

DOI: 10.47745/ausm-2024-0013

Composition of continued fractions convergents to $\sqrt[3]{2}$

Mitja Lakner

Žaucerjeva ulica 17, 1000 Ljubljana, Slovenia email: mlakner@gmail.com

Peter Petek

University of Ljubljana, Faculty of Education, Kardeljeva ploščad 16, 1000 Ljubljana, Slovenia

email: peter.petek@guest.arnes.si

Marjeta Škapin Rugelj

University of Ljubljana,
Faculty of Civil and Geodetic Engineering,
Jamova 2, 1000 Ljubljana, Slovenia
email:

marjeta.skapin-rugelj@fgg.uni-lj.si

Abstract. Applying geometrical construction in the 3-dim space, we compose all good convergents of $\sqrt[3]{2}$. The problem tackled in this paper is the nature of the continued fraction expansion of $\sqrt[3]{2}$: are the partial quotients bounded or not.

1 Introduction

The present paper uses some notations and results of [5] and [3].

We investigate $\sqrt[3]{2}$ and its adjunction ring. It is a common belief that the partial quotients in C.F.E. of $\sqrt[3]{2}$ that begins with

 $[1,3,1,5,1,1,4,1,1,8,1,14,1,10,2,1,4,12,2,3,2,1,3,4,1,1,2,14,3,12,1,15,3,1,4,534,1,\ldots]$

are not bounded, as supported by extensive computations, but there is no proof [4].

In the adjunction ring, we have the unit $\rho=1+\sqrt[3]{2}+\sqrt[3]{4}$ and its inverse $\sigma=-1+\sqrt[3]{2}$. Multiplicative norm is defined in $\mathbb{Z}[\sqrt[3]{2}]$. Let $\alpha=x+y\sqrt[3]{2}+z\sqrt[3]{4}$, its norm is $N(\alpha)=x^3+2y^3+4z^3-6xyz$.

2010 Mathematics Subject Classification: 11A55, 11R16 Key words and phrases: bases, cubic root, continued fractions

2 Ambient vector space \mathcal{V} and its geometry

Now, let $\mathcal{V} = \mathbb{R}^3$ be the 3-dimensional space endowed with the usual scalar product $\langle \mathbf{a}, \mathbf{b} \rangle$ and cross product $\mathbf{a} \times \mathbf{b}$. We define a linear mapping

$$\eta \colon \mathbb{Z}[\sqrt[3]{2}] \to \mathcal{V}$$

by $\eta(x + y\sqrt[3]{2} + z\sqrt[3]{4}) = (x, y, z)$, the resulting image consisting of all vectors with integer entries, multiplication inherited from $\mathbb{Z}[\sqrt[3]{2}]$.

Multiplication with σ will prove very important and we observe

$$\eta(\sigma \cdot \alpha) = S\eta(\alpha)$$

where S is the matrix

$$\begin{bmatrix} -1 & 0 & 2 \\ 1 & -1 & 0 \\ 0 & 1 & -1 \end{bmatrix}.$$

If $s_j = \eta(\sigma^j)$, then we have $s_{j+1} = Ss_j$,

$$s_0 = (1,0,0), \quad s_1 = (-1,1,0), \quad s_2 = (1,-2,1), \quad s_3 = (1,3,-3).$$

With the aid of diagonalization we can write

$$\mathbf{s}_{j} = \sigma^{j} \mathbf{h} + \rho^{\frac{j}{2}} (\mathbf{g} \cos(j\theta) + \mathbf{k} \sin(j\theta)) \tag{1}$$

where **h** and $\mathbf{g} \pm i\mathbf{k}$ are eigenvectors of matrix S

$$\mathbf{g} = \frac{1}{6}(4, -\sqrt[3]{4}, -\sqrt[3]{2}),$$

$$\mathbf{k} = \frac{\sqrt{3}}{6}(0, \sqrt[3]{4}, -\sqrt[3]{2}),$$

$$\mathbf{h} = \frac{1}{6}(2, \sqrt[3]{4}, \sqrt[3]{2})$$

and the rotation angle is

$$\theta = \pi - \arctan \frac{\sqrt{3}\sqrt[3]{2}}{2 + \sqrt[3]{2}} \doteq 146.2^{\circ}.$$

Remark: Formula (1) can be extended for noninteger $t \in \mathbb{R}$

$$\mathbf{s}_{t} = \sigma^{t} \mathbf{h} + \rho^{\frac{t}{2}} (\mathbf{g} \cos(t\theta) + \mathbf{k} \sin(t\theta))$$
 (2)

Plane P, spanned by \mathbf{g}, \mathbf{k} , is the eigenplane, invariant for S, and together with the line of \mathbf{h} forms the locus of zero norm.

