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Abstract. We present two formulas for Chern classes (polynomial) of
the tensor product of two vector bundles. In the first formula the Chern
polynomial of the product is expressed as determinant of a polynomial
in a matrix variable involving the Chern classes of the first bundle with
Chern classes of the second bundle as coefficients. In the second formula
the total Chern class of the tensor product is expressed as resultant of
two explicit polynomials. Finally, formulas for the total Chern class of
the second symmetric and the second alternating products are deduced.

1 Introduction

One associates a series of cohomological (characteristic) classes ci(E) ∈ H2i(M)
called the ith Chern class of E , for any i = 1, . . . , r, with a complex vector
bundle E of rank r over a manifold M (cf. [9, Ch. IV] or [3, Ch. I, §4]). One
can arrange these classes into a polynomial c(E ; t) = 1+ c1(E)t+ · · ·+ cr(E)tr,
called the Chern polynomial. Its value c(E) = c(E ; 1) = 1+ c1(E) + · · ·+ cr(E)
at t = 1 is the total Chern class of E .

We recall some basic properties of the Chern classes. If E and F are two com-
plex vector bundles over the same manifold then c(E⊕F ; t) = c(E ; t)·c(F ; t) by
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the Whitney product formula (cf. [9, (20.10.3)]). Computing with Chern classes
one can pretend using the Splitting Principle (cf. [9, Ch. IV, §21]) that the
bundle E of rank r splits into direct sum of r complex line bundles and the first
Chern classes α1, . . . , αr of these hypothetical line bundles are the so-called
Chern roots of E . Hence, by the Whitney product formula we have c(E ; t) =∏r
i=1(1+αit), thus ck(E) = ek(α) = ek(α1, . . . , αr) =

∑
1≤i1<···<ik≤r αi1 · · ·αik

for any k = 1, . . . , r, i.e. the Chern classes are elementary symmetric polyno-
mials of the Chern roots. The dual bundle E∗ has opposite Chern roots to E ,
hence its Chern polynomial equals c(E∗, t) =

∏r
i=1(1− αit) = c(E ,−t).

The Chern polynomial does not behave so well for the tensor product like
for the direct sum. Nevertheless, for complex line bundles L and L ′ we have
c1(L⊗L ′) = c1(L)+c1(L ′) (cf. [9, (20.1)]). Hence, if α1, . . . , αr and β1, . . . , βq
are Chern roots of E and F , respectively, then αi+βj, i = 1, . . . , r, j = 1, . . . , q
are the Chern roots of the tensor product E ⊗F and the Chern polynomial of
the tensor product equals

c(E ⊗ F ; t) =
r∏
i=1

q∏
j=1

(1+ αit+ βjt). (1)

Our goal is to express (1) in terms of Chern classes of E and F , or equivalently
in terms of elementary symmetric polynomials of the Chern roots α1, . . . , αr
and β1, . . . , βq, respectively.

There are several approaches to compute the Chern classes of the tensor
product. We mention the four approaches compared in [4]. The first method
computes the Chern classes of the tensor product by eliminating the Chern
roots α1, . . . , αr, β1, . . . , βq from c(E ⊗ F) =

∏r
i=1

∏q
j=1(1 + αi + βj) using

relations ci(E) = ei(α1, . . . , αr) and cj(F) = ej(β1, . . . , βq) for i = 1, . . . , r

and j = 1, . . . , q. The second approach uses the multiplicativity of the Chern
character (cf. [3, Ch. III, §10.1]) and Newton’s identities (cf. [7, (2.11 ′)]).
The third uses Lascoux’s formula [6] which expresses the Chern classes of
the tensor product as linear combination of products of Schur polynomials of
Chern classes of E and F . The last approach is Manivel’s formula [8], which has
the same form as Lascoux’s formula, but computes the coefficients differently.
These methods have been implemented in the library chern.lib [5] for the
computer algebra system Singular [2].
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2 Chern polynomial of the tensor product: first ap-
proach

Lemma 1 Let u1, . . . , ur, v1, . . . , vq be formal variables. We consider elemen-
tary symmetric polynomials ek(u) =

