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Abstract. Applying geometrical construction in the 3-dim space, we
compose all good convergents of 3

√
2. The problem tackled in this paper

is the nature of the continued fraction expansion of 3
√
2: are the partial

quotients bounded or not.

1 Introduction

The present paper uses some notations and results of [5] and [3].
We investigate 3

√
2 and its adjunction ring. It is a common belief that the

partial quotients in C.F.E. of 3
√
2 that begins with

[1,3,1,5,1,1,4,1,1,8,1,14,1,10,2,1,4,12,2,3,2,1,3,4,1,1,2,14,3,12,1,15,3,1,4,534,1,...]

are not bounded, as supported by extensive computations, but there is no
proof [4].
In the adjunction ring, we have the unit ρ = 1 + 3

√
2 + 3

√
4 and its inverse

σ = −1+ 3
√
2. Multiplicative norm is defined in Z[ 3

√
2]. Let a = x+y

3
√
2+z

3
√
4,

its norm is N(a) = x3 + 2y3 + 4z3 − 6xyz.
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2 Ambient vector space V and its geometry

Now, let V = R3 be the 3-dimensional space endowed with the usual scalar
product ⟨a, b⟩ and cross product a× b. We define a linear mapping

η : Z[ 3
√
2] → V

by η(x + y
3
√
2 + z

3
√
4) = (x, y, z), the resulting image consisting of all vectors

with integer entries, multiplication inherited from Z[ 3
√
2].

Multiplication with σ will prove very important and we observe

η(σ · a) = Sη(a)

where S is the matrix −1 0 2

1 −1 0

0 1 −1

 .

If sj = η(σj), then we have sj+1 = Ssj,

s0 = (1, 0, 0), s1 = (−1, 1, 0), s2 = (1,−2, 1), s3 = (1, 3,−3).

With the aid of diagonalization we can write

sj = σjh+ ρ
j
2 (g cos(jθ) + k sin(jθ)) (1)

where h and g ± ik are eigenvectors of matrix S

g =
1

6
(4,−

3
√
4,−

3
√
2),

k =

√
3

6
(0,

3
√
4,−

3
√
2),

h =
1

6
(2,

3
√
4,

3
√
2)

and the rotation angle is

θ = π− arctan

√
3

3
√
2

2+ 3
√
2

.
= 146.20.

Remark: Formula (1) can be extended for noninteger t ∈ R

st = σth+ ρ
t
2 (g cos(tθ) + k sin(tθ)) (2)
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Plane P, spanned by g, k, is the eigenplane, invariant for S, and together
with the line of h forms the locus of zero norm.
The basic vectors sj with increasing positive j are approaching the invariant

plane and are for negative j almost collinear to eigenvector h.
For each real N we consider the funnel

FN = {(x, y, z) ∈ V ; x3 + 2y3 + 4z3 − 6xyz = N},

i.e. points of norm = N. The positive funnels lie ”above” the invariant plane
P : x+ y

3
√
2+ z

3
√
4 = 0, the negative ones ”below”. Figure 1 shows the funnel

F1 containing all the above units sj. The funnel flattens towards the invariant
plane P spanned by vectors g, k, and embraces the line of h.

Figure 1: Funel F1 with collar cϕ and vectors g, k, h.

3 Shortest vector algorithm

Definition 1 We denote by Mj the lattice of integral vectors, orthogonal to
sj.

Mj = {(x, y, z) ∈ Z3; ⟨(x, y, z), sj⟩ = 0}.

Using (1) we get a result on orthogonality

Lemma 1
Ts−j+1 × Ts−j = sj
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where transposition T is the linear transformation

T(x, y, z) = (z, y, x).

Thus, vectors orthogonal to sj are Ts−j and Ts−j+1 and they form a basis for
lattice Mj.

Lemma 2

Mj = {mTs−j+1 + nTs−j;m,n ∈ Z}.

Proof. Let (x, y, z) be point from Mj. Then (x, y, z) = αTs−j+1 + βTs−j for
some real α and β. Applying transformations T and Sj to this equation, we
get

Sj(z, y, x) = αs1 + βs0 = α(−1, 1, 0) + β(1, 0, 0)

□

To prove our theorem, the length of vectors that form a basis of the lattice
Mj is crucial to get good estimates. Therefore, we need the shortest basis
vectors uj, vj of lattice Mj. In [1] we find the construction called the shortest
vector algorithm SVA, which gives the shortest lattice vectors uj, vj and cross
product preserved by construction

uj × vj = sj. (3)

Computations of the shortest vectors can be done inductively, because vec-

tors
(
ST

)−1
uj,

(
ST

)−1
vj form the basis of latticeMj+1. This essentially reduces

the SVA algorithm.

4 Multiplications in V
We shall endow the 3-dim vector space V with some additional structures. We
already know the usual scalar and vector products. The multiplication can
also be inherited from the immersion of Z[ 3

√
2].

Definition 2 (x, y, z)⊗(a, b, c) = (ax+2cy+2bz, bx+ay+2cz, cx+by+az).