The basic vectors \mathbf{s}_j with increasing positive j are approaching the invariant plane and are for negative j almost collinear to eigenvector \mathbf{h} .

For each real N we consider the funnel

$$F_N = \{(x, y, z) \in \mathcal{V}; x^3 + 2y^3 + 4z^3 - 6xyz = N\},\$$

i.e. points of norm = N. The positive funnels lie "above" the invariant plane $P: x+y\sqrt[3]{2}+z\sqrt[3]{4}=0$, the negative ones "below". Figure 1 shows the funnel F_1 containing all the above units $\mathbf{s_j}$. The funnel flattens towards the invariant plane P spanned by vectors \mathbf{g} , \mathbf{k} , and embraces the line of \mathbf{h} .

Figure 1: Funel F_1 with collar \mathbf{c}_{ϕ} and vectors \mathbf{g} , \mathbf{k} , \mathbf{h} .

3 Shortest vector algorithm

Definition 1 We denote by M_j the lattice of integral vectors, orthogonal to \mathbf{s}_j .

$$M_j = \{(x, y, z) \in \mathbb{Z}^3; \langle (x, y, z), \mathbf{s}_j \rangle = 0\}.$$

Using (1) we get a result on orthogonality

Lemma 1

$$T\mathbf{s}_{-\mathbf{j}+1} \times T\mathbf{s}_{-\mathbf{j}} = \mathbf{s}_{\mathbf{j}}$$

where transposition T is the linear transformation

$$T(x, y, z) = (z, y, x).$$

Thus, vectors orthogonal to \mathbf{s}_j are $T\mathbf{s}_{-j}$ and $T\mathbf{s}_{-j+1}$ and they form a basis for lattice M_j .

Lemma 2

$$M_j = \{mTs_{-j+1} + nTs_{-j}; m,n \in \mathbb{Z}\}.$$

Proof. Let (x,y,z) be point from M_j . Then $(x,y,z) = \alpha T s_{-j+1} + \beta T s_{-j}$ for some real α and β . Applying transformations T and S^j to this equation, we get

$$S^{j}(z, y, x) = \alpha s_{1} + \beta s_{0} = \alpha(-1, 1, 0) + \beta(1, 0, 0)$$

To prove our theorem, the length of vectors that form a basis of the lattice M_j is crucial to get good estimates. Therefore, we need the shortest basis vectors \mathbf{u}_j , \mathbf{v}_j of lattice M_j . In [1] we find the construction called the *shortest vector algorithm* SVA, which gives the shortest lattice vectors \mathbf{u}_j , \mathbf{v}_j and cross product preserved by construction

$$\mathbf{u}_{\mathbf{j}} \times \mathbf{v}_{\mathbf{j}} = \mathbf{s}_{\mathbf{j}}.\tag{3}$$

Computations of the shortest vectors can be done inductively, because vectors $(S^T)^{-1}\mathbf{u}_j$, $(S^T)^{-1}\mathbf{v}_j$ form the basis of lattice M_{j+1} . This essentially reduces the SVA algorithm.

4 Multiplications in \mathcal{V}

We shall endow the 3-dim vector space \mathcal{V} with some additional structures. We already know the usual scalar and vector products. The multiplication can also be inherited from the immersion of $\mathbb{Z}[\sqrt[3]{2}]$.

Definition 2
$$(x, y, z) \otimes (a, b, c) = (ax+2cy+2bz, bx+ay+2cz, cx+by+az).$$

If we allow for any real entries, the multiplication retains its favorable properties of commutativity, associativity and distibutivity.