∑
1≤i1<···<ik≤r ui1 · · ·uik for any k =

1, . . . , r and we set e0(u) = 1. We associate with the list (e1(v), . . . , eq(v))
the following matrix

Λ(e(v)) =


e1(v) −1

...
. . .

eq−1(v) −1
eq(v)

 (2)

(it has non-zero entries only in the first column and above the diagonal). Then
we have

r∏
i=1

q∏
j=1

(1+ ui + vj) = det

(
r∑
k=0

ek(u)[I+Λ(e(v))]
r−k

)
,

where I = Iq is the q-by-q identity matrix.

Proof. First, we diagonalize the matrix Λ(e(v)). Therefore, we consider the
q-by-q matrix E = E(v1, . . . , vq) =

[
ei−1(v1, . . . , v̂j, . . . , vq)

]q
i,j=1

, where v̂j
means that the term vj is omitted. We show that E is non-singular by com-
puting its determinant as follows. We subtract the first column from the
other columns, then we raise a (v1 − vj)-factor from columns j = 2, . . . , q,
respectively. Expanding the resulting determinant by the first row we get the
recurrent relation detE(v1, . . . , vq) =

∏q
j=2(v1 − vj) detE(v2, . . . , vq), hence

detE =
∏
1≤i<j≤q(vi − vj) 6= 0. Moreover, Λ(e(v))E = Ediag(v1, . . . , vq) by re-

lations ei(v1, . . . , vq) = ei(v1, . . . , v̂j, . . . , vq) + vjei−1(v1, . . . , v̂j, . . . , vq), hence
Λ(e(v)) = Ediag(v1, . . . , vq)E

−1. Furthermore,

I+Λ(e(v)) = I+ Ediag(v1, . . . , vq)E
−1 = Ediag(1+ v1, . . . , 1+ vq)E

−1

is also diagonalizable with eigenvalues 1+ v1, . . . , 1+ vq. Finally,

q∏
j=1

r∏
i=1

(1+ ui + vj) =

q∏
j=1

r∑
k=0

ek(u)(1+ vj)
r−k =

= det

(
Ediag

( r∑
k=0

ek(u)(1+ v1)
r−k, . . . ,

r∑
k=0

ek(u)(1+ vq)
r−k

)
E−1
)

=
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= det

( r∑
k=0

ek(u)Ediag
(
1+ v1, . . . , 1+ vq

)r−k
E−1
)

= det

( r∑
k=0

ek(u)[I+Λ(e(v))]
r−k

)
.

�

Theorem 1 Let E and F be two complex vector bundles of rank r and q,
respectively over the same manifold. Then the Chern polynomial of the tensor
product E ⊗ F equals

c(E ⊗ F ; t) = det

(
r∑
k=0

ck(E)tk[I+Λ(c(F); t)]r−k
)
,

where c0(E) = 1 and Λ(c(F); t) is the matrix (2) with c1(F)t, . . . , cq(F)tq in
the first column.

Proof. Let α1, . . . , αr and β1, . . . , βq be the Chern roots of E and F , respec-
tively. Then it is enough to show that

r∏
i=1

q∏
j=1

(1+ αit+ βjt) = det

(
r∑
k=0

ek(α)t
k[I+Λ(e(βt))]r−k

)
,

where Λ(e(βt)) equals the matrix Λ(c(F); t) only replacing Chern classes
cj(F) by elementary symmetric polynomials ej(β) = ej(β1, . . . , βq) of Chern
roots for all j = 1, . . . , q. Finally, substituting u1 = α1t, . . . , ur = αrt, v1 =
β1t, . . . , vq = βqt in Lemma 1 we get the desired relation. �

3 Resultant and Chern classes of the tensor prod-
uct: second approach

The second approach uses the resultant of two polynomials. This will lead us
to a determinantal formula for Chern classes of the second alternating and the
second symmetric products of a vector bundle.