If we allow for any real entries, the multiplication retains its favorable prop-
erties of commutativity, associativity and distibutivity.
Function γ : V → R, γ(x, y, z) = x+ 3

√
2y+ 3

√
4z is multiplicative with respect

to the ⊗ product.
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5 Collar and collar coordinates

First we shall define the collar in F1, which is a topological circle of points cϕ
near the origin

cϕ = h+ g cosϕ+ k sinϕ.

We shall prove a uniqueness theorem.

Theorem 1 For every point (x, y, z) ∈ V, which does not lie on the invariant
plane or the invariant line, we have a unique representation

(x, y, z) =
3
√
Ncϕ ⊗ st

for some ϕ ∈ [0, 2π), t ∈ R and N is the norm of the given point.

Proof. Since multiplication with 3
√
N moves points from F1 to FN, we can

suppose (x, y, z) ∈ F1 and try to solve the equation

(x, y, z) = cϕ ⊗ st (4)

uniquely for ϕ ∈ [0, 2π), t ∈ R.
Function γ is positive on F1 and γ(cϕ ⊗ st) = σt, so t = logσ γ(x, y, z) is

defined. Point T0 = (x, y, z)⊗ s−t lies on F1 and has development

T0 = h+ αg + βk,

with α2 + β2 = 1, and (4) holds for some ϕ ∈ [0, 2π).
Uniqueness is the consequence of identity

cϕ ⊗ st = σth+ ρt/2(g cos(ϕ+ tθ) + k sin(ϕ+ tθ)).

□

Corollary 1 Every point (x, y, z) ∈ V has a unique representation

(x, y, z) =
3
√
Ncϕ ⊗ sj ⊗ sκ

where j is integer, κ ∈ [−0.723, 0.277), ϕ ∈ [0, 2π) and N is the norm of the
point.

In continuation of the article, Mathematica [6] is used to get some crucial
numerical not sharp estimates of smooth elementary functions on compact
interval or rectangle.
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6 Some technical lemmas

Lemma 3
ρ

κ
4 |cϕ ⊗ sκ| ≤ 1.152

for all ϕ ∈ [0, 2π] and κ ∈ [−0.723, 0.277].

The chosen interval of unit length gives optimal inequality.

Lemma 4
0.5773 < |g cosϕ+ k sinϕ| < 0.7534

for all ϕ ∈ [0, 2π].

Lemma 5
|sj| ≥ ρ

j
2 0.576

for j ≥ 4.

Proof. Estimate is the consequence of (1), Lemma 4 and

|sj| = ρ
j
2

∣∣∣σ 3j
2 h+ g cos(jθ) + k sin(jθ)

∣∣∣
≥ ρ

j
2

(
|g cos(jθ) + k sin(jθ)|− σ

3j
2 |h|

)
.

□
Lemma 6

K = 1+
δ

3
√
2q2

n

+
δ2

3
3
√
4q4

n

< 1.0032

for |δ| < 0.196 and qn ≥ 7.

Lemma 7
|uj| < 0.9328ρ

j
4

for j ≥ 5.

Proof. Because the angle φ = ∢(uj, vj) ∈ [π/3, π/2], [1], we use (1), (3) and
Lemma 4

|uj|
2

√
3

2
≤ |uj| |vj| sinφ =

∣∣∣σjh+ ρ
j
2 (g cos(jθ) + k sin(jθ))

∣∣∣
≤ σj |h|+ ρ

j
2 0.7534 ≤ ρ

j
2 0.7535

and Lemma folows. □

From this lemma and (1) we see that the length of vector uj is of the order of
the fourth root of the length of basis vectors Ts−j+1, Ts−j of Mj.
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Lemma 8 On the unit sphere |γ(x, y, z)| ≤ 1+ 3
√
2.

Lemma 9 On the unit sphere
√
Nγ(x, y, z) < 2.627.

7 Representation with the shortest vector

Take now a n-th C.F. convergent pn
qn

. As usual, we say

pn

qn
−

3
√
2 =

δ

q2
n

.

We express the norm of the vector (pn,−qn, 0) as

N = N(pn,−qn, 0) = p3
n − 2q3

n =

(
qn

3
√
2+

δ

qn

)3

− 2q3
n = 3

3
√
4qnδK (5)

where K is from Lemma 6.
Apply the collar representation

(pn,−qn, 0) =
3
√
Ncϕ ⊗ sj ⊗ sκ (6)

and we shall first express qn computing γ of the above equation:

γ(pn,−qn, 0) = pn −
3
√
2qn =

3
√
Nγ(cϕ)γ(sj)γ(sκ),

δ

qn
=

(
3

3
√
4qnδK

) 1
3
1σjσκ.