Function $\gamma \colon \mathcal{V} \to \mathbb{R}$, $\gamma(x, y, z) = x + \sqrt[3]{2}y + \sqrt[3]{4}z$ is multiplicative with respect to the \otimes product.

5 Collar and collar coordinates

First we shall define the collar in F_1 , which is a topological circle of points \mathbf{c}_{φ} near the origin

$$\mathbf{c}_{\Phi} = \mathbf{h} + \mathbf{g}\cos\phi + \mathbf{k}\sin\phi$$
.

We shall prove a uniqueness theorem.

Theorem 1 For every point $(x,y,z) \in \mathcal{V}$, which does not lie on the invariant plane or the invariant line, we have a unique representation

$$(x, y, z) = \sqrt[3]{N} \mathbf{c}_{\phi} \otimes \mathbf{s}_{t}$$

for some $\phi \in [0, 2\pi)$, $t \in \mathbb{R}$ and N is the norm of the given point.

Proof. Since multiplication with $\sqrt[3]{N}$ moves points from F_1 to F_N , we can suppose $(x, y, z) \in F_1$ and try to solve the equation

$$(\mathbf{x}, \mathbf{y}, \mathbf{z}) = \mathbf{c}_{\mathbf{\Phi}} \otimes \mathbf{s}_{\mathbf{t}} \tag{4}$$

uniquely for $\phi \in [0, 2\pi)$, $t \in \mathbb{R}$.

Function γ is positive on F_1 and $\gamma(\mathbf{c}_{\varphi} \otimes \mathbf{s}_t) = \sigma^t$, so $t = \log_{\sigma} \gamma(x, y, z)$ is defined. Point $T_0 = (x, y, z) \otimes \mathbf{s}_{-t}$ lies on F_1 and has development

$$T_0 = \mathbf{h} + \alpha \mathbf{g} + \beta \mathbf{k},$$

with $\alpha^2 + \beta^2 = 1$, and (4) holds for some $\varphi \in [0, 2\pi)$.

Uniqueness is the consequence of identity

$$\mathbf{c}_{\varphi} \otimes \mathbf{s}_{t} = \sigma^{t}\mathbf{h} + \rho^{t/2}(\mathbf{g}\cos(\varphi + t\theta) + \mathbf{k}\sin(\varphi + t\theta)).$$

Corollary 1 Every point $(x, y, z) \in V$ has a unique representation

$$(\mathbf{x}, \mathbf{y}, \mathbf{z}) = \sqrt[3]{N} \mathbf{c}_{\phi} \otimes \mathbf{s}_{j} \otimes \mathbf{s}_{\kappa}$$

where j is integer, $\kappa \in [-0.723, 0.277)$, $\varphi \in [0, 2\pi)$ and N is the norm of the point.

In continuation of the article, *Mathematica* [6] is used to get some crucial numerical not sharp estimates of smooth elementary functions on compact interval or rectangle.

6 Some technical lemmas

Lemma 3

$$\rho^{\frac{\kappa}{4}} \left| \mathbf{c}_{\Phi} \otimes \mathbf{s}_{\kappa} \right| \leq 1.152$$

for all $\phi \in [0, 2\pi]$ and $\kappa \in [-0.723, 0.277]$.

The chosen interval of unit length gives optimal inequality.

Lemma 4

$$0.5773 < |\mathbf{g}\cos\phi + \mathbf{k}\sin\phi| < 0.7534$$

for all $\phi \in [0, 2\pi]$.

Lemma 5

$$|\mathbf{s}_{i}| \geq \rho^{\frac{j}{2}} 0.576$$

for $j \ge 4$.

Proof. Estimate is the consequence of (1), Lemma 4 and

$$\begin{split} |s_j| &= \rho^{\frac{j}{2}} \left| \sigma^{\frac{3j}{2}} \mathbf{h} + \mathbf{g} \cos(j\theta) + \mathbf{k} \sin(j\theta) \right| \\ &\geq \rho^{\frac{j}{2}} \left(|\mathbf{g} \cos(j\theta) + \mathbf{k} \sin(j\theta)| - \sigma^{\frac{3j}{2}} \left| \mathbf{h} \right| \right). \end{split}$$

Lemma 6

$$K = 1 + \frac{\delta}{\sqrt[3]{2}q_n^2} + \frac{\delta^2}{3\sqrt[3]{4}q_n^4} < 1.0032$$

for $|\delta| < 0.196$ and $q_n \ge 7$.