Let A(t) = ar + ar−1t + · · · + a0tr = a0
∏r
i=1(t − αi) and B(t) = bq +

bq−1t + · · · + b0tq = b0
∏q
j=1(t − βj) be two polynomials in variable t with
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roots α1, . . . , αr and β1, . . . , βq, respectively. The resultant of polynomials A
and B with respect to t is given by

res(A(t), B(t), t) = aq0b
r
0

r∏
i=1

q∏
j=1

(αi − βj) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a0 b0

a1
. . . b1

. . .
... a0

... b0

ar
... bq

...
. . . ar−1

. . . bq−1
ar bq

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

where the first q columns contain the coefficients of A, while the last r columns
contain the coefficients of B and empty spaces contain zeroes (cf. [1, Ch. III]).

Instead of the Chern polynomial c(F ; t) = 1+ c1(F)t+ · · ·+ cq(F)tq of the
rank q vector bundle F we consider the polynomial with coefficients in reverse
order

C(F ; t) =
q∑
k=0

ck(F)tq−k = cq(F) + cq−1(F)t+ · · ·+ c1(F)tq−1 + tq. (3)

They are related by C(F ; t) = tqc(F ; t−1) and moreover, we can recover the
total Chern class by substituting t = 1, i.e. c(F) = C(F ; 1). Furthermore, if
β1, . . . , βq are Chern roots of F then C(F ; t) =

∏q
j=1(t+βj), i.e. the opposite

of Chern roots of F are roots of the polynomial C(F ; t). We note that for the
dual bundle F∗ we have C(F∗; t) = (−1)qC(F ; −t).

Lemma 2 If α1, . . . , αr are the Chern roots of the complex vector bundle E
of rank r then

∏r
i=1(t−s−αi) = (−1)rC(E ; s−t) =

∑r
k=0(−1)

kdk(E ; s)tr−k with

coefficients dk(E ; s) =
(
r
k

)
sk+

(
r−1
k−1

)
c1(E)sk−1+· · ·+ck(E) =

∑k
i=0

(
r−i
k−i

)
ci(E)sk−i.

Proof. Indeed,
∏r
i=1(t− s− αi) = (−1)r

∏r
i=1(s− t+ αi) = (−1)rC(E ; s− t)

and moreover,
∏r
i=1(t− s−αi) =

∑r
k=0(−1)

kek(s+α1, . . . , s+αr)t
r−k, where

ek(s+ α1, . . . , s+ αr) =
∑

1≤i1<···<ik≤r
(s+ αi1) · · · (s+ αik) =

=
∑

1≤i1<···<ik≤r

[
sk + e1(αi1 , . . . , αik)s

k−1 + · · ·+ ek(αi1 , . . . , αik)
]
=

=

(
r

k

)
sk +

(
r− 1

k− 1

)
e1(α1, . . . , αr)s

k−1 + · · ·+
(
r− k

0

)
ek(α1, . . . , αr) =
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=

r∑
i=0

(
r− i

k− i

)
ei(α1, . . . , αr)s

k−i =

k∑
i=0

(
r− i

k− i

)
ci(E)sk−i = dk(E ; s).

�

In the next theorem we express C(E ⊗ F ; s) as resultant of polynomials
(−1)rC(E ; s − t) and C(F ; t). We can also get a formula for the total Chern
class of the tensor product by substituting s = 1.

Theorem 2 If E and F are two complex vector bundles of rank r and q,
respectively over the same manifold then

C(E ⊗ F ; s) = res((−1)rC(E ; s− t), C(F ; t), t), (4)

where the polynomial C is defined by (3). Substituting s = 1 yields the total
Chern class of the tensor product c(E ⊗ F) = res((−1)rC(E ; 1− t), C(F ; t), t).
Moreover, the top Chern classes of the tensor product equals

crq(E ⊗ F) = (−1)rq res(c(E ; −t), c(F ; t), t),

while the top Chern classes of the Hom(E ,F) bundle equals

crq(Hom(E ,F)) = (−1)rq res(c(E ; t), c(F ; t), t).

