric ( Ma et al. [10]). Tomar and Joshi [17] pointed out, by giving
explanatory examples that functions have different natures in different spaces
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and the consequences in C∗−algebra valued metric space can not be reduced
to their metric counterparts unless unital C∗−algebra, A = R. Further, Tomar
et al. [16] familiarised contractiveness and expansiveness in a newly introduced
space to establish a fixed point and utilized these to solve an integral equation
and an operator equation.

In the present work, we familiarize Hardy-Rogers contraction [6] and CJM−
contraction [5]. The basic idea comprises utilizing the non-negative elements
of an unital C∗−algebra (A) as an alternative to a set of real numbers. Our
outcomes are improvements and extensions of the existing results in metric
spaces. Further, we provide illustrative examples to validate our result. Ap-
plications to a Boundary Value problem and a matrix equation conclude the
paper.

Definition 1 [3] A C∗−algebra valued partial metric is a function p : M×
M−→ A on a non-empty set M if:

(i) θ � p(w, v) and p(w,w) = p(v, v) = p(w, v) if and only if w = v, θ is
zero element of A;

(ii) p(w,w) � p(w, v);
(iii) p(w, v) = p(v,w);

(iv) p(w, v) � p(w, z) + p(z, v) − p(z, z), w, v, z ∈M.

Here, (M,A, p) is a C∗−algebra valued partial metric space.
One may refer to [13] and [19], to study in detail on C∗−algebra.

The following example is given by Tomar et al. [16].

Example 1 Let F(M) be a collection of balls such that B(w0, ρ) = {v : |w0 −
v| ≤ ρ, ρ > 0} and A = Mn(C) be the C∗−algebra of complex matrices. If
A = [aij] ∈ A, then A∗ = [āji] is a non-zero element of A. Norm is de-
fined as, ‖A‖ = sup{‖Aα‖2 : α ∈ Cn, ‖α‖2 ≤ 1}, where ‖.‖2 is the usual
l2−norm on Cn. Define p : F(M) × F(M) −→ A by p[B(w0, ρ), B(v0, σ)] =
|w0−v0|AA

∗+max{ρ, σ}I. Then p is a C∗−algebra valued partial metric how-
ever, it is neither a C∗−algebra valued metric nor a standard partial metric,
since p[B(w0, ρ), B(w0, ρ)] = ρ 6= θ and

p[B(w0, ρ),B(v0, τ)] = |w0 − v0|AA
∗ + max {ρ, τ} I

� [|w0 − z0|+ |z0 − v0|]AA
∗ + [max{ρ, σ}+ max{σ, τ}− σ]I

= p[B(w0, ρ), B(z0, σ)] + p[B(z0, σ), B(v0, τ)] − p[B(z0, σ), B(z0, σ)].
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The C∗−algebra valued partial metric reduces to the standard partial metric
on taking A = R. For detailed discussions on C∗−algebra-valued metric spaces,
one may refer to Tomar and Joshi [17]. Tomar et al. [16] discussed the con-
vergence of the sequence when it converges to a zero element of (M,A, p) and
introduced the following definitions to create an environment to establish a
fixed point in (M,A, p).

Definition 2 [16]

(i) A sequence {wn}n∈N is called a Cauchy sequence in (M,A, p) if limn,m−→∞
p(wn,wm) exists with respect to A and is finite.

(ii) (M,A, p) is complete if every Cauchy sequence {wn}n∈N converges with
respect to A in M, to a point w ∈M and satisfy

lim
n,m→∞p(wn,wm) = lim

n→∞p(wn,wn) = p(w,w).

(iii) The sequence {wn}n∈N in (M,A, p) θ−converges to a point w ∈M if

lim
n→∞p(wn,w) = lim

n→∞p(wn,wn) = p(w,w) = θ.

(iv) A sequence {wn}n∈N is θ−Cauchy if limn,m→∞ p(wm,wn) = θ, θ is the
zero element of (M,A, p).

(v) (M,A, p) is called θ− complete if every θ−Cauchy sequence converges
to a point w ∈M and p(w,w) = θ.

Example 2 (Example 3.5−Tomar et al. [16]) Let

p(w, v) =

{
I, if w = v

p(w, v) = 2I, otherwise.