Lemma 7

$$|\mathbf{u}_j|<0.9328\rho^{\frac{j}{4}}$$

for $j \geq 5$.

Proof. Because the angle $\phi = \sphericalangle(u_j,v_j) \in [\pi/3,\pi/2],$ [1], we use (1), (3) and Lemma 4

$$\begin{aligned} |\mathbf{u}_{j}|^{2} \frac{\sqrt{3}}{2} &\leq |\mathbf{u}_{j}| |\mathbf{v}_{j}| \sin \varphi = \left| \sigma^{j} \mathbf{h} + \rho^{\frac{j}{2}} (\mathbf{g} \cos(j\theta) + \mathbf{k} \sin(j\theta)) \right| \\ &\leq \sigma^{j} |\mathbf{h}| + \rho^{\frac{j}{2}} 0.7534 \leq \rho^{\frac{j}{2}} 0.7535 \end{aligned}$$

and Lemma follows.

From this lemma and (1) we see that the length of vector \mathbf{u}_j is of the order of the fourth root of the length of basis vectors $T\mathbf{s}_{-j+1}$, $T\mathbf{s}_{-j}$ of M_j .

Lemma 8 On the unit sphere $|\gamma(x,y,z)| \leq 1 + \sqrt[3]{2}$.

Lemma 9 On the unit sphere $\sqrt{N\gamma}(x,y,z) < 2.627$.

7 Representation with the shortest vector

Take now a n-th C.F. convergent $\frac{p_n}{q_n}$. As usual, we say

$$\frac{p_n}{q_n} - \sqrt[3]{2} = \frac{\delta}{q_n^2}.$$

We express the norm of the vector $(p_n, -q_n, 0)$ as

$$N = N(p_n, -q_n, 0) = p_n^3 - 2q_n^3 = \left(q_n\sqrt[3]{2} + \frac{\delta}{q_n}\right)^3 - 2q_n^3 = 3\sqrt[3]{4}q_n\delta K \quad (5)$$

where K is from Lemma 6.

Apply the collar representation

$$(\mathbf{p}_{n}, -\mathbf{q}_{n}, 0) = \sqrt[3]{\mathbf{N}} \mathbf{c}_{\phi} \otimes \mathbf{s}_{j} \otimes \mathbf{s}_{\kappa}$$
 (6)

and we shall first express q_n computing γ of the above equation:

$$\begin{split} \gamma(p_n,-q_n,0) &= p_n - \sqrt[3]{2} q_n = \sqrt[3]{N} \gamma(\mathbf{c}_\varphi) \gamma(\mathbf{s}_j) \gamma(\mathbf{s}_\kappa), \\ \frac{\delta}{q_n} &= \left(3\sqrt[3]{4} q_n \delta K\right)^\frac{1}{3} 1 \sigma^j \sigma^\kappa. \end{split}$$

We get

$$q_{n} = \sqrt{|\delta|} \left(3\sqrt[3]{4} \right)^{-\frac{1}{4}} K^{-\frac{1}{4}} \rho^{\frac{3j}{4}} \rho^{\frac{3\kappa}{4}}. \tag{7}$$

Now, let in the representation (6) be $a=\sqrt[3]{N}c_{\varphi}\otimes s_{\kappa}$ and calculate its length

$$|\mathbf{a}| = \left(\sqrt[3]{|N|} \rho^{-\frac{\kappa}{4}}\right) \left(\rho^{\frac{\kappa}{4}} |\mathbf{c}_{\varphi} \otimes \mathbf{s}_{\kappa}|\right). \tag{8}$$

We transform the first factor in (8) using (5) and (7)

$$\sqrt[3]{|N|} \rho^{-\frac{\kappa}{4}} = \left(3\sqrt[3]{4}\right)^{\frac{1}{4}} \sqrt{|\delta|} K^{\frac{1}{4}} \rho^{\frac{1}{4}}. \tag{9}$$

On the other hand, since $\mathbf{u}_{j} \times \mathbf{v}_{j} = \mathbf{s}_{j}$ by (3) and using Lemma 5 we get

$$|\mathbf{v}_{j}||\mathbf{v}_{j}| \ge |\mathbf{u}_{j}||\mathbf{v}_{j}| > 0.576\rho^{\frac{1}{2}},$$

$$|\mathbf{v}_{i}| > 0.758 \rho^{\frac{i}{4}}$$
.

