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İlker Şahin
Departmant of Mathematics,

Science Faculty, Trakya University,
22030-Edirne, Turkey

email: isahin@trakya.edu.tr

Mustafa Telci
Departmant of Mathematics,

Science Faculty, Trakya University,
22030-Edirne, Turkey

email: mtelci@trakya.edu.tr

Abstract. In this work we define the concepts of the coupled orbit
and coupled orbitally completeness. After then, using the method of
Bollenbacher and Hicks [8], we prove some Caristi type coupled fixed
point theorems in coupled orbitally complete metric spaces for a func-
tion P : E× E→ E. We also give two examples that support our results.

1 Introduction and preliminaries

In the litareture concerning the fixed point theory, one of the most interesting
and useful results is the Caristi’s fixed point theorem [9], which is equivalent to
Ekeland’s variational principle [12] and is also a generalization of the famous
Banach contraction principle.

In 1976, Caristi proved in [9] that “if S is a self mapping of a complete
metric space (E, ρ) such that there is a lower semi-continuous function ψ from
E into [0,∞) satisfying

ρ(u, Su) ≤ ψ(u) −ψ(Su)

for all u ∈ E, then S has a fixed point”.
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In this theorem, saying that “ψ is lower semi-continuous at u if for any
sequence {un} ⊂ E, we have limun = u implies ψ(u) ≤ lim inf ψ(un)”.

Several authors have obtained various extensions and generalizations of
Caristi’s theorem by considering Caristi type mappings on many different
spaces. For example [1, 2, 3, 4, 8, 10, 14, 15, 16, 17, 18, 19, 20, 28, 29], and
others.

In this paper, by using the method in [8], we give some Caristi type coupled
fixed point theorems for a function P from a product space E× E to E.

The idea of the coupled fixed point was given first by Opoitsev [22, 23] and
Opoitsev and Khurodze [24] and then by Guo and Lakhsmikantham in [13].
The first coupled fixed point theorems under the contractive conditions were
studied by Bhaskar and Lakhsmikantham, see [7]. Since then various authors
have obtained several important, useful and interesting results for the coupled
fixed points under different condition [5, 6, 11, 21, 25, 26, 27].

We now give some basic definitions and notions.

Definition 1 ([7]) Let E be a nonempty set and P : E×E→ E be a mapping.
An element (u, v) ∈ E × E is said to be a coupled fixed point of mapping P if
u = P(u, v) and v = P(v, u).

Definition 2 Let E be a nonempty set and P : E × E → E be a mapping. Let
u0 and v0 are arbitrary two points in E. Consider the sequences {un} and {vn}

by

un = P(un−1, vn−1), vn = P(vn−1, un−1) (1)

for n = 1, 2, 3, . . ..
Then the sets

OP(u0,∞) = {u0, u1, u2, . . . } and OP(v0,∞) = {v0, v1, v2, . . . }

are called the coupled orbit of (u0, v0) ∈ E× E.
Now let (E, ρ) be a metric space. If every Cauchy sequence in OP(u0,∞)

and OP(v0,∞) converges to a point in E, for some (u0, v0) ∈ E × E, then the
(E, ρ) metric space is said to be coupled orbitally complete.

Note that a complete metric space (E, ρ) clearly coupled orbitally complete,
but a coupled orbitally complete metric space (E, ρ) does not necessarily com-
plete as in shown by Example 1.
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Definition 3 Let (E, ρ) be a metric space, P : E × E → E a mapping and
u0, v0 ∈ E. A real-valued function B : E×E→ [0,∞) is said to be ((u0, v0), P)–
coupled orbitally weak lower semi-continuous (c.o.w.l.s.c.) at (u, v) ∈ E×E iff
{un} and {vn} are sequences in OP(u0,∞) and OP(v0,∞) respectively and

un → u, vn → v implies B(u, v) ≤ lim
n→∞ supB(un, vn)

(See [10]).

2 Main results

The following theorem is a version of Caristi’s theorem, which was proved by
Bollenbacher and Hicks (See [8]).