If M is a Hausdorff space and B(M) is the set of all bounded functions,
then B(M) becomes a C∗−algebra with ‖f(w)‖ = supw∈M |f(w)|. Here, the
sequence {wn} = a, n ≥ 1 is not θ−Cauchy as it converges to a. However,
{wn} is a Cauchy sequence. Implying thereby that every θ−Cauchy sequence
in (M,A, p) is a Cauchy sequence. However, the reverse implication is not
necessarily true.

Remark 1 [16] It is worth mentioning here that if a sequence θ−converges to
some point then its self-distance, as well as the self-distance of that point, is
equal to zero element of (M,A, p).



344 A. Tomar, M. Joshi

2 Main results

In the following, A+ denotes a set of self-adjoint (positive) operators of A.
Now, following Ma et al. [10], we introduce a Hardy - Rogers contraction and
a CJM−contraction, then utilize these to establish a fixed point.

Definition 3 A self-map T of (M,A, p) is called a C∗−algebra valued Hardy-
Roger contractive map if

p(T w, T v) � Ap(w, v)+Bp(w, T w)+Cp(v, T v)+Dp(v, T w)+Ep(w, T v), (1)

∀ w, v ∈M, ‖A+ B + C +D + E‖ ≤ 1 and A, B, C, D, E ∈ A+.

Example 3 Let M = C and A =Collection of all scalar matrices on C. Let
p :M×M−→ A be defined as,

p(w, v) =

[
max{|w|, |v|} 0

0 max{|w|, |v|}

]
.

So (M,A, p) is a C∗−algebra valued partial metric space and

p(w,w) =

[
|w| 0

0 |w|

]
6= θ.

A function T :M−→M defined as

T w =


w
4 , w is even
w−1
5 , w is odd

0, otherwise

,

is a C∗−algebra valued Hardy-Roger contraction for θ � A = D = E ≺ I
7 and

θ � B = C ≺ I
9 .

It is fascinating to see here that, T is not a Hardy-Roger contraction [6] as a
space under consideration is not a standard metric space.

Definition 4 A self map T in (M,A, p) is called a C∗−algebra valued CJM−
contraction, if

(a) for each ε � θ there exists a number δ � θ satisfying

p(w, v) ≺ ε+ δ =⇒ p(T w, T v) ≺ ε,
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(b) w 6= v =⇒ p(T w, T v) ≺ p(w, v), w, v ∈M.

Example 4 Let M = {0, 1} ∪ {2n : n ∈ N} ∪ { 2n−12 + 1
2n−1 : n ∈ N} and

A =Collection of complex diagonal matrices defined onM. Let p :M×M−→
A be defined as,

p(w, v) =

[
|w− v|+ max{w, v}, 0

0, α(|w− v|+ max{w, v})

]
. So (M,A, p) is a

C∗−algebra valued partial metric space and p(w,w) =

[
w, 0

0, w

]
. A func-

tion T :M×M −→ R be defined as T w =

{
2n−1
2 + 1

2n−1 , w = 2n

0, otherwise
, is

a C∗−algebra valued CJM−contraction for ε, δ > θ.

It is fascinating to see here that, T is not a CJM− contraction [5] as a space
under consideration is not a standard metric space.

Now, we establish our result for C∗−algebra valued Hardy-Rogers contrac-
tion.

Theorem 1 If a self map T is a continuous C∗−algebra valued Hardy-Rogers
contractive map (1) of a θ−complete C∗−algebra valued partial metric space
(M,A, p), then T has a unique fixed point z ∈M and p(T z, T z) = θ = p(z, z).

Proof. Starting from the given element w0 ∈ M, form the sequence {wn} ,
where wn = T wn−1, n ∈ N. If p(wn,wn+1) = θ, for some n ≥ 0, then T wn =
wn+1 = wn and p(wn,wn) = θ and this completes the proof.