We get

qn =
√

|δ|
(
3

3
√
4
)− 1

4
K− 1

4ρ
3j
4 ρ

3κ
4 . (7)

Now, let in the representation (6) be a = 3
√
Ncϕ ⊗ sκ and calculate its length

|a| =
(

3
√

|N|ρ−
κ
4

)(
ρ

κ
4 |cϕ ⊗ sκ|

)
. (8)

We transform the first factor in (8) using (5) and (7)

3
√
|N|ρ−

κ
4 =

(
3

3
√
4
) 1

4
√
|δ|K

1
4ρ

j
4 . (9)

On the other hand, since uj × vj = sj by (3) and using Lemma 5 we get

|vj||vj| ≥ |uj||vj| > 0.576ρ
j
2 ,
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|vj| > 0.758ρ
j
4 .

In the representation (pn,−qn, 0) = a⊗ sj, the last component of ⊗ product
is scalar product ⟨Ta, sj⟩, thus Ta ⊥ sj, i.e. Ta ∈ Mj. As vj is the second
shortest basis vector, we have

Lemma 10 From |a| < 0.758ρ
j
4 , follows Ta = ±uj.

We are now prepared to formulate and prove

Theorem 2 Let a C.F. convergent pn
qn

have |δ| < 0.196. Then, for some j ∈ N,
there exists a representation

(pn,−qn, 0) = Tuj ⊗ sj.

Proof. In equation (8) we estimate factors one by one using (9), Lemma 3
and Lemma 6

|a| <
(
3

3
√
4
) 1

4
√
|δ|K

1
4ρ

j
4

(
ρ

κ
4 |cϕ ⊗ sκ|

)
< 1.478 · 0.443 · 1.0008 · ρ

j
4 · 1.152

< 0.755ρ
j
4 .

This yields the condition of Lemma 10 and thus proves the theorem.
Conditions used in lemmas are satisfied for all convergents, which have

|δ| < 0.196, except convergent 5
4 , which has j = 3 and the theorem is true

by inspection. □

From the first line of the proof we get an estimate of uj in terms oh δ.

Corollary 2

|uj|
2 < 2.91|δ|ρ

j
2 .

If p
q is convergent and B next partial quotient, then we have [2]

1

qn(B+ 2)
<

∣∣∣pn − qn
3
√
2
∣∣∣ < 1

qB
.

From this it follows that integer part of 1
|δ|

is B or B+ 1. Our Theorem covers
all partial quotiens with B greater than 5. This may prove useful in search of
big partial quotients.
Let as before, uj be the shortes lattice vector of Mj. Then we have Tuj ⊗ sj

of the form (p,−q, 0), p
q not necessarily a C.F. convergent. Still it is a good

approximation as the Theorem 3, some sort of converse of the Theorem 2
shows.
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Theorem 3 Let j be at least 5 and (p,−q, 0) = Tuj ⊗ sj. Then it holds

|p− q
3
√
2| < 2.11σ

3j
4 (10)

and for δ = q(p− q
3
√
2)

|δ| < 1.054. (11)

Proof. We use Lemmas 7 and 8

|p− q
3
√
2| = |γ(p,−q, 0)| = |γ(Tuj)γ(sj)| = |Tuj|

∣∣∣∣γ(
Tuj
|Tuj|

)∣∣∣∣σj

< 0.9328ρ
j
4 (1+

3
√
2)σj < 2.11σ

3j
4

and (10) is proved.
From inequality (10 ) we have for some constant |c| < 2.11

p = q
3
√
2+ cσ

3j
4 .

Function R =
√

N/γ is defined outside the invariant plane γ = 0, where it is
⊗ multiplicative.

R2(p,−q, 0) =
p3 − 2q3

p− q
3
√
2
= p2 + pq

3
√
2+ q2 3

√
4

= 3
3
√
4q2

(
1+

c

q
3
√
2
σ

3j
4 +

c2

3q2 3
√
4
σ

3j
2

)
= 3

3
√
4q2K̂2

and |q| = |R|√
3

3√
2K̂
.

We have
R(p,−q, 0) = R(Tuj)R(sj) = |Tuj|R(b)ρ

j
2 ,

γ(p,−q, 0) = γ(Tuj)γ(sj) = |Tuj|γ(b)σ
j,

where vector b is from the unit sphere. Using these equalities, Lemmas 7 and
9, we estimate

|δ| = |q||p− q
3
√
2| =

|R(p,−q, 0)|√
3

3
√
2K̂

|γ(p,−q, 0)| =
|Tuj|

2

√
3

3
√
2K̂

√
N(b)γ(b)σ

j
2

<
0.932822.627√

3
3
√
2K̂

<
1.048

K̂
<

1.048√
0.9892

< 1.054.
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We have used inequality

K̂2 > 1−
2.11
3
√
2 · 1

σ
3·5
4 −

2.112

3 · 12 3
√
4
σ

3·5
2 > 0.9892.

□

Thus p
q is a good rational approximation to 3

√
2. If |δ| < 0.5, then p

q is C.F.
convergent.
From the proof we get an estimate of δ in terms of uj.

Corollary 3

|δ| < 1.22|uj|
2σ

j
2 .
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