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Abstract. Applying geometrical construction in the 3-dim space, we
compose all good convergents of v/2. The problem tackled in this paper
is the nature of the continued fraction expansion of v/2: are the partial
quotients bounded or not.

1 Introduction

The present paper uses some notations and results of [5] and [3].
We investigate v/2 and its adjunction ring. It is a common belief that the
partial quotients in C.F.E. of v/2 that begins with

(1,3,1,5,1,1,4,1,1,8,1,14,1,10,2,1,4,12,2,3.2.1,3,4,1,1,2,14,3,12,1,15,3,1,4,534,1,...]

are not bounded, as supported by extensive computations, but there is no
proof [4].

In the adjunction ring, we have the unit p = 1+ v/2 + V4 and its inverse
o=—1+v2. Multiplicative norm is defined in Z[V/2]. Let a = x+y \3&—1—2\3/21,
its norm is N(a) = x3 + 2y + 423 — 6xyz.
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2 Ambient vector space V and its geometry

Now, let V = R3? be the 3-dimensional space endowed with the usual scalar
product (a,b) and cross product a x b. We define a linear mapping

n: Z[V2] -V

by n(x +yv/2 + zv4) = (x,y,z), the resulting image consisting of all vectors
with integer entries, multiplication inherited from Z[v/2].
Multiplication with o will prove very important and we observe

n(o-a) =Sn(a)
where S is the matrix
-1 0 2
1T -1 0
o 1 -
If s = n(07), then we have Sj+1 = Ssj,
SO:(])O)O)) 51:(_])])0)) 52:“)_2)])) 532“)3)_3)-
With the aid of diagonalization we can write

s; = o'h + p? (g cos(j0) + ksin(j0)) (1)

where h and g + ik are eigenvectors of matrix S
&= (4, ~Va,~ V)
k = ?(o, V4, —2),
h= %(z, V4, 3/2)

and the rotation angle is

V332
2+ V2

Remark: Formula (1) can be extended for noninteger t € R

= 146.2°,

0 = 7t — arctan

sy = o'h + p2 (g cos(t0) + ksin(t0)) (2)
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Plane P, spanned by g, k, is the eigenplane, invariant for S, and together
with the line of h forms the locus of zero norm.

The basic vectors s; with increasing positive j are approaching the invariant
plane and are for negative j almost collinear to eigenvector h.

For each real N we consider the funnel

Fn = {(x%,Y,2) € V;x® +2y° +42° — 6xyz = N},

i.e. points of norm = N. The positive funnels lie "above” the invariant plane
P:x+yv2+2zv4 =0, the negative ones "below”. Figure 1 shows the funnel
Fy containing all the above units s;. The funnel flattens towards the invariant
plane P spanned by vectors g, k, and embraces the line of h.

h

Figure 1: Funel Fy with collar ¢y, and vectors g, k, h.

3 Shortest vector algorithm
Definition 1 We denote by M; the lattice of integral vectors, orthogonal to
5.

Mj = {(x,y,z) € Z?’; <(X>U)Z))Sj> = O}

Using (1) we get a result on orthogonality

Lemma 1
TS,)'+] X TS,j =8j
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where transposition T is the linear transformation
T(x,y,z) = (z,y,x).

Thus, vectors orthogonal to s; are Ts_j and Ts_j; and they form a basis for
lattice M;.

Lemma 2
M; ={mTs_j,1 +nTs_j;m,n € Z}.

Proof. Let (x,y,z) be point from M;. Then (x,y,z) = oTs_j11 + BTs_; for
some real o and 3. Applying transformations T and S’ to this equation, we
get

Sj(Z,U)X) = as1 + Psp = (X(—], ])O) + B(])an)

O

To prove our theorem, the length of vectors that form a basis of the lattice
M; is crucial to get good estimates. Therefore, we need the shortest basis
vectors uj, vj of lattice M;. In [1] we find the construction called the shortest
vector algorithm SVA, which gives the shortest lattice vectors uj, vj and cross
product preserved by construction

11]' X Vj = S]'. (3)

Computations of the shortest vectors can be done inductively, because vec-
tors (ST)_] uj, (ST)_] vj form the basis of lattice M. This essentially reduces
the SVA algorithm.

4 Multiplications in V

We shall endow the 3-dim vector space V with some additional structures. We
already know the usual scalar and vector products. The multiplication can
also be inherited from the immersion of Z[v/2].