Further, take p(wn,wn+1) � θ, n ≥ 0 . For w = wn+1, v = wn+2, in condi-
tion (1),

p(wn+1,wn+2) = p(T wn, T wn+1)
� Ap(wn,wn+1) + Bp(wn, T wn) + Cp(wn+1, T wn+1)
+Dp(wn+1, T wn) + Ep(wn, T wn+1)
� Ap(wn,wn+1) + Bp(wn,wn+1) + Cp(wn+1, wn+2)
+Dp(wn+1,wn+1) + E [p(wn,wn+1) + p(wn+1,wn+2)
− p(wn+1,wn+1)]

= (A+ B + E)p(wn,wn+1) + (C + E)p(wn+1,wn+2)
+ (D − E)p(wn+1,wn+1),

(2)
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and

p(wn+2,wn+1) = p(T wn+1, T wn)
� Ap(wn+1,wn) + Bp(wn+1, T wn+1) + Cp(wn, T wn)
+Dp(wn,T wn+1

) + Ep(wn+1, T wn)
� Ap(wn+1,wn) + Bp(wn+2,wn+1) + Cp(wn+1,wn)
+D[p(wn,wn+1) + p(wn+1,wn+2) − p(wn+1,wn+1)]
+ Ep(wn+1,wn+1)

= (A+ C +D)p(wn,wn+1) + (B +D)p(wn+1,wn+2)
+ (E −D)p(wn+1,wn+1).

(3)

Adding (2) and (3)

2p(wn+1,wn+2)) � (2A+ B + C +D + E)P(wn,wn+1)
+ (B + C +D + E)p(wn+1,wn+2),

that is,

(2−B − C −D − E)p(wn+1,wn+2)) � (2A+ B + C +D + E)p(wn,wn+1),

that is,

p(wn+1,wn+2)) �
2A+ B + C +D + E
2− B − C −D − E

p(wn,wn+1) � ξ p(wn,wn+1),

where, ξ = 2A+B+C+D+E
2−B−C−D−E and 0 ≤ ‖ ξ‖ < 1.

Now, for n > m,

p(wn,wm) � p(wn,wn−1) + p(wn−1,wn−2) + . . .+ p(wm+1,wm)

− p(wn−1,wn−1)−p(wn−2,wn−2)−. . .− p(wm+1,wm+1)p(wn,wm)

� p(wn,wn−1) + p(wn−1,wn−2) + . . .+ p(wm+1,wm)

� (ξn−1 + ξn−2 + · · ·+ ξm)p(w0,w2),

and hence limn,m−→∞ p(wn,wm) = θ, that is, {wn}n∈N is a Cauchy sequence
in (M,A, p).
Using θ−completeness of (M,A, p), we have z ∈ M so that wn −→ z in
(M,A, p) and p(z, z) = θ.
Now,

p(z, T z) � p(z,wn+1) + p(wn+1, T z) − p(wn+1,wn+1)
� p(z,wn+1) + p(T wn, T z) − p(wn+1, wn+1).
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Since T is continuous, n −→∞ implies that,

p(z, T z) � (B+ C+D+ E)p(z, T z) ≺ p(z, T z),

a contradiction, so p(z, T z) = θ.
Thus, p(T z, T z) = p(z, T z) = p(z, z) = θ, that is, z is a fixed point of T .
To conclude the theorem, suppose z and w are two different fixed points of T ,
so

p(z,w) = p(T z, T w) � Ap(z,w) + Bp(z, T z) + Cp(w, T w)

+Dp(w, T z) + Ep(z, T w),

� (A+D + E)p(z,w)

≺ (A+ B + C +D + E)p(z,w)

≺ p(z,w),

a contradiction. So, p(z,w) = θ. Hence, z = w. �

Next, an example is provided to validate Theorem 1.

Example 5 Let M = C and A =M3(C) be the set of complex matrices. Let,
for a > b > c > 0 , p :M×M−→ A be defined as,

p(w, v) =

af(w, v) 0 0

0 bf(w, v) 0

0 0 cf(w, v)

 ,
where, f(w, v) = max {‖w‖, ‖v‖}. So (M,A, p) is a complete C∗−algebra
valued partial metric space and

p(w,w) =

a‖w‖ 0 0

0 b‖w‖ 0

0 0 c‖w‖

 6= θ.
A continuous function T : M −→ M defined as T w = w

2 , is a C∗−algebra

valued Hardy-Roger contraction for θ � A = B = C ≺ I
6 , θ � D = E ≺ I

8 .
Consequently, postulates of Theorem 1 are verified and T has a unique fixed
point at w = 0.

Remark 2

(i) Conclusion of Theorem 1 continues to be true if B = C = D = E = 0 and
we get an extension of Banach [2], to C∗−algebra-valued partial metric
spaces.
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(ii) Conclusion of Theorem 1 continues to be true if A = D = E = 0 and
B = C and we get an extension of Kannan [8] to C∗−algebra-valued
partial metric spaces.

