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Abstract. A permutation p of [k] = {1, 2, 3, . . . , k} is called Layman
permutation iff i+p(i) is a Fibonacci number for 1 ≤ i ≤ k. This concept
is introduced by Layman in the A097082 entry of the Encyclopedia of
Integers Sequences, that is the number of Layman permutations of [n]. In
this paper, we will study Layman permutations. We introduce the notion
of the Fibonacci complement of a natural number, that plays a crucial
role in our investigation. Using this notion we prove some results on the
number of Layman permutations, related to a conjecture of Layman that
is implicit in the A097083 entry of OEIS.

1 Introduction

Sequence (Fi)
∞
i=0 is the Fibonacci sequence ([9] A000045) defined as Fn =

Fn−1 + Fn−2 (n ≥ 2) with F0 = 0 and F1 = 1. We refer to F2 < F3 < F4 < . . . as
Fibonacci numbers. These numbers

1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, . . .

are the initial object of essential mathematical research. Also, many deep re-
sults in mathematics use them to solve central open problems. For example,
the solution of Hilbert’s tenth problem [8], or designing complex data struc-
tures for important algorithms [4] rely on properties of Fibonacci numbers.

Many mathematical concepts are related to Fibonacci numbers. Enumerat-
ing special permutations leads to the sequence (Fi)

∞
i=0: The set of permutations
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with |σ(i) − i| ≤ 1 for all i = 1, . . . , n is called the set of Fibonacci permuta-
tions. Investigating these has proved very fruitful (see for example [1] and [3]).
Permutation polynomials can also be linked to Fibonacci numbers (see [2]).

Our motivation is different from the above. Layman introduced a special
property of permutations (hereafter referred to as Layman’s property) which
is also related to Fibonacci numbers. Such permutations are henceforth called
Layman permutations.

Definition 1 (Layman (2004) [7]) A permutation p of [k] = {1, 2, 3, . . . , k}

is called Layman permutation iff i + p(i) is a Fibonacci number for all 1 ≤
i ≤ k.

The following permutations are Layman permutations(
1

1

)
,

(
1 2

2 1

)
,

(
1 2 3

1 3 2

)
,

(
1 2 3 4

4 3 2 1

)
,

(
1 2 3 4

1 3 2 4

)
.

We use the two-line notation to represent permutations. The last one denotes
π : 1 7→ 1, 2 7→ 3, 3 7→ 2, 4 7→ 4, i.e. π(1) = 1, π(2) = 3, π(3) = 2, π(4) = 4.
The Layman’s property means that the column sums in these permutations
are Fibonacci numbers.

Layman also submitted the sequence of ”the number of Layman permuta-
tions of [n]” to OEIS (entry A097082). The first few terms suggest that for all
positive integer n the set [n] has Layman permutation. Also, infinitely often
[n] has unique Layman permutation. The sequence of these positive integers
is submitted as the A097083 entry of OEIS. These entries of the Encyclopedia
do not have any mathematical content. The statements in A097083 are all
hypothetical ones, they are conjectures.

The main reason for this paper is to establish some mathematical results
on these sequences. Our main results are two claims. The first one is an easy
observation.

Observation 1 For all positive natural number n the set [n] has a Layman
permutation.

For the second results we need to introduce the sequence

Mm(n) =
∑

2≤i≤n,i≡n (mod m)

Fi = Fn + Fn−m + Fn−2m + . . . .
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We can considerMm(2) as the initial term of the sequence or start the sequence
with Mm(0) =Mm(1) = 0 (the value of the empty sum).

M4(n) =
∑

2≤i≤n,i≡n (mod 4)

Fi = Fn + Fn−4 + Fn−8 + . . .

plays a very important role in our discussion.

Theorem 1 If n ∈ N+ is not in the sequence (M4(k))
∞
k=2 then [n] has at least

two Layman permutations.

The entry A097083 of OEIS suggests the following conjecture.

Conjecture 1 For n ∈ N+ that set [n] has a unique Layman permutation if
and only if n is in the sequence (M4(k))

∞
k=2.

We established one direction of the conjecture.
In section 2 we introduce the notion of the Fibonacci complement of a

positive integer. Using the properties of this notion in section 3 we prove our
main results.

Throughout the paper the set {0, 1, 2, 3, . . .}, i.e. the set of natural numbers is
denoted as N. N+ denotes the set of positive integers. The intervals are always
intervals of Z, so ]2, 6] = (2, 6] = {3, 4, 5, 6}. A∪̇B denotes A ∪ B and contains
the extra information that A and B are disjoint.

2 Fibonacci complement of positive integers

Definition 2 Let n ∈ N+ be a positive integer. ν ∈ N is the Fibonacci com-
plement of n iff 1 ≤ ν ≤ n and n+ ν is a Fibonacci number.