Definition 2 (x,y,z)®(a,b,c) = (ax+2cy+2bz, bx+ay+2cz, cx+by+az).

If we allow for any real entries, the multiplication retains its favorable prop-
erties of commutativity, associativity and distibutivity.

Function y: V — R, y(x,y, z) = x+ v2y+ v/4z is multiplicative with respect
to the ® product.



Composition of continued fractions convergents to V2 173

5 Collar and collar coordinates

First we shall define the collar in Fy, which is a topological circle of points ¢y,
near the origin
¢y =h+gcosd + ksin ¢.

We shall prove a uniqueness theorem.

Theorem 1 For every point (x,y,z) € V, which does not lie on the invariant
plane or the invariant line, we have a unique representation

(x,1,2) = VNegy @ st
for some ¢ € [0,27), t € R and N is the norm of the given point.

Proof. Since multiplication with +N moves points from F; to Fn, we can
suppose (x,Yy,z) € F; and try to solve the equation

(x,y,z) =Cy ® st (4)

uniquely for ¢ € [0,2mn), t € R.
Function vy is positive on Fy and y(cy ®@ s¢) = o', so t = log,y(x,y,z) is
defined. Point Ty = (x,y,z) ® s_¢ lies on F; and has development

Tth—i-O(g-l—Bk,

with o + B2 =1, and (4) holds for some ¢ € [0, 271).
Uniqueness is the consequence of identity

¢y ®sy = 0o'h+ o2 (g cos(dp + t0) + ksin(d + t0)).

Corollary 1 FEvery point (x,y,z) € V has a unique representation
(x,y,2) = S/ch) ® 8§ ® 8¢

where j is integer, k € [—0.723,0.277), & € [0,27) and N is the norm of the
point.

In continuation of the article, Mathematica [6] is used to get some crucial
numerical not sharp estimates of smooth elementary functions on compact
interval or rectangle.
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6 Some technical lemmas

Lemma 3
P4 [egp @ s < 1.152

for all & € (0,27 and x € [—0.723,0.277].
The chosen interval of unit length gives optimal inequality.

Lemma 4

0.5773 < |gcos ¢ + ksin ¢| < 0.7534
for all ¢ € [0, 2m7].

Lemma 5 _
sl > 020.576

forj > 4.

Proof. Estimate is the consequence of (1), Lemma 4 and

lsjl = p% G%h—kgcos(je) +ksin(j6))

> p% <|gcos(j9) +ksin(j0)| — o2 |h|) .

Lemma 6
5 &2

n < 1.0032
V2q3  3V4q)

K=1+

for |8] < 0.196 and qn > 7.

Lemma 7

[us| < 0.9328p7%
forj >>5.

Proof. Because the angle ¢ = <(uj,v;) € [n/3,7/2], [1], we use (1), (3) and
Lemma 4

3 : j
|uj|2 \zf < |y |vj|sin @ = |’h + p% (gcos(j0) + ksin(j0))
< o) |n| + p30.7534 < p20.7535

and Lemma folows. O

From this lemma and (1) we see that the length of vector uj is of the order of
the fourth root of the length of basis vectors Ts_j 1, Ts_j of M;.
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Lemma 8 On the unit sphere ly(x,y,z)] < 1+ v/2.

Lemma 9 On the unit sphere /Nvy(x,y,z) < 2.627.

7 Representation with the shortest vector

Take now a n-th C.F. convergent g—z. As usual, we say

Pn 3 o
qn dn

We express the norm of the vector (pn,—qn,0) as

3
N = N(pn, —qn,0) = pj, — 25, = <qn\3f2 + ;) —2q5, = 3V4qn8K  (5)

where K is from Lemma, 6.
Apply the collar representation

(pm —(n, 0) = WC¢ & 85 & s (6)

and we shall first express qn computing y of the above equation:

Y(Pry—Gny 0) = pn — V2qn = VNy(cg)v(si)v(sc),
§ /.3 51«
P (3\/Zlqn6K> 100",

We get
3 *% _1 3 3k
gn = V01 (3V3) T KTHpTp (7)
Now, let in the representation (6) be a = v/N ¢ ® s¢ and calculate its length
al = (/NI (pileg @ 5il) - (8)

We transform the first factor in (8) using (5) and (7)

1 )
VINIp™8 = (3¥3)" V/lsIK o (9)

On the other hand, since uj x vj =s; by (3) and using Lemma 5 we get

1
vjllv;| > luyllv;| > 0.576p2,
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vl > 0.758p7.