Theorem 1 Let (E, ρ) be a metric space. Suppose S : E → E and ψ : E →
[0,∞). Suppose there exists an u such that

ρ(v, Sv) ≤ ψ(v) −ψ(Sv)

for every v ∈ OS(u,∞), and any Cauchy sequence in OS(u,∞) converges to
a point in E. Then:

(a) limSnu = u ′ exists,

(b) ρ(Snu, u ′) ≤ ψ(Snu),

(c) Su ′ = u ′ iff B(u) = ρ(u, Su) is S-orbitally lower semi-continuous at u,

(d) ρ(Snu, u) ≤ ψ(u) and ρ(u ′, u) ≤ ψ(u).

Now we prove the following coupled fixed point theorem for a function P on
the product space E× E.

Theorem 2 Let (E, ρ) be a metric space, P : E× E → E and ψ : E → [0,∞).
Suppose there exist u0, v0 ∈ E such that (E, ρ) is coupled orbitally complete
and

max{ρ(u, P(u, v)), ρ(v, P(v, u))} ≤ ψ(u)+ψ(v)−ψ(P(u, v))−ψ(P(v, u)) (2)

for all u ∈ OP(u0,∞) and v ∈ OP(v0,∞). Then:

(a) limun = limP(un−1, vn−1) = u
′ and lim vn = limP(vn−1, un−1) = v

′ exist,
where the sequences {un} and {vn} are defined as in (1),
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(b) max{ρ(un, u
′), ρ(vn, v

′)} ≤ ψ(un) +ψ(vn),

(c) (u ′, v ′) is a coupled fixed point of P if and only if
B(u, v) = ρ(P(u, v), u) is ((u0, v0), P)– c.o.w.l.s.c. at (u ′, v ′) and (v ′, u ′),

(d) max{ρ(un, u0), ρ(vn, v0)} ≤ ψ(u0) +ψ(v0) and
max{ρ(u ′, u0), ρ(v

′, v0)} ≤ ψ(u0) +ψ(v0).

Proof. (a) Using inequality (2) we have

Sn =

n∑
k=0

max{ρ(uk, uk+1), ρ(vk, vk+1)}

=

n∑
k=0

max{ρ(uk, P(uk, vk)), ρ(vk, P(vk, uk))}

≤
n∑
k=0

[ψ(uk) +ψ(vk) −ψ(P(uk, vk)) −ψ(P(vk, uk))]

=

n∑
k=0

[ψ(uk) −ψ(uk+1) +ψ(vk) −ψ(vk+1)]

= ψ(u0) −ψ(un+1) +ψ(v0) −ψ(vn+1)

≤ ψ(u0) +ψ(v0).

Hence {Sn} is bounded above and also non-decreasing, and so convergent.
Now let m,n be any positive integers with m > n. Then from triangle

inequality of ρ, we have

max{ρ(un, um), ρ(vn, vm)} ≤ max
{m−1∑
k=n

ρ(uk, uk+1),

m−1∑
k=n

ρ(vk, vk+1)
}

≤
m−1∑
k=n

max{ρ(uk, uk+1), ρ(vk, vk+1)}. (3)

Since {Sn} is convergent, for every ε > 0, we can find a sufficiently large positive
integer N such that

∞∑
k=n

max{ρ(uk, uk+1), ρ(vk, vk+1)} < ε

for all n ≥ N. Thus, we get from (3) that

max{ρ(un, um), ρ(vn, vm)} < ε
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for all m,n ≥ N, and so {un} and {vn} are two Cauchy sequences in OP(u0,∞),
and OP(v0,∞) respectively. Since (E, ρ) is coupled orbitally complete,

lim
n→∞un = lim

n→∞P(un−1, vn−1) = u ′ and lim
n→∞ vn = lim

n→∞P(vn−1, un−1) = v ′
exist.