We will use F-complement as an abbreviation of Fibonacci complement.

Observation 2 Every positive number has one or two F-complements.

Proof. Let F` be the minimal Fibonacci number, that is larger than n: F`−1 ≤
n < F`. The F-complements are the terms of F`−n < F`+1−n < F`+2−n < . . .,
that are at most n.

n < F` < F` + (F`+1 − n) = F`+2 − n,

hence we have only two options left: F` − n and F`+1 − n.

F` = F`−1 + F`−2 ≤ n+ n,

so F` − n ≤ n is an F-complement indeed. �
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Notation 1 Using the notation of the proof of the above observation we write
nF for F` −n, i.e. nF is the only F-complement of n or the smaller of the two
ones.

The final result of this section describes which case occurs for each natural
number n. For this, we need some preparations.

Recall, that
M3(k) = Fk + Fk−3 + Fk−6 + . . . .

Lemma 1 Mk(3) is the largest natural number t, that satisfies 2t < Fk+2.

Proof. It is well-known that 2Fk = Fk+2 − Fk−1 (see [6]). So

2M3(k) =2Fk + 2Fk−3 + 2Fk−6 + . . .

=(Fk+2 − Fk−1) + (Fk−1 − Fk−4) + (Fk−4 − Fk−7) + . . . .

The last term is 2F2 = F4−1 or 2F3 = F5−1 or 2F4 = F6−2. Depending on the
parity of Fk+2 (Fs is even iff s is divisible by 3, see [6]) we get Fk+2 − 1 (when
Fk+2 is odd) or Fk+2 − 2 (when Fk+2 is even). After collapsing the telescopic
sum we get Fk+2 − 1 or Fk+2 − 2, that proves the claim. �

Recall that

M2(k) = Fk + Fk−2 + Fk−4 + . . . = Fk+1 − 1,

where the last equality is a well-known, easy fact on Fibonacci numbers (see
[6]). Using Lemma 1 we get the following important claim.

Lemma 2 For all ` ∈ N+ any number n ∈ [M3(` − 1) + 1,M2(` − 1)] =
[M3(` − 1) + 1, F`[ has two F-complements. If n ∈ [F`−1,M3(` − 1)] for any
` ∈ N+, then it has exactly one F-complement.

Note that [F`−1,M3(` − 1)]∪̇]M3(` − 1), F`[ covers all integers in [F`−1, F`[,
furthermore these intervals partition N+.
Proof. Take an arbitrary natural number n from [F`−1, F`[. Note that our
notation coincides with the notation of the proof of Observation 2: F` is the
minimal Fibonacci number, that is larger than n: F`−1 ≤ n < F`.

From the proof of Observation 2 we know that n has two F-complements iff
F`+1 − n ≤ n, i.e. F`+1 ≤ 2n.

Lemma 1 says that M3(`−1) satisfies 2M3(`−1) < F`+1. Hence the elements
of [F`−1,M3(`− 1)], i.e. M3(`− 1) and smaller numbers from our interval have
unique F-complement.

Lemma 1 also says that 2(M3(` − 1) + 1) ≥ F`+1. Hence n ∈]M3(` − 1), F`[
has two F-complements. �
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3 Layman permutations

Notation 2 Let Ln be denote the set of Layman permutations.

We will use the so-called two-line notation to describe permutations. A 2×n
matrix visualizes the permutation. The Layman property is equivalent to that
each column sum is a Fibonacci number. Examples for Layman permutations:(
1

1

)
,

(
1 2

2 1

)
,

(
1 2 3

1 3 2

)
,

(
1 2 3 4

1 3 2 4

)
,

(
1 2 3 4

4 3 2 1

)
,

(
1 2 3 4 5

2 1 5 4 3

)
,

(
1 2 3 4 5 6

1 6 5 4 3 2

)
,

(
1 2 3 4 5 6

4 6 5 1 3 2

)
,

(
1 2 3 4 5 6 7

2 1 5 4 3 7 6

)
,(

1 2 3 4 5 6 7

7 6 5 4 3 2 1

)
,

(
1 2 3 4 5 6 7 8

1 3 2 4 8 7 6 5

)
,

(
1 2 3 4 5 6 7 8

4 3 2 1 8 7 6 5

)
.(

1 2 3 4 5 6 7 8 9 10

7 1 10 9 8 2 6 5 4 3

)
,

(
1 2 3 4 5 6 7 8 9 10

2 6 10 9 8 7 1 5 4 3

)
.

Observation 3 For any positive integer n the set Ln is not empty.

Our previous examples prove that the claim is true for n ≤ 8. If nF = 1

(equivalently nF− := nF − 1 = 0) then the reverse permutation exhibits the
truth of Observation 3.

