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Abstract: The paper presents a strategy of energy loss minimization within a hybrid 

energy storage system of an electrical vehicle, composed by a battery and a 

supercapacitor. The optimization of the power sharing between these energy storage 

devices is performed for the New European Driving Cycle, using the Particle Swarm 

Optimization algorithm. The minimum energy storage required to pass through the 

driving cycle is taken into account as a time-variable constraint during the optimization. 

The dimension of the search space increases with the dimension of the optimization 

vector, which has to be kept low in order to keep the complexity of the problem 

manageable. It is shown, that the subdivision, and piecewise optimization of the driving 

cycle improves the result by means of relaxation of the constraint represented by 

minimum level of the required energy storage. 
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1. Introduction 

In order to take advantage of the high energy storage capability of the batteries 

and high power capability of the supercapacitors, in electric vehicles these energy 

storage devices are combined into Hybrid Energy Storage Systems (HESS) [4] 

[7], [14]. An energy management algorithm has to be implemented to determine 
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the optimal power sharing between the battery and the supercapacitor in order to 

minimize the energy losses and to extend the battery life cycle [9], [12], [13]. 

Due to the complexity of the optimization problem, the stochastic Particle 

Swarm Optimization (PSO) method is a good candidate for solving this task. 

There is a vast literature on PSO applying different methods for handling the 

constraints [2], [3], [5], [6], [10], [11]. 

In [16], [17] we introduced a constrained particle swarm optimization (PSO) 

algorithm [15], [18], [19] to minimize the energy losses of a HESS from an 

electric vehicle, for a simple driving cycle. In this paper an extension of the PSO 

is presented for the standard New European Driving Cycle (NEDC) [20]. 

2. The Optimization Problem 

The model considered for the simulation and optimization of the electrical 

energy management is shown in Fig. 1. The hybrid energy storage system 

consists of a battery, a supercapacitor and the bidirectional power electronic 

converters connecting them to the same DC busbar, and providing the possibility 

of power sharing between the storage devices. Energy exchange between the 

battery and the supercapacitor has not been considered in this study. 

The instantaneous electrical power requirement is derived from the 

instantaneous acceleration and speed along the driving cycle, the vehicle 

parameters, and the electrical efficiency of the HESS. In this study, the converter 

and electric drive losses have been omitted in order to emphasize the effect of the 

losses in the storage devices. 

In the model, the battery voltage 𝑢𝐵𝐴𝑇 is constant, while the internal resistance 

𝑟𝐵𝐴𝑇 depends on its state of charge SOC [1], [8], [11]. The internal resistance 𝑟𝑆𝐶 

of the supercapacitor is constant, while its voltage 𝑢𝑆𝐶 varies with its state of 

energy SOE. The HESS parameters are shown in Table 1. 

The vehicle model parameters used for simulation, specified in Table 2, 

correspond to a Tesla Model 3. However, the electrical energy storage devices 

and their initial charge have been chosen to limit the vehicle range close to the 

driving cycle length. Thus, the capacity of the battery is 120% of the energy 

needed to pass through the NEDC driving cycle, and its initial SOC is 83.3%. 

The energy storage capacity of the supercapacitor is 20% of that of the battery, 

and it’s initial SOE is 50%. 
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Figure 1: The block diagram of the model considered for the optimal control of the 

hybrid energy storage system [16]. 

Table 1: The parameters of the HESS, used for simulation. 

Battery 

Capacity 𝑄𝑤ℎ   1.31 kWh 

No load voltage 𝑢𝐵𝐴𝑇  800 V 

Initial state of charge 𝑆𝑂𝐶𝑖𝑛𝑖𝑡  83.3 % 

Internal resistance at 

SOC=100% 
𝑟𝐵𝐴𝑇|𝑆𝑂𝐶=100% 600 mΩ 

Internal resistance at 

SOC=50% 
𝑟𝐵𝐴𝑇|𝑆𝑂𝐶=50% 1,05 mΩ 

Supercapacitor 

Capacity 𝐶𝑆𝐶 2.95 F 

Initial voltage 𝑈𝑆𝐶_𝑖𝑛𝑖𝑡 566 V 

Internal resistance 𝑟𝑆𝐶  100 mΩ 

Table 2: The parameters of the vehicle, used for simulation. 