(b) Let m,n be any positive integers with m > n. Using inequalities (2)
and (3) we have

max{ρ(un, um), ρ(vn, vm)} ≤
m−1∑
k=n

max{ρ(uk, uk+1), ρ(vk, vk+1)}

=

m−1∑
k=n

max{ρ(uk, P(uk, vk)), ρ(vk, P(vk, uk))}

≤
m−1∑
k=n

[ψ(uk) +ψ(vk) −ψ(uk+1) −ψ(vk+1)]

= ψ(un) −ψ(um) +ψ(vn) −ψ(vm)

≤ ψ(un) +ψ(vn).

Letting m tend to infinity, we have from (a)

max{ρ(un, u
′), ρ(vn, v

′)} ≤ ψ(un) +ψ(vn).

(c) Assume that u ′ = P(u ′, v ′), v ′ = P(v ′, u ′) and {un}, {vn} are sequences
in OP(u0,∞) and OP(v0,∞) respectively with un → u ′, vn → v ′. Then we
have,

B(u ′, v ′) = ρ(P(u ′, v ′), u ′) = 0 ≤ lim sup ρ(P(un, vn), un)

= lim supB(un, vn)

and

B(v ′, u ′) = ρ(P(v ′, u ′), v ′) = 0 ≤ lim sup ρ(P(vn, un), vn)

= lim supB(vn, un)

and so B is ((u0, v0), P)–c.o.w.l.s.c. at (u ′, v ′) and (v ′, u ′).
Now let un = P(un−1, vn−1), vn = P(vn−1, un−1) and B is ((u0, v0), P)–

c.o.w.l.s.c. at (u ′, v ′) and (v ′, u ′). Then from (a) we have

0 ≤ ρ(P(u ′, v ′), u ′) = B(u ′, v ′) ≤ lim supB(un, vn)
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= lim sup ρ(P(un, vn), un) = 0

and

0 ≤ ρ(P(v ′, u ′), v ′) = B(v ′, u ′) ≤ lim supB(vn, un)

= lim sup ρ(P(vn, un), vn) = 0.

Thus u ′ = P(u ′, v ′) and v ′ = P(v ′, u ′).

(d) Using triangle inequality of ρ and inequaliy (2) we have

max{ρ(un, u0), ρ(vn, v0)} ≤ max

{ n∑
k=1

ρ(uk, uk−1),

n∑
k=1

ρ(vk, vk−1)

}

≤
n∑
k=1

max{ρ(uk, uk−1), ρ(vk, vk−1)}

=

n∑
k=1

max{ρ(uk−1, P(uk−1, vk−1)), ρ(vk−1, P(vk−1, uk−1))}

≤
n∑
k=1

[ψ(uk−1) +ψ(vk−1) −ψ(uk) −ψ(vk)]

= ψ(u0) −ψ(un) +ψ(v0) −ψ(vn)

≤ ψ(u0) +ψ(v0).

Letting n tend to infinity, we have from (a)

max{ρ(u ′, u0), ρ(v
′, v0)} ≤ ψ(u0) +ψ(v0).

�

We now prove the following theorem.

Theorem 3 Let (E, ρ) be a metric space, P : E× E → E and ψ : E → [0,∞).
Suppose there exist u0, v0 ∈ E such that (E, ρ) is coupled orbitally complete
and

ρ(u, P(u, v)) + ρ(v, P(v, u)) ≤ ψ(u) +ψ(v) −ψ(P(u, v)) −ψ(P(v, u)) (4)

for all u ∈ OP(u0,∞) and v ∈ OP(v0,∞). Then:

(a) limun = limP(un−1, vn−1) = u
′ and lim vn = limP(vn−1, un−1) = v

′ exist,
where the sequences {un} and {vn} are defined as in (1),
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(b) ρ(un, u
′) + ρ(vn, v

′) ≤ ψ(un) +ψ(vn),

(c) (u ′, v ′) is a coupled fixed point of P if and only if
B(u, v) = ρ(P(u, v), u) is ((u0, v0), P)– c.o.w.l.s.c. at (u ′, v ′) and (v ′, u ′),

(d) ρ(un, u0) + ρ(vn, v0) ≤ ψ(u0) +ψ(v0) and
ρ(u ′, u0) + ρ(v

′, v0) ≤ ψ(u0) +ψ(v0).