Proof. Denote α1, . . . , αr and β1, . . . , βq the Chern roots of E and F , respec-
tively. Then

C(E ⊗ F ; s) =
r∏
i=1

q∏
j=1

(s+ αi + βj) =

r∏
i=1

q∏
j=1

(s+ αi − (−βj)),

hence C(E ⊗ F ; s) is the resultant of polynomials
∏q
j=1(t + βj) = C(F ; t)

and
∏r
i=1(t − s − αi) = (−1)rC(E ; s − t) with respect to the variable t, i.e.

C(E ⊗ F ; s) = res((−1)rC(E ; s− t), C(F ; t), t).
To obtain the top Chern class of the tensor product we substitute s = 0

into (4), thus crq(E ⊗F ; t) = res((−1)rC(E ; −t), C(F ; t), t). The coefficients of
polynomials C(F ; t) and c(F ; t) are in reverse order, and similarly the coef-
ficients of polynomials (−1)rC(E ; −t) and c(E ; −t) are also in reverse order.
Hence we get res((−1)rC(E ; −t), C(F ; t), t) = (−1)rq res(c(E ; −t), c(F ; t), t) by
reversing the order of rows, the order of the first q columns and last r columns
in the defining determinant (3) of the resultant.

Finally, the top Chern class of the Hom(E ,F)-bundle crq(Hom(E ,F); t) =
crq(E∗⊗F ; t) = (−1)rq res(c(E∗; −t), c(F ; t), t) = (−1)rq res(c(E ; t), c(F ; t), t). �
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4 Chern classes the second alternating product ∧2E
and the second symmetric product S2E

We give a different version of Theorem 2, which leads to determinantal formu-
las for total Chern classes of the second alternating and symmetric products.

Theorem 3 If E and F are two complex vector bundles of rank r and q,
respectively over the same manifold, then

C(E ⊗ F ; s) = res((−1)rC
(
E ; s
2
− t
)
, C
(
F ; s
2
+ t
)
, t),

By substituting s = 1 we get c(E⊗F) = res((−1)rC
(
E ; 12 − t

)
, C
(
F ; 12 + t

)
, t).

Proof. If α1, . . . , αr and β1, . . . , βq are the Chern roots of E and F , respec-
tively, then

C(E ⊗ F ; s) =
r∏
i=1

q∏
j=1

(s+ αi + βj) =

r∏
i=1

q∏
j=1

(s
2
+ αi −

(
−
s

2
− βj

))
,

hence C(E ⊗ F ; s) is the resultant of
∏q
i=1

(
t+ s

2 + βj
)
= C

(
F ; s2 + t

)
and∏r

i=1

(
t− s

2 − αi
)
= (−1)rC(E ; s2 − t). �

If α1, . . . , αr are the Chern roots of the vector bundle E then the total Chern
classes of the second alternating and the second symmetric bundles

c(∧2E) =
∏

1≤i<j≤r
(1+ αi + αj),

c(S2E) =
∏

1≤i≤j≤r
(1+ αi + αj) = c(E ; 2)c(∧2E),

hence their corresponding C polynomials

C(∧2E ; s) =
∏

1≤i<j≤r
(s+ αi + αj),

C(S2E ; s) =
∏

1≤i≤j≤r
(s+ αi + αj) = 2

rC
(
E ; s
2

)
C(∧2E ; s).
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Theorem 4 Let d̄k = dk(E ; s2) =
∑k
i=0

(
r−i
k−i

)
ci(E)( s2)

k−i for k = 0, 1, . . . , r and
d̄k = 0 otherwise. With these notations we have

C(∧2E ; s) = det

([
d2i−j

(
E ; s
2

)]r−1
i,j=1

)
=

∣∣∣∣∣∣∣∣∣∣∣∣∣

d̄1 1

d̄3 d̄2 d̄1 1

d̄5 d̄4 d̄3 d̄2 d̄1
...

. . .
. . .

. . .
. . .

. . .

d̄r d̄r−1 d̄r−2 d̄r−3
d̄r d̄r−1

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

(5)

By substituting s = 1 we get c(∧2E) = det
([
d2i−j(E ; 12)

]r−1
i,j=1

)
.

