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Abstract. This article deals with the ratio of normalized Rabotnov
function Ry g (z) and its sequence of partial sums (Ry g),, (z). Several
examples which illustrate the validity of our results are also given.

1 Introduction

Let A be the class of functions f normalized by
flz)=z+) anz" (1)
n=2

which are analytic in the open unit disk & ={z € C: |z] < 1}.
Denote by S the subclass of A which consists of univalent functions in U.
Consider the function Ry g (z) defined by

o0

. pr n(1+«)
Roc,[S(Z)—Z nZ_Or((n_|_])(]—|—O())Z i ?

where I' stands for the Euler gamma function and o« > 0, 3 € C and z € U.
This function was introduced by Rabotnov in 1948 [14] and is therefore known
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as the Rabotnov function.

The function defined by (2) does not belong to the class A. Therefore, we

consider the following normalization of the Rabotnov function Ry g (z) : for
zelU,

1/(0+a) 1/(01+a) = Bnr o)

Rayp (2) = 11 +0) 2/ 149R, g (210490 = Zr

=0

Zn—H (3)

n+1))

where o« > 0 and 3 € C.
Note that some special cases of Ry g (z) are:

RO,f% (z) = ze%
RL% (z) = \ﬁsinh\ﬁ
Ry _ %(z —Z\fsm (4)
Ry (z) = ﬁsmh\f
] ) (Z) Zzsnzlh\/zz

For various interesting developments concerning partial sums of analytic uni-
valent functions, the reader may be (for examples) refered to the works of
Kazimoglu et al. [7], Caglar and Orhan [1], Lin and Owa [9], Deniz and Orhan
[3, 4], Owa et al. [13], Sheil-Small [17], Silverman [18] and Silvia [20]. Re-
cently, some researchers have studied on partial sums of special functions (see
(2,7, 8, 12, 16, 22]).

In this paper, we investigate the ratio of normalized Rabotnov function Ry g (z)
and its derivative defined by (3) to their sequences of partial sums

(Reply (2) =2z
Rog), (2)=z+ 3 Anz™', meN={1,2,3,..}, (5)
n=1
where
B (1 + )

An:l”(ﬂ—l—oc)(n—i—”)’ x>0and p €C.

We obtain lower bounds on ratios like

9‘{{ Ry (2) } . { (Rep),y (2) } . R’y (2) " (Rop)' ., (2) .
(R )y (2) ] Rop(z) 77 | (Rap), (2) [ R'qp (2)
Several examples will be also given.

Results concerning partial sums of analytic functions may be found in [5, 15].
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2 Main results

In order to prove our results we need the following lemma.

Lemma 1 Let « > 0 and B € C. Then the function Ryp (z) satisfies the
following inequalities:

Ry (2)] < et (z €U) (6)
IR« (2)] < <1 + ]E'(X) elie (zeU). (7)

Proof. By using the inductive method, we easily see that
(T4+a)"(M)IT(T+o) <T((14+a)(n+1))

and thus
M1+ «)
F(I+o)m+1) = T+ ()

x>0, neN. (8)

Making use of (8) and also the well-known triangle inequality, for z € U, we
have

B > BT (1+a) IBIF )
Rop (2)] = Z+;r((]+o¢)(n+1 ]+ZF n—H))
- Bt e
< T T

3
I,

and thus, inequality (6) is proved.
To prove (7), using again (8) and the triangle inequality, for z € U, we obtain

—H B“F TL—H IBI“ T+ «)
R/ — n Tl.
R (2) ”Z n+1 HZ Tn+1))
< 1+Z nH”S' —<1+]|E| )el+|cx
and thus, inequality (7) is proved. O

Let w (z) be an analytic function in U. In the sequel, we will frequently use
the following well-known result:

1
wd IEWEL G, e if and only if w(2) < 1, z €U,
1—w(z)
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Theorem 1 Let « > 0 and 0 < |B| < (1 + «)In2. Then

_Raplz) _eTia
m{(Ra,ﬁ)m(Z)}Zz etra, zeU 9)
e (Rag)y (2)
%P )m 12 T
%{W}Ze , z€eU. (10)