Proof. We have

max{ρ(u, P(u, v)), ρ(v, P(v, u))} ≤ ρ(u, P(u, v)) + ρ(v, P(v, u))

≤ ψ(u) +ψ(v) −ψ(P(u, v)) −ψ(P(v, u)).

The results (a) and (c) of this theorem follow immediately from Theorem 2.

(b) Let m,n be any positive integers with m > n. Using triangle inequality
of ρ and inequality (4), we have

ρ(un, um) + ρ(vn, vm) ≤
m−1∑
k=n

[ρ(uk, uk+1),+ρ(vk, vk+1)]

=

m−1∑
k=n

[ρ(uk, P(uk, vk)) + ρ(vk, P(vk, uk))]

≤
m−1∑
k=n

[ψ(uk) +ψ(vk) −ψ(uk+1) −ψ(vk+1)]

= ψ(un) −ψ(um) +ψ(vn) −ψ(vm)

≤ ψ(un) +ψ(vn).

Letting m tend to infinity, we have from (a)

ρ(un, u
′) + ρ(vn, v

′) ≤ ψ(un) +ψ(vn).

(d) Using triangle inequality of ρ and inequaliy (4) we have

ρ(un, u0) + ρ(vn, v0) ≤
n∑
k=1

[ρ(uk, uk−1) + ρ(vk, vk−1)]

=

n∑
k=1

[ρ(uk−1, P(uk−1, vk−1)) + ρ(vk−1, P(vk−1, uk−1))]
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≤
n∑
k=1

[ψ(uk−1) +ψ(vk−1) −ψ(uk) −ψ(vk)]

= ψ(u0) −ψ(un) +ψ(v0) −ψ(vn)

≤ ψ(u0) +ψ(v0).

Letting n tend to infinity, we have from (a)

ρ(u ′, u0) + ρ(v
′, v0) ≤ ψ(u0) +ψ(v0).

�

Finally, we prove the following theorem.

Theorem 4 Let (E, ρ) be a metric space, P : E× E → E and ψ : E → [0,∞).
Suppose there exist u0, v0 ∈ E such that (E, ρ) is coupled orbitally complete
and

ρ(u, P(u, v)) ≤ ψ(u) −ψ(P(u, v)), (5)

ρ(v, P(v, u)) ≤ ψ(v) −ψ(P(v, u)) (6)

for all u ∈ OP(u0,∞) and v ∈ OP(v0,∞). Then:

(a) limun = limP(un−1, vn−1) = u
′ and lim vn = limP(vn−1, un−1) = v

′ exist,
where the sequences {un} and {vn} are defined as in (1),

(b) ρ(un, u
′) ≤ ψ(un) and ρ(vn, v

′) ≤ ψ(vn),

(c) (u ′, v ′) is a coupled fixed point of P if and only if
B(u, v) = ρ(P(u, v), u) is ((u0, v0), P)– c.o.w.l.s.c. at (u ′, v ′) and (v ′, u ′),

(d) ρ(un, u0) ≤ ψ(u0) and ρ(u ′, u0) ≤ ψ(u0),
ρ(vn, v0) ≤ ψ(v0) and ρ(v ′, v0) ≤ ψ(v0).

Proof. From inequalities (5) and (6) we have

ρ(u, P(u, v)) + ρ(v, P(v, u)) ≤ ψ(u) +ψ(v) −ψ(P(u, v)) −ψ(P(v, u)).

The results (a) and (c) of this theorem follow immediately from Theorem 3.

(b) Let m,n be any positive integers with m > n. Using triangle inequality
of ρ and inequality (5) we get

ρ(un, um) ≤
m−1∑
k=n

ρ(uk, uk+1) =

m−1∑
k=n

ρ(uk, P(uk, vk))
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≤
m−1∑
k=n

[ψ(uk) −ψ(uk+1)] = ψ(un) −ψ(um) ≤ ψ(un).