In the representation (pn, —qn,0) = a®s;, the last component of ® product
is scalar product (Ta,s;j), thus Ta L sj, i.e. Ta € M;. As v; is the second
shortest basis vector, we have

Lemma 10 From |a] < 0.758p%, follows Ta = +u;.
We are now prepared to formulate and prove

Theorem 2 Let a C.F. convergent 2—2 have |8 < 0.196. Then, for somej € N,
there exists a representation

(pn, —(n, 0) = Tllj & s;j.

Proof. In equation (8) we estimate factors one by one using (9), Lemma 3
and Lemma 6

1 .
al < (3V4) " VIsIKi o (pileq @ sl
< 1.478-0.443 .1.0008 - p* - 1.152
< 0.755p7.

This yields the condition of Lemma 10 and thus proves the theorem.

Conditions used in lemmas are satisfied for all convergents, which have
8] < 0.196, except convergent %, which has j = 3 and the theorem is true
by inspection. O

From the first line of the proof we get an estimate of uj in terms oh 9.

Corollary 2 ‘
fu? < 2.9118]p2.

If % is convergent and B next partial quotient, then we have [2]

1 3 1

CESTR G R
From this it follows that integer part of I%\ is B or B+ 1. Our Theorem covers
all partial quotiens with B greater than 5. This may prove useful in search of
big partial quotients.

Let as before, u; be the shortes lattice vector of M;. Then we have Tu; ® s;
of the form (p,—q,0), % not necessarily a C.F. convergent. Still it is a good
approximation as the Theorem 3, some sort of converse of the Theorem 2
shows.
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Theorem 3 Let j be at least 5 and (p,—q,0) = Tu; ®s;. Then it holds

Ip— qv/2| < 21107 (10)
and for & = q(p — q/2)
18] < 1.054. (11)

Proof. We use Lemmas 7 and &

Ip— qv2 = [v(p,—q,0)| = hy(Tuy)y(s;)| = Tuyl

||ll]|
< O;32894J (1 + \/2)0—] < 2.'10—4)

and (10) is proved.
From inequality (10 ) we have for some constant |c| < 2.11

P :q€f2+cc%

Function R = /N /v is defined outside the invariant plane y = 0, where it is
® multiplicative.

R(p—a,0) = P2 _ 21 pq V4 VA
S pqv2
. 2 .
_3€/ZZ<1+ < ai’+co?)
a qv2 3q2V/4
= 3V/4¢*R?
_ _ IR
and |q|—\/§\%ﬁ.
We have

R(p,—q,0) = R(Tuy)R(s;) = |Tu;|R(b)p2,
v(p, —q,0) = v(Tw)y(s;) = [Tujly(b)d,

where vector b is from the unit sphere. Using these equalities, Lemmas 7 and
9, we estimate

o — a3~ ROy=9, O (Tl ]
5] =lqllp — q V2| = N3 v (p, Q>0)|—\@\3ﬁ2 N(b)y(b)o

< 0.932822.627  1.048 1.048

< < < 1.054.
V392R R 1/0.9892
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We have used inequality

211 s 2112 s
R2>1— Waﬁ _ m(% > 0.9892.
0

Thus % is a good rational approximation to v/2. If [5| < 0.5, then % is C.F.
convergent.
From the proof we get an estimate of & in terms of u;.

Corollary 3 .
18 < 1.22uj?072.

References

[1] M. R. Bremner, Lattice Basis Reduction, CRC Press, Boca Raton 2012.

[2] A. Ya. Khinchin, Continued fractions, The University of Chicago Press,
Chicago, 1964.

[3] M. Lakner, P. Petek, M. Skapin Rugelj, Different bases in investigation of
V/2, Scientific Bulletin, Series A, Applied mathematics and physics 77(2)
(2015), 151-162.

[4] S. Lang, H. Trotter, Continued fractions for some algebraic numbers, J.
fir Mathematik 255 (1972), 112-134.

[5] P. Petek, M. Lakner, M. Skapin Rugelj, In the search of convergents to
V2, Chaos, Solitons and Fractals 41(2) (2009), 811-817.

[6] Wolfram Research, Inc., Mathematica 11.2, Champaign 2017.

Received: October 24, 2021



	Introduction
	Ambient vector space V and its geometry
	Shortest vector algorithm
	Multiplications in V
	Collar and collar coordinates
	Some technical lemmas
	Representation with the shortest vector