Proof. From inequality (6) we get

BT (14 )
FrNl+a«)(n+1))°

(0.)
1B
14 ) An<efes,where Ay =
n=1

The last inequality is equivalent to

1 0
(ns >ZAn§1.
el+cx—] n=1

In order to prove the inequality (9), we consider the function w(z) defined by

T+w(z) 1 Ry.p(2) _ 1 g
T—wz)  \ o 1) Rap)y @) \ o

and, thus we have

1+ m_Az“—l—( ! > o Azt
]+W(Z) _ Zn71 n ell-;—i‘()cf] anm—&-] n (11)

1T —w(z) T+3 M Azt

From (11), we obtain

1
( 8] >Zio_m+1 Anz"

W(Z) — elT+a —1
24257 A+ (g ) i Ane?
eT+a—1]
and
1
< ]\7| ) Z?xo:m—&-] An
w(z)| < e |

z—zzr_mn—( ; )z;?_mHAn
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Now, |w(z)] < 1 if and only if

iAn+<_]> S An<l. (12)

which is equivalent to

The last inequality holds true for 0 < |B| < (1 4+ «)In 2.
We use the same method to prove the inequality (10). Consider the function
w(z) given by

T+wlz) (1 ) Repl®) (1
T=wiz) B ) Rapln @) % g

T+ T Anz — ( ! ; ) 2 nemi1 Anz"

el+a —1

T+ 0, Anz?

W(Z) _ el+a —]
2+2 22—1 Anz" — \B]\ - ]) Zio:mﬂ Anz"
eT+o—1
and
1
( 1\7\ + ]> Z?Lo—m—&-] An
w(z)] < ere ]

2225 An— —1)2;?_%/\“
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Then, [w(z)| < 1 if and only if

iAn+ () i An < 1. (13)
n=1

1
el‘%—1

Since the left-hand side of (13) is bounded above by

we have that the inequality (10) holds true. Now, the proof of our theorem is
completed. O

Theorem 2 Let x >0 and 1 < (1 + M) e+« < 2. Then

T
%{W}ZZ—O—FH)W'M,ZGM (14)
(Rup). (2) T+
and
m{W}z (%) eTia, z € U. (15)

Proof. From (7) we have

]+Z(n+])An§£a,[3v

n=1

(1 1BL
where A,, = %, Lop = <1+%>el+cx, x>0, 3 €CandneN.

The above inequality is equivalent to

.] o0

&,

n=1

To prove (14), define the function w(z) by

14+ w(z) 1 Rip(2)  2—£ap

T—w(z)  Lop—T(Rap)y, (2)  Lop—1
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which gives

Zop T Lnomp M+ 1) Anz"
2425 0 (D Az + g 300y (1) Azt

w(z) =

and

wiz)l < Tt L (1) An
CI 2T DA g Dt (DAY

The condition [w(z)| < 1 holds true if and only if

m oo

1
Y m+NA tE T Y mHDA <. (16)
n=1 ’ n=m+1

The left-hand side of (16) is bounded above by

-] oo
m+1)A
£‘X’B — 1 n=1 b
which is equivalent to
2— Lop
. MmM+1AL>0
Lap—1 1; "
which holds true for 1 < (1 + 1”5| ) « < 2.

The proof of (15) follows the same pattern. Consider the function w(z) given
by
T+w(z) Loap RZX,B(Z) 1
T—w(z)  Lap—1 (Ro8)., (2) C Lap—1
T+ (1) Anzt — by 500y (1) Agz®
T+ 2, (n+1)Azn

Consequently, we have that

Zn =m+1 T1—|—1)AnZ

P

— 0((5 1
2+ZZ::1 (Tl+ ]) Anz™ — ’g(x‘ﬁ_’] n:er] (Tl+ 1)AnZn
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and

lw(z)| < cxrs Tzn ma-1 nm+1)A,
_Z_ZZTT:] n‘l‘”An—i“ﬁ;‘_ﬁ n:m+] Mm+1)A,

The last inequality implies that [w(z)| < 1 if and only if

2 o m
7 2 MHNA<2-2) (n+T)A,
B n=m+1 n=1
or equivalently
m 1 oo
Y m+NA+——— ) m+DA <. (17)
n=1 "8“»@ L
It remains to show that the left-hand side of (17) is bounded above by
] 3 mM+1A
n
£“’B —1 n=I1
This is equivalent to
2— Lap
ﬁ“’ﬁZ(nH)An>o,
&,

which holds true for 1 < <1 + ]‘ﬂ> eT+a < 2. Now, the proof of our theorem
is completed. O