Letting m tend to infinity, we have from (a)

ρ(un, u
′) ≤ ψ(un).

Similarly, using triangle inequality of ρ and inequality (6) we get

ρ(vn, v
′) ≤ ψ(vn).

(d) Using triangle inequality of ρ and inequality (5) we have

ρ(un, u0) ≤
n∑
k=1

ρ(uk, uk−1) =

n∑
k=1

ρ(uk−1, P(uk−1, vk−1))

≤
n∑
k=1

[ψ(uk−1) −ψ(uk)]

= ψ(u0) −ψ(un) ≤ ψ(u0).

Letting n tend to infinity, we have from (a)

ρ(u ′, u0) ≤ ψ(u0).

Similarly, it can be proved that

ρ(vn, v0) ≤ ψ(v0) and ρ(v ′, v0) ≤ ψ(v0).

�

3 Some Examples

We now give two examples which illustrate our results.

Example 1 Let E = [0, 1) with Euclidean metric ρ.
Define P : E× E −→ E by P(u, v) = u/2 for all (u, v) in E× E and also define
ψ : E −→ [0,∞) by ψ(u) = 2u for all u in E.

Let u0 and v0 are arbitrary two points in E. Then we have

OP(u0,∞) =

{
u0,

u0
2
,
u0
22
, . . . ,

u0
2n
, . . .

}
and
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OP(v0,∞) =

{
v0,
v0
2
,
v0
22
, . . . ,

v0
2n
, . . .

}
.

Clearly, (E, ρ) is coupled orbitally complete as it is not complete. Further, for
all u in OP(u0,∞) and v in OP(v0,∞), we have

max{ρ(u, P(u, v)), ρ(v, P(v, u))} = max{|u− u/2| , |v− v/2|} = max{u/2, v/2}

≤ u+ v = ψ(u) +ψ(v) −ψ(P(u, v)) −ψ(P(u, v)).

Thus P satisfies inequality (2) with ψ(u) = 2u and so the conditions of The-
orem 2 are satisfied and limP(un−1, vn−1) = limP(vn−1, un−1) = 0. Further,
(0, 0) is a coupled fixed point of P and B(u, v) = ρ(P(u, v), u) is c.o.w.l.s.c. at
(0, 0).

Example 2 Let E = [0,∞) with Euclidean metric ρ and define

P : E× E −→ E by P(u, v) =

{
0 if u < v
2 if u ≥ v .

for all (u, v) in E× E. If we take u0 = 2 and v0 = 2, then

OP(2,∞) = {2, 2, 2, . . . .} and OP(2,∞) = {2, 2, 2, . . . .}.

Clearly, (E, ρ) is coupled orbitally complete and P satisfies inequality (2) for all
u in OP(2,∞) and v in OP(2,∞) with ψ(u) = u. So the conditions of Theorem
2 are satisfied and limP(un−1, vn−1) = limP(vn−1, un−1) = 2. Further, (2, 2)
is a coupled fixed point of P and B(u, v) = ρ(P(u, v), u) is c.o.w.l.s.c. at (2, 2).

Similarly, if we take u0 = 0 and v0 = 2, then

OP(0,∞) = {0, 0, 0, . . . .} and OP(2,∞) = {2, 2, 2, . . . .}.

Clearly, (E, ρ) is coupled orbitally complete and P satisfies inequality (2) for all
u in OP(0,∞) and v in OP(2,∞) with ψ(u) = u. So the conditions of Theorem
2 are satisfied and limP(un−1, vn−1) = 0, limP(vn−1, un−1) = 2. Further, (0, 2)
is a coupled fixed point of P and B(u, v) = ρ(P(u, v), u) is c.o.w.l.s.c. at (0, 2)
and (2, 0).

This shows that the coupled fixed point of P is not unique.
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