One can prove Observation 3 by induction: If nF− 1 > 0 take p ∈ LnF− and
extend it with (

nF nF + 1 . . . n− 1 n

n n− 1 . . . nF + 1 nF

)
.

The argument, proving Observation 3, immediately gives us the following
claim.

Observation 4 If n has two F-complements then Ln has more than one ele-
ment.

Indeed. We have already constructed one. In that we used nF to cut [n] into
two blocks and apply induction plus a reverse permutation. We can do the
same with a second F-complement.

Observe that M4(` − 1) ∈ [F`−1,M3(` − 1)], hence M4(` − 1) has a unique
F-complement.

Also understanding the simple proof leads to the following definition.
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Definition 3 Let (s
(n)
i ) the following finite, decreasing sequence of positive

integers: s0 = n, furthermore if si exists and si
F− is positive then si+1 exists

too and si+1 = si
F−.

Based on (s
(n)
i )ki=0 we can explicitly describe the permutation produced by

the above recursion: Partition {1, 2, . . . , n} into blocks

{1, 2, . . . , sk} ∪ {sk + 1, . . . , sk−1} ∪ . . . ∪ {s2 + 1, . . . , s1} ∪ {s1 + 1, . . . , s0}

and reverse the order of each block (note that sk
F = 1 and si−1

F = si + 1 for
i = 1, 2, . . . , k− 1).

Let us see a few examples (each arrow denotes the application of the map-
ping x 7→ xF−):

s(2021) : 2021→ 562→ 47→ 8→ 4,

s(1869) : 1869→ 714→ 272→ 104→ 59→ 13→ 5→ 2, s(14) : 14→ 6→ 1,

s10 : 10→ 2, s(9) : 9→ 3→ 1, s(8) : 8→ 4, s(7) : 7, s(6) : 6→ 1.

Corollary 1 Assume that for n ∈ N+ in the sequence (s
(n)
i )ki=0 we have the

element 6 or 10 or a number with two F-complements. Then Ln has more than
one element.

For example, L6 and L10 have more than 1 permutation (see of our previous
examples). L7 has more than 1 permutation since 7 has two F-complements (1
and 6). L2021 has more than one permutation since 47 is in its s-sequence and
47 has two F-complements (8 and 42): For example, we obtain two elements
of L2021 we start with two elements of L47 based on the two F-complements of
47 and extend them by(

48 49 . . . 561 562 563 . . . 2021

562 561 . . . 49 48 2021 . . . 563

)
.

Note that in the case of n =M4(`) the corresponding s-sequence is

M4(`),M4(`− 2),M4(`− 4), . . .

a sequence ending with M4(3) = 2 or with M4(2) = 1. Indeed M4(`)+M4(`−

2) =M2(`) = F`+1 − 1, i.e. M4(`)
F−

=M4(`− 2).
A simple consequence of Corollary 1 is the following Theorem.

Theorem 2 Assume that n ∈ N+ is a number not in the form M4(`). Then
Ln has more than one element.
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Proof. n ∈ [F`−1, F`[ for a unique `. We are going to prove our claim, by
induction on `.

The claim is easy for ` = 3, 4, 5, 6, 7. For the induction step, assume that

n ∈ [F`−1, F`[\{M4(`−1)} = [F`−1,M3(`−1)]\{M4(`−1)}∪̇[M3(`−1)+1,M2(`−1)]

If n ∈ [M3(` − 1) + 1,M2(` − 1)], them we are done since n = s
(n)
0 has two

F-Complements. If k ∈ [F`−1,M3(`− 1)], then

s
(k)
1 = k

F−
= F` − k− 1 ∈ [F` −M3(`− 1) − 1, F` − F`−1 − 1].

Remember, that M4(`− 1)
F−

=M4(`− 3).
So if n ∈ [F`−1,M3(`− 1)] \ {M4(`− 1)} then

s
(n)
1 = (n)

F−
= F`−n−1 ∈ [F`−M3(`−1)−1,M4(`−3)−1]∪̇[M4(`−3)+1, F`−2−1].

Easy to check that M4(` − 4) < F` −M3(` − 1) − 1 hence the right hand side
does not contain any number of the form M4(m). The Theorem is proved. �

The proof really gave us the claim, that if n is not of the form M4(`), then
the assumption of Corollary 1 holds.

So the hardness of Layman’s conjecture (Conjecture 1) is to prove that for
n =M4(`) we have a unique Layman permutation.

4 Conclusion

We consider Conjecture 1 as a nice, important conjecture. It has a graph the-
oretical interpretation about bipartite graphs with a unique perfect matching.
The investigation of bipartite graphs with unique perfect matching ([5]) is
independent of our motivation. The conjecture connects two different lines of
research. We made the first step to settle the conjecture. We need further effort
to understand Layman permutations.
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