(iii) Conclusion of Theorem 1 continues to be true if A = B = C = 0 and
D = E , we get an extension of Chatterjea [4] to C∗−algebra-valued partial
metric spaces.

(iv) Conclusion of Theorem 1 continues to be true if D = E = 0, we get an
extension of Reich [14] to C∗−algebra-valued partial metric spaces.

Now, we establish our next result for C∗−algebra valued CJM−contraction.

Theorem 2 Theorem 1 continues to be true if (1) is replaced by C∗−algebra
valued CJM-contractive map.

Proof. Define a Picard sequence {wn} ⊆ M, wn+1 = T wn, n ∈ N0. If
p(wn,wn+1) = θ for some n ≥ 0, then T wn = wn+1 = wn and p(wn,wn) = θ
and the proof is complete.
Now, let for all n ∈ N0, p(wn,wn+1) � θ. Using (b), we get
p(wn+1,wn+2) = p(T wn, T wn+1) ≺ p(wn,wn+1),
that is, the sequence {p(wn,wn+1)} is bounded below and decreasing. Thus, it
is convergent and
limn−→∞ p(wn,wn+1) = ε � θ. If ε � θ, then ε ≺ p(wn,wn+1), for n ≥ m or

ε ≺ p(wn,wn+1) ≺ ε+ δ(ε), n ≥ m,

which contradicts condition (a). Thus, limn−→∞ p(wn,wn+1) = θ.
Now, we demonstrate that {p(wn,wn+1)} is a Cauchy sequence. Fix an ε � θ,
we may consider δ = δ(ε) ≺ ε. Since {p(wn,wn+1)} is monotonically decreasing
to θ, there exists m ∈ N, n ≥ m satisfying p(wn,wn+1) ≺ δ

s .
We shall use the principle of mathematical induction to demonstrate that for
l ∈ N

p(wm,wm+l) ≺
ε

s
+
δ

s
≺ ε+ δ. (4)

Clearly, Equation (4) holds for l = 1. Suppose Equation (4) holds for some l.
We shall prove it for l+ 1. By the property (iv), we have

p(wm,wm+l+1) � p(wm,wm+1) + p(wm+1,wm+l+1) − p(wm+1,wm+1).

It is enough to show that p(wm+1,wm+l+1) ≺ ε
s . By the induction hypothe-

sis, p(wm,wm+l) ≺ ε
s +

δ
s ≺

ε
s + δ. So using (a), p(wm+1,wm+l+1) ≺ ε

s .

Hence, Equation (4) implies that {wn} is a Cauchy sequence in M.
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Using θ−completeness of (M,A, p), there exists z ∈M so that wn −→ z in
(M,A, p) and p(z, z) = θ.

Since T is continuous, wn+1 = T wn −→ T z.
Hence, T z = z, that is, z is a fixed point of T .
To conclude the proof, let z and w be two different fixed points of T .

p(z,w) = p(T z, T w) ≺ p(z,w),

a contradiction. So, p(z,w) = θ.
Hence, z = w. �

Next, an example is provided to validate Theorem 2.

Example 6 LetM = C and A =M2(M) be the set of complex matrices. Let,
for α > 0 , p :M×M−→ A be,

p(w, v) =

[
|w− v|+ max{|w|, |v|} 0

0 α(|w− v|+ max{|w|, |v|})

]
.

So, (M,A, p) is a complete C∗−algebra valued partial metric space and

p(w,w) =

[
|w| 0

0 α|w|

]
6= θ.

A continuous function T : M −→ M given by T w = w
7 , is a C∗−algebra

valued CJM−contraction. Hence, all the postulates of Theorem 2 are verified
and T has a unique fixed point at w = 0.

It is interesting to see that Examples 5 and 6 can not be covered by any
function in a standard metric space, a partial metric space, or a C∗−algebra
valued metric space in the context of Hardy and Roger [6] and Górnicki [5].
Consequently, C∗−algebra-valued partial metric space is an improved version
of existing spaces wherein unital C∗−algebra (A) is exploited as an alternative
to a set of real numbers and the results in this space are genuine generalizations
/ improvements / extensions of the corresponding outcomes in the literature
in standard metric spaces. Further, the results of C∗−algebra-valued partial
metric spaces do not coincide with / derived from the results in other related
spaces.