Mass of the vehicle 𝑚   1611 kg 

Air density 𝜌𝑎𝑖𝑟  1.202 
kg

m3
 

Aerodynamic drag coefficient 𝐶𝑑 0.3 

Maximum cross-section area 𝐴𝑣𝑒ℎ𝑖𝑐𝑙𝑒  2.22 m2 

Rolling resistance coefficient 𝑓𝑣𝑒ℎ𝑖𝑐𝑙𝑒  0.011 

 

The optimization problem being studied is the optimal power sharing between 

the energy storage devices for minimum power losses in the HESS over a 

partition of the driving cycle. In the following, either a single partition (the entire 

driving cycle) or multiple partitions are being used, with subdivision of each 

partition into two segments. The optimization vector in each partition is formed 

by the power shares of the supercapacitor in the two subintervals, defined by (1), 
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extended with the length of the first subinterval normalized to the length of the 

partition [16]. 

 𝑥(𝑡) =
𝑝𝑆𝐶_𝑟𝑒𝑞(𝑡)

𝑝𝑒𝑙_𝑟𝑒𝑞(𝑡)
. (1) 

Thus, the optimization task is to find is to find the extended optimization vector 

 𝒙𝑚
∗ = [𝑥1, 𝑥2, 𝜏]𝑚 = arg min

𝒙∗
(𝑊𝑙𝑜𝑠𝑠), 𝑥1,2 ∈ [0,1], 𝜏 ∈ [0,1]  (2) 

In this way the dimension of the solution space is only 3, and the complexity 

of the problem is moderate [16]. 

In the following, this approach is applied to the whole driving cycle (“global 

optimization”) and subsequently to each partition of the driving cycle (“piecewise 

optimization”) to improve the result of the global optimization. 

3. Global Optimization 

The stochastic Particle Swarm Optimization (PSO) method is applied for the 

energy loss minimization in order to handle the problem complexity arising from 

the nonlinearity of the electric vehicle model including the HESS, the length of 

the driving cycle, and the multitude of local minima of the cost function Wloss. 

The minimum energy storage required to pass through the driving cycle is 

taken into account as a time-variable constraint during the optimization. 

Fig. 2 shows the vehicle velocity and acceleration along the New European 

Driving Cycle (NEDC). Based on the vehicle model, and on the estimated worst-

case minimum of the hybrid energy storage system efficiency, the required 

mechanical and electrical power is calculated. The energy storage needed to pass 

through the driving cycle is derived as well. Further on, this storage requirement 

is reduced due to the optimization results, allowing for the relaxation of the 

minimum stored energy constraint. 
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Figure 2: The NEDC velocity and acceleration (top); the power and electrical energy 

requirement along the driving cycle (bottom). 

The flowchart of the global optimization algorithm is shown in Fig. 3. The 

energy storage is initialized according to the initial estimation of the electrical 

efficiency over the whole driving cycle. The particle swarm optimization is 

performed over the entire driving cycle using the optimization variable [𝑥1, 𝑥2, 𝜏] 
as shown in Fig. 4. Thus, the entire NEDC is subdivided into two time-intervals 

with constant power sharing ratio. Both the power sharing ratios and the time 

instant of the subdivision are elements of the optimization variable. The 

corresponding particle swarm optimization (PSO) algorithm is described in detail 

in [16]. The number of individuals in the swarm is 25, and a number of 8 

constraints are applied during the optimization, including the minimum required 

energy storage, as a time function. The result of the optimization cycle is a better 

electrical efficiency, than initially assumed, thus the constraint regarding the 

required energy storage can be modified, extending the available search space, 

and thus improving the result of the next optimization cycle. A few such 

optimization cycles are performed until the efficiency increment using this 

method becomes negligible. 
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Figure 3: Flowchart of the global efficiency optimization algorithm. 
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Fig. 5 explains the evolution with the number of successive iterations of the 

required energy storage versus time, while Fig. 6 illustrates the evolution of the 

estimated efficiency with the number of optimization cycles. 

Further reduction of the HESS losses can be obtained by piecewise 

optimization over the partition of the driving cycle, as explained in the next 

section. 