In the representation $(p_n, -q_n, 0) = \mathbf{a} \otimes \mathbf{s}_j$, the last component of \otimes product is scalar product $\langle T\mathbf{a}, \mathbf{s}_j \rangle$, thus $T\mathbf{a} \perp \mathbf{s}_j$, i.e. $T\mathbf{a} \in M_j$. As \mathbf{v}_j is the second shortest basis vector, we have

Lemma 10 From $|\mathbf{a}| < 0.758 \rho^{\frac{1}{4}}$, follows $\mathsf{Ta} = \pm \mathbf{u}_{\mathrm{i}}$.

We are now prepared to formulate and prove

Theorem 2 Let a C.F. convergent $\frac{p_n}{q_n}$ have $|\delta| < 0.196$. Then, for some $j \in \mathbb{N}$, there exists a representation

$$(\mathfrak{p}_{\mathfrak{n}}, -\mathfrak{q}_{\mathfrak{n}}, \mathfrak{0}) = \mathsf{T}\mathbf{u}_{\mathfrak{j}} \otimes \mathbf{s}_{\mathfrak{j}}.$$

Proof. In equation (8) we estimate factors one by one using (9), Lemma 3 and Lemma 6

$$\begin{split} |\mathbf{a}| &< \left(3\sqrt[3]{4}\right)^{\frac{1}{4}} \sqrt{|\delta|} K^{\frac{1}{4}} \rho^{\frac{j}{4}} \left(\rho^{\frac{\kappa}{4}} | \mathbf{c}_{\varphi} \otimes \mathbf{s}_{\kappa}|\right) \\ &< 1.478 \cdot 0.443 \cdot 1.0008 \cdot \rho^{\frac{j}{4}} \cdot 1.152 \\ &< 0.755 \rho^{\frac{j}{4}}. \end{split}$$

This yields the condition of Lemma 10 and thus proves the theorem.

Conditions used in lemmas are satisfied for all convergents, which have $|\delta| < 0.196$, except convergent $\frac{5}{4}$, which has j = 3 and the theorem is true by inspection.

From the first line of the proof we get an estimate of \mathbf{u}_i in terms oh δ .

Corollary 2

$$|\mathbf{u}_{j}|^{2} < 2.91 |\delta| \rho^{\frac{j}{2}}$$
.

If $\frac{p}{q}$ is convergent and B next partial quotient, then we have [2]

$$\frac{1}{q_{\mathfrak{n}}(B+2)} < \left| p_{\mathfrak{n}} - q_{\mathfrak{n}} \sqrt[3]{2} \right| < \frac{1}{qB}.$$

From this it follows that integer part of $\frac{1}{|\delta|}$ is B or B + 1. Our Theorem covers all partial quotiens with B greater than 5. This may prove useful in search of big partial quotients.

Let as before, u_j be the shortes lattice vector of M_j . Then we have $Tu_j \otimes s_j$ of the form (p,-q,0), $\frac{p}{q}$ not necessarily a C.F. convergent. Still it is a good approximation as the Theorem 3, some sort of converse of the Theorem 2 shows.

Theorem 3 Let j be at least 5 and $(p,-q,0)=T\mathbf{u}_j\otimes\mathbf{s}_j.$ Then it holds

$$|p - q\sqrt[3]{2}| < 2.11\sigma^{\frac{3j}{4}} \tag{10}$$

and for $\delta = q(p - q\sqrt[3]{2})$

$$|\delta| < 1.054. \tag{11}$$

Proof. We use Lemmas 7 and 8

$$\begin{split} |p-q\sqrt[3]{2}| &= |\gamma(p,-q,0)| = |\gamma(T\mathbf{u}_j)\gamma(\mathbf{s}_j)| = |T\mathbf{u}_j| \left| \gamma\left(\frac{T\mathbf{u}_j}{|T\mathbf{u}_j|}\right) \right| \sigma^j \\ &< 0.9328 \rho^{\frac{1}{4}} (1+\sqrt[3]{2})\sigma^j < 2.11 \sigma^{\frac{3j}{4}} \end{split}$$

and (10) is proved.