3 Application

Now, we utilize Theorem 1, to solve a boundary value problem.
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Theorem 3 Consider a boundary value problem

d2w

dt2
= −φ(t,w(t)), t ∈ I = [−1, 1] and φ ∈ C(I,R) (5)

with two-point boundary condition w(−1) = 0,w(1) = 0.
Assume the following:

(i) φ : I × R −→ R is a Lipschitz continuous relative to w for Lipschitz
constant value 0 ≤ ‖ξ‖ ≤ 1

3 , ∀ t ∈ I,w1,w2 ∈ R such that ‖φ(t,w1) −
φ(t,w2)‖ ≤ ξ(t)‖w1 −w2‖ and function ξ is continuous on I.

(ii) |φ(t,w)| ≤ µ(t) |w| , where, 0 ≤ ‖µ‖ ≤ 1
3 and function µ is continuous

on I.

Then, the differential equation has exactly one solution w∗ ∈ C(I,R).

Proof. The problem in equation (5) may be rewritten as

w(t) =

∫ 1
−1
G(t, u)φ(u,w(u))du, for t ∈ I, (6)

and the Green function G(t, u) =

{
(1 − t)(1 + u),−1 ≤ u ≤ t ≤ 1
(1 − u)(1 + t),−1 ≤ t ≤ u ≤ 1

.

Now, if w ∈ C2(I,R), then w is the solution of (5) if and only if it is the
solution of (6).
M = C(I), the set of a continuous function on I forms a C∗−algebra with
pointwise operation with ‖w‖∞ = maxt∈I |w|, w ∈M.
Define p :M×M−→M by p(w, v) = [‖w− v‖+‖w‖+‖v‖]f is a C∗−algebra
valued partial metric space, where, f is the self-adjoint element of M.
Define a self map T :M−→M by

T w(t) =

∫ 1
−1
G(t, u)φ(u,w(u))du, (7)

for all w ∈ M and t ∈ I. Now, our problem (5) may be expressed as deter-
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mining a fixed point of T . So

|T w(t) − T v(t)| =
∣∣∣∣∫ 1

−1
G(t, u)(φ(u,w(u)) − φ(u, v(u)))du

∣∣∣∣ ,
�
∫ 1
−1
G(t, u) |φ(u,w(u)) − φ(u, v(u))|du,

�
∫ 1
−1
G(t, u)ξ |w(u) − v(u)|du

� ξ ‖w(u) − v(u)‖∞ sup
t∈I

∫ 1
−1
G(t, u)du.

Therefore,
‖T w(t) − T v(t)‖ ≤ ‖ξ‖ ‖w(u) − v(u)‖∞ . (8)

Since,
∫1
−1 G(t, u)du = 1− t2 and supt∈I

∫1
−1 G(t, u)du = 1.

Now,

|T w(t)| =

∣∣∣∣∫ 1
−1
G(t, u)φ(u,w(u))du

∣∣∣∣ ,
�
∫ 1
−1
G(t, u) |φ(u,w(u))|du,

�
∫ 1
−1
µ |w(u)|G(t, u)du,

� µ ‖w‖∞
∫ 1
−1
G(t, u)du.

Therefore,
‖T w(t)‖∞ ≤ ‖µ‖ ‖w‖∞ , (9)

and also
‖T v(t)‖∞ ≤ ‖µ‖ ‖v‖∞ . (10)

Now,

p(T w, T v) = [‖T w− T v‖∞ + ‖T w‖∞ + ‖T v‖∞]f

� [ξ ‖w− v‖∞ + µ ‖w‖∞ + µ ‖v‖∞]f

� (ξ+ 2µ)(‖w− v‖∞ + ‖w‖∞ + ‖v‖∞]f)

= (ξ+ 2µ)p(w, v) � Ap(w, v) + Bp(w, T w) + Cp(w, T v)
+Dp(v, T w) + Ep(w, T v).
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Taking A = ξ, B = C = D = E = µ
2 , we may observe that postulates of The-

orem 1 are verified, and so T has only one fixed point w∗ ∈ M, that is,
boundary value problem (5) has only one solution w∗ ∈M. �

Now, we make use of Theorem 2, to solve a matrix equation to demonstrate
the applicability of C∗−algebra valued CJM−contraction map. In the follow-
ing, the symbol ‖.‖ is the spectral norm of a matrix P = [pij]n×n, that is,
‖P‖ =