 

Figure 4: The NEDC acceleration profile (top), and the interpretation of the global 

optimization vector (bottom): 𝑥min
∗ = (x1, x2, τ) = (0.524, 0.115, 0.533). 
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Figure 5: Variation of the energy storage requirement along the driving cycle with the 

number of iterations of the global efficiency optimization algorithm. 

 

Figure 6: Variation of the global efficiency of the HESS vs. the number of global 

optimization iterations. 
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4. Piecewise Optimization 

The dimension of the search space increases with the dimension of the 

optimization vector, which has to be kept low in order to keep the complexity of 

the problem manageable. It is shown, that the subdivision, and piecewise 

optimization of the driving cycle improves the result by means of relaxation of 

the constraint represented by the minimum level of the required energy storage. 

The partitioning of the driving cycle can be made in multiple ways, and the 

advantages of each still have to be analyzed. During this study it has been 

observed that a partitioning at positive zero-crossing instants of the acceleration 

curve yields better results, than other trials (ex. at negative zero-crossings of the 

acceleration, at positive or negative zero-crossings of the required instantaneous 

power, or equidistant partitioning), consequently this is the approach used for the 

piecewise optimization, as shown in Fig. 7. 

Each route section resulting from the partition is subdivided into two time-

intervals, and the PSO algorithm is applied using the optimization vector formed 

by the power sharing ratios and the relative position of the subdivision. In the  

k-th partition, the optimization vector is 𝒙 = (𝑥1𝑘 , 𝑥2𝑘 , 𝜏𝑘), where 𝜏𝑘 =
𝑻𝟏𝒌

𝑻𝟏𝒌+𝑻𝟐𝒌
, 

as shown in Fig. 7. 

 

Figure 7: Illustration of the driving cycle partitioning and the optimization vector 

components along different route sections. 
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The flowchart of the piecewise optimization algorithm is shown in Fig. 8. 

The energy saving ∆𝑊𝑒𝑠𝑘
 obtained along the k-th route section is subtracted from 

the required energy storage in the (𝑘 + 1)-th route section, thereby extending the 

available search space. This principle is illustrated in Fig. 9, where 𝑊𝑒(𝑡) is the 

energy consumption estimated using the efficiency obtained by global 

optimization, while 𝑊𝑒
∗(𝑡) is the energy consumption obtained by piecewise 

optimization, updating the energy storage requirement after each route section. 

 

Figure 8: Flowchart of the piecewise optimization algorithm, which extends the search 

space of each route section due to the “energy saving” from the previous section. 
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Figure 9: Time diagram for the illustration of the piecewise optimization algorithm.  

The continuous line represents the effective energy consumption, while the dashed  

lines represent energy consumptions assuming no piecewise optimization in the  

final sections of the route. 

Fig. 10 illustrates the evolution of the piecewise optimization vector components 

along the driving cycle, while Fig.11 shows the energy saving in each route 

section. 
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Figure 10: The NEDC acceleration profile (top), and the components of the piecewise 

optimization vector (bottom). 

 

Figure 11: The NEDC acceleration profile (top) and the “electrical energy saving” 

along each route section (bottom). 

The evolution of the battery state of charge (SOC) and of the supercapacitor state 

of energy (SOE) along the driving cycle is presented in Fig. 12 for both the global 

and the piecewise optimization cases. 
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Figure 12: Variation along the driving cycle of the battery state of charge (SOC) and 

supercapacitor state of energy (SOE) in the global optimization (top) and piecewise 

optimization (bottom) cases. 

Fig. 13 provides a proof of the improvement brought by the application of the 

piecewise optimization on top of the global optimization result. 

 

Figure 13: The accumulated electrical energy losses in the HESS along the driving 

cycle, in the global and piecewise optimization cases. 
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5. Conclusions 

In the paper it has been shown that the energy loss minimization of a hybrid 

energy storage system over a standard driving cycle of an electric vehicle can be 

successful applying a low-dimensional optimization vector. The optimization has 

been performed in two steps: an iterative global optimization and a piecewise 

optimization of the partitioned route. In both cases the result of the stochastic 

search is improved step-by-step due to the knowledge gain about the energy 

requirement in previous optimization steps. Thus, a feed-back about the entire 

route yields the relaxation of the constraints and allows for better search results. 

The detailed analysis of the driving cycle partitioning strategy remains a 

subject for future work. 
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