3 Illustrative examples and image domains

In this section, we present several illustrative examples along with the geo-
metrical descriptions of the image domains of the appropriately chosen disk
by the partial sums which we considered in our main theorems in Sections 2.
From Theorem 1 and Theorem 2, we obtain the following corollaries for special
cases of ov and f3.

Corollary 1 If we take x =0 and 3 = —%, we have
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and for m =0 we get

s0,

2 e3 ~0.60439, zelU,

Vv

~0.71653, z €U,

e3 ~0.13918, z e U,

%
\S)
|

=
—
o
win
v
®\
W=

3e3 3
— > —e 3 x0. .
m{ 1_3} > e 0.5374, zelU

Corollary 2 For « =1 and f = %, we obtain

z 1 z Sinh\/Z
—v/2zsinh /= d — —cosh /2 2
(z) zsin \/; 11 (z) 5 o8 \/;-l- NoE

R,

N|=

)

and for m =0 we have

s0,
2 z 1
R Esmh 2 > 2—e3* = 0.71597, z€U,
R {\/icsch\/z} > e~ 07788, zell,
1 z sinh\/% 5 1
—cosh /= > 2— -—ed ~0.39497
%{zcos \/g—i- T > 464 0.3 , ZE€EU,
2 4 1
R . = > —e 4 ~0.62304, z€U.
cosh \/% + 7ﬂ513}£\6 >
Settingm =0, x =1 and 3 = —}1 in Theorem 1 and Theorem 2 respectively,

we obtain the next result involving the function R, _1 (z), defined by (4), and
]

its derivative.
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Corollary 3 The following inequialities hold true:

1 _
iﬁ{sinﬁ} > Z-e

oo|—=

5 ~ 043343, z el

%{ﬁcsc\f} > 2e 5 ~ 1.765, ze€ U,

Vz 2sin V2 9 1
m{coser ﬁz > 4—jei x 14504, z €U,
1 4 1
R z > = 8%039222 zeU.
f + 2sin 9
coS \[
Example 1 The image domains of fi(z) = %sin %, fa(z) = zcsc %,
sin f
f3(z) = cos \[ + 2 ﬁ and f4(z) = W are shown in Figure 1.
cos 5~ + 7z
.r e

0t filz) 1 (=) —
0.0 “"f’ "
'G'_ |

| M ful=) fil=)

04 10 15 h
Figure 1.

It is therefore of interest to determine the largest disk ¢, in which the partial

n

sums fn, = z+ Y a2 of the functions f € A are univalent, starlike, con-
k=1

vex and close-to-convex. Recently, Ravichandran also wrote a survey [15] on

geometric properties of partial sums of univalent functions. By the Noshiro-
Warschowski Theorem (see [6]) for m = 0 in the inequality (14) of Theorem 2,
we conclude that the function ]R ﬁ is univalent and also close-to-convex under

the condition 1 < (1 + 1‘[3' ) etia < 2. Noshiro [11] showed that the radius of

starlikeness of f;, partial sums of the functions f € A is 1M if satisfies the

inequality |f'(z)| < M. Therefore if we consider the inequality (7) in Lemma 1,
—IBl
we conclude that the radius of starlikeness of (Ryp),, is (ﬁ) eT+«. For
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functions whose derivatives has positive real part (JR(f(z)) > 0), Silverman

[19]

and Singh [21] proved that f,, is univalent in |z| < T, where 1, is the

smallest positive root of the equation 1—r—2r" = 0 and convex in |z| < 1,74,
respectively. In light of these results, for m = 0 in the inequality (14) of The-
orem 2, (Rgp),, is univalent in |z| < v, and convex in |z[ < 1,4. According to
the result of Miki [10], from (14), (Ryp),, is close-to-convex in |z| < 1,74. The
results are all sharp.
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