√
λ+(P∗P), λ+(P∗P) is the largest eigenvalue of P∗P, where P∗ is

the conjugate transpose of P. Further, ‖.‖tr denotes the trace norm of P and

‖P‖tr =
√
Σni=1Σ

n
j=1|pij|

2 =
√
tr(P∗P) =

√
Σni=1σ

2
i (P), σi(P), i = 1, 2, . . . , n,

denotes largest singular values of P ∈ Mn(C). The set of all Hermitian ma-
trices of order n, Hn(C) ⊆ Mn(C), induced by this trace norm, is a Banach
space.

Theorem 4 Let a non-linear matrix equation be

W = Σni=1P∗i f(W)Pi, (11)

where, the C∗−algebra of complex matrices of order n, M =Mn(C), Pi ∈
Mn(C) is an arbitrary matrix of order n. Let f : Mn(C) −→ Mn(C) be a
continuous self map satisfying f(θ) = θ and

(i) max{|tr(fW)|, |tr(fV)|}I � η
2 max{|tr(W)|, |tr(V)|}In,

(ii) |tr(T W − T V)|In � η
2 |tr(W − V)|In,

(iii) tr(WV) ≤ ‖W‖tr(V), W ∈Mn(C),
(iv) Σni=1P∗i P � ξIn, where identity matrix of order n, In ∈ Mn(C) and

η 6= 0.

Then the matrix equation (11) has exactly one solution W∗ ∈M. Further, the
iterationWn = Σni=1P∗i f(W)Pi, W0 ∈Mn(C) such thatW0 � Σni=1P∗i f(W)Pi,
converges to W∗ ∈M satisfying the nonlinear matrix equation (11).

Proof. Let a map T :M−→M be defined as

T (W) = Σni=1P∗i f(W)Pi (12)

and a C∗−algebra valued partial metric p :M×M−→M be

p(W,V) =
[

max{|trW |, |trV |}+ |tr(W − V)|
]
In.
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Noticeably, a fixed point of T is a solution of a matrix equation (11).

p(T W, T V) = [max{tr|T W |, tr|T V |}+ |tr(T W − T V)|]In
=
[

max{|tr(Σni=1P∗i f(W)Pi)|, |tr(Σni=1P∗i f(V)Pi)|}
+ |tr(Σni=1P∗i (f(W) − f(V)Pi))|

]
In

=
[

max{|tr(Σni=1P∗i Pif(W))|, |tr(Σni=1P∗i Pif(V))|}
+ |tr(Σni=1P∗i Pif(W) − f(V))|

]
In

� ‖Σni=1P∗i Pi‖
[

max{|tr(fW)|, |tr(fV)|}+ |fW − fV |
]
In

� ‖ηI‖ 1
2η

[max{|tr(W)|, |tr(V)|}+ |tr(fW − fV)|]In

=
1

2

[
max{|tr(W)|, |tr(V)|}+ |tr(fW − fV)|

]
In

≺ p(W,V).

Taking ε = 1
2

[
max{|tr(W)|, |tr(V)|}+ |tr(fW − fV)|

]
In and δ = 3

2ε,

p(W,V) ≺ ε + δ =⇒ p(T W, T V) ≺ ε and W 6= V =⇒ p(T W, T V) ≺
p(W,V).

We may observe that postulates of Theorem 2 are verified, and T has only
one fixed point W∗ ∈ M, that is, matrix equation (11) has only one solution
W∗ ∈M. �

4 Conclusion

Acknowledging the C∗−algebra valued partial metric space, we have famil-
iarized Hardy-Roger contraction [6] and CJM−contraction [5] in it to elicit
the fixed point theorems in the most generalized environment. From our re-
sults, we have deduced results for a C∗−algebra valued variants of Kannan
contraction[8], Chatterjee contraction [4], Reich contraction [14] and Banach
contraction [2]. Further, we have solved a boundary value problem using
C∗−algebra valued Hardy-Roger contraction and a matrix equation using
C∗−algebra valued CJM− contraction. The motivation behind using this space
is its application in quantum field theory and statistical mechanics. It is worth
to mention that there may be some circumstances when it is possible to apply
C∗−algebra valued partial metric results, however it is not possible to apply
standard metric results . These novel ideas promote further examinations and
applications.
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