Proof. By Theorem 3 we have C(E⊗E ; s) = res((−1)rC(E ; s2−t), C(E ;
s
2+t), t).

Note that (−1)rC(E ; s2 − t) =
∑r
k=0(−1)

kdk(E ; s2)t
r−k =

∑r
k=0(−1)

kd̄kt
r−k and

C(E ; s2 + t) =
∑r
k=0 dk(E ;

s
2)t

r−k =
∑r
k=0 d̄kt

r−k, hence

C(E ⊗ E ; s) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1

−d̄1
. . . d̄1

. . .

d̄2
. . . 1 d̄2

. . . 1
... −d̄1

... d̄1

(−1)rd̄r
... d̄r

...
. . . (−1)r−1d̄r−1

. . . d̄r−1
(−1)rd̄r d̄r

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(6)

We add the (r + i)th column to the ith column, then we subtract the 1
2 of

the ith column from the (r + i)th column for all i = 1, . . . , r. This results the
determinant on the left hand side of (7). From the first r columns we raise a
2r factor. Then we switch the (2i)th and (r+2i)th columns for all 1 ≤ i ≤ b r2c.
This yields the determinant on the right hand side of (7), which has zeroes in
the even and odd rows of the first and last r columns, respectively.
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∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2 0

0 2 d̄1 0

2d̄2 0
. . . 0 d̄1

. . .

0 2d̄2
. . . d̄3 0

. . .
... 0

. . .
... d̄3

. . .
...

...
. . .

. . .

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= (−1)b
r
2
c2r

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0

0 0 d̄1 1

d̄2 d̄1 1 0 0 0

0 0 0
. . . d̄3 d̄2 d̄1

. . .
... d̄3 d̄2

. . .
... 0 0

. . .
... 0

. . .
... d̄3

. . .
...

. . .
...

. . .

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

(7)

Moving the odd rows up and the even rows down yields a 2-by-2 block deter-
minant with zeroes in the off-diagonal blocks and a (−1)r(r−1)/2-sign, which
cancels the existing (−1)br/2c-sign. We expand this determinant with respect
to the first and last rows. These rows contain only zeroes, except the first row
has 1 in the first column and the last row has d̄r in the last column. After
expansion the two diagonal blocks become identical, hence

2r

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 0 0 · · · 0

d̄2 d̄1 1 0 0

d̄4 d̄3 d̄2
. . .

...
...

...
...

...
...

. . . d̄r−3 0 0

d̄r−1 0 0 0 · · · 0

0 0 0 · · · 0 d̄1 1

0 0 d̄3 d̄2 d̄1
...

...
... d̄4 d̄3

. . .
...

0 0
...

...
. . . d̄r−2

0 0 0 · · · 0 d̄r

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

= 2rd̄r

∣∣∣∣∣∣∣∣∣∣∣∣∣

d̄1 1

d̄3 d̄2 d̄1 1

d̄5 d̄4 d̄3 d̄2 d̄1
...

. . .
. . .

. . .
. . .

d̄r d̄r−1 d̄r−2 d̄r−3
d̄r d̄r−1

∣∣∣∣∣∣∣∣∣∣∣∣∣

2

.
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Note that C(E ; s2) = d̄r = dr(E ;
s
2). Finally, by the relation

C(E ⊗ E ; s) = C(∧2E ⊕ S2E ; s) = C(∧2E ; s)C(S2E ; s) = 2rC
(
E ; s
2

)
C(∧2E ; s)2

we are able to identify the C(∧2E ; s)-part in C(E ⊗ E ; s) to be (5). �

Remark 1 We can also compute C(∧r−2E ; s) from C(∧2E ; s) by the duality

C(∧r−2E ; s) =
∏

1≤i1<···<ir−2≤r
(s+ αi1 + · · ·+ αir−2

)

=
∏

1≤j1<j2≤r
(s+ c1(E) − αj1 − αj2) = (−1)

r(r−1)
2 C(∧2E ; −(s+ c1(E))).
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