From inequality (10) we have for some constant |c| < 2.11

$$p = q\sqrt[3]{2} + c\sigma^{\frac{3j}{4}}.$$

Function $R = \sqrt{N/\gamma}$ is defined outside the invariant plane $\gamma = 0$, where it is \otimes multiplicative.

$$\begin{split} R^2(p,-q,0) &= \frac{p^3 - 2q^3}{p - q\sqrt[3]{2}} = p^2 + pq\sqrt[3]{2} + q^2\sqrt[3]{4} \\ &= 3\sqrt[3]{4}q^2\left(1 + \frac{c}{q\sqrt[3]{2}}\sigma^{\frac{3j}{4}} + \frac{c^2}{3q^2\sqrt[3]{4}}\sigma^{\frac{3j}{2}}\right) \\ &= 3\sqrt[3]{4}q^2\hat{K}^2 \end{split}$$

and $|q| = \frac{|R|}{\sqrt{3}\sqrt[3]{2}\hat{k}}$. We have

$$\begin{split} R(p,-q,0) &= R(T\mathbf{u}_j)R(\mathbf{s}_j) = |T\mathbf{u}_j|R(\mathbf{b})\rho^{\frac{j}{2}},\\ \gamma(p,-q,0) &= \gamma(T\mathbf{u}_j)\gamma(\mathbf{s}_j) = |T\mathbf{u}_j|\gamma(\mathbf{b})\sigma^j, \end{split}$$

where vector \mathbf{b} is from the unit sphere. Using these equalities, Lemmas 7 and 9, we estimate

$$\begin{split} |\delta| &= |q||p - q\sqrt[3]{2}| = \frac{|R(p, -q, 0)|}{\sqrt{3}\sqrt[3]{2}\hat{K}} |\gamma(p, -q, 0)| = \frac{|T\mathbf{u}_j|^2}{\sqrt{3}\sqrt[3]{2}\hat{K}} \sqrt{N(\mathbf{b})\gamma(\mathbf{b})} \sigma^{\frac{1}{2}} \\ &< \frac{0.9328^2 2.627}{\sqrt{3}\sqrt[3]{2}\hat{K}} < \frac{1.048}{\hat{K}} < \frac{1.048}{\sqrt{0.9892}} < 1.054. \end{split}$$

We have used inequality

$$\hat{K}^2 > 1 - \frac{2.11}{\sqrt[3]{2} \cdot 1} \sigma^{\frac{3.5}{4}} - \frac{2.11^2}{3 \cdot 1^2 \sqrt[3]{4}} \sigma^{\frac{3.5}{2}} > 0.9892.$$

Thus $\frac{p}{q}$ is a good rational approximation to $\sqrt[3]{2}$. If $|\delta|<0.5$, then $\frac{p}{q}$ is C.F. convergent.

From the proof we get an estimate of δ in terms of \mathbf{u}_i .

Corollary 3

$$|\delta|<1.22|\mathbf{u}_j|^2\sigma^{\frac{j}{2}}.$$

References

- [1] M. R. Bremner, Lattice Basis Reduction, CRC Press, Boca Raton 2012.
- [2] A. Ya. Khinchin, *Continued fractions*, The University of Chicago Press, Chicago, 1964.
- [3] M. Lakner, P. Petek, M. Škapin Rugelj, Different bases in investigation of $\sqrt[3]{2}$, Scientific Bulletin, Series A, Applied mathematics and physics **77**(2) (2015), 151–162.
- [4] S. Lang, H. Trotter, Continued fractions for some algebraic numbers, *J. für Mathematik* **255** (1972), 112–134.
- [5] P. Petek, M. Lakner, M. Škapin Rugelj, In the search of convergents to $\sqrt[3]{2}$, Chaos, Solitons and Fractals 41(2) (2009), 811–817.
- [6] Wolfram Research, Inc., Mathematica 11.2, Champaign 2017.

Received: October 24, 2021