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Abstract. The uniqueness problems of entire functions sharing at least
two values with their derivatives or linear differential polynomials have
been studied and many results on this topic have been obtained. In our
paper, we study the uniqueness of an entire function when it shares a
small function with its first derivative and two linear differential poly-
nomials of different orders. Here we consider the differential polynomial
with non-constant coefficients. In particular, the result of the paper im-
proves the results due to P. Li [7], I. Kaish and Md. M. Rahaman [4].

1 Introduction, definitions and results

Let us consider a non-constant meromorphic function f in the open complex
plane C. For a meromorphic function a = a(z) defined in C, we denote by
E(a; f) the set of zeros of f−a, counted with multiplicities and by E(a; f), the
set of distinct zeros of f− a.
The investigation of uniqueness of an entire function sharing two values has

been introduced by L.A. Rubel and C.C. Yang [9] in 1977 by the following
result.
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Theorem A [9] Let f be a non-constant entire function satisfying E(a; f) =
E(a; f(1)) and E(b; f) = E(b; f(1)), for distinct finite complex numbers a and b.
Then f ≡ f(1).

If for two meromorphic functions f and g, E(a; f) = E(a;g) then we say that
f and g share a CM and if E(a; f) = E(a;g) then we say that f and g share a
IM. In Theorem A, f and f(1) share a and b CM.
In 1979 considering IM sharing, E. Mues and N. Steinmetz [8] proved the

following result.

Theorem B [8] Let f be a non-constant entire function satisfying E(a; f) =
E(a; f(1)) and E(b; f) = E(b; f(1)). Then f = f(1).

From the following example we see that the two values cannot be replaced
by a single value.

Example 1 Let f(z) = exp(ez)
∫z
0 exp(−e

t)(1−et)dt. Then f(1)−1 = ez(f−1)

and so E(1; f) = E(1; f(1)) but f ̸= f(1).

Considering a single shared value G. Jank, E. Mues and L. Volkmann [3]
established the following result.

Theorem C [3] Let f be a non-constant entire function satisfying E(a; f) =
E(a; f(1)) ⊂ E(a; f(2)), for a non-zero constant a. Then f = f(1).

J. Chang and F. Fang [1] extended Theorem C by considering shared fixed
points. Their result may be stated as follows.

Theorem D [1] Let f be a non-constant entire function satisfying E(z; f) =
E(z; f(1)) ⊂ E(z; f(2)), then f = f(1).

In 2009, I. Lahiri and G.K. Ghosh [5] extended Theorem D and proved the
following theorem.

Theorem E [5] Let f be a non-constant entire function and a(z) = αz + β,
where α( ̸= 0), β are constants. If E(a; f) ⊂ E(a; f(1)) and E(a; f(1)) ⊂ E(a; f(2)),
then either f = Aexp(z) or f = αz+β+ (αz+β− 2α)exp{αz+β−2αα }, where A
is a non-zero constant.

For further discussion we need the following notation.
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Let f be a non-constant meromorphic function and A be a set of complex
numbers. For any meromorphic function a = a(z), the integrated counting
function NA(r, a; f) of zeros of f− a which lie in A ∩ {z : |z| ≤ r} is defined as

NA(r, a; f) =

∫ r
0

nA(t, a; f) − nA(0, a; f)

t
dt+ nA(0, a; f) log r,

where nA(t, a; f) is the number of zeros of f − a, counted according to their
multiplicities in A∩ {z : |z| ≤ r} and nA(0, a; f) be the multiplicity of the zeros
of f − a at origin. T(r, f) be the characteristic function of f and S(r, f) is any
quantity satisfying S(r, f) = o{T(r, f)} as r→ ∞ possibly outside a set of finite
linear measure. A meromorphic function a = a(z) defined in C is called a
small function of f if T(r, a) = S(r, f). For standard definitions and notations
we refer the reader to [2] and [10].
For two subsets A and B of C, we denote by A△B the symmetric difference

of A and B i.e. A△ B = (A− B) ∪ (B−A).
I. Lahiri and I. Kaish [6] extended Theorem E in the following way.

Theorem F [6] Let f be a non-constant entire function and a = a(z) be a poly-
nomial. Suppose that A = E(a; f)△ E(a; f(1)) and B = E(a; f(1)) \ {E(a; f(n)) ∩
E(a; f(n+1))}. If

(i) deg(a) ̸= deg(f),

(ii) NA(r, a; f) +NA(r, a; f
(1)) = O{logT(r, f)} and NB(r, a; f

(1)) = S(r, f),

(iii) each common zero of f − a and f(1) − a has the same multiplicity, then
f = λez, where λ( ̸= 0) is a constant.

Suppose that f be a non-constant entire function and a1, a2, ..., an(̸= 0) are
complex numbers. Then

L = L(f) = a1f
(1) + a2f

(2) + ...+ anf
(n), (1)

is called a linear differential polynomial generated by f.

In 1999 P. Li [7] extended Theorem C by considering a linear differential
polynomial and they prove the following theorem.

Theorem G [7] Let f be a non-constant entire function and L be defined
by (1). Suppose that a be a non-zero finite value. If E(a; f) = E(a; f(1)) and
E(a; f) ⊂ E(a;L) ∩ E(a;L(1)), then f = f(1) = L.
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In 2018 I. Kaish and Md.M. Rahaman [4] improved Theorem F and Theorem
G in the following way.

Theorem H [4] Let f be a non-constant entire function and L = a2f
(2) +

a3f
(3) + ... + anf

(n) , where a2, a3, ..., an(̸= 0) are constants , and n(≥ 2) be
an integer. Also let a(z) ̸= 0 be a polynomial with deg(a) ̸= deg(f). Suppose
that A = E(a; f)△ E(a; f(1)) and B = E(a; f(1)) \ {E(a;L) ∩ E(a;L(1))}. If

(1) NA(r, a; f) +NA(r, a; f
(1)) = O{logT(r, f)},

(2) NB(r, a; f
(1)) = S(r, f), and

(3) each common zero of f− a and f(1) − a has the same multiplicity,

then f = L = λez, where λ( ̸= 0) is a constant .

In this paper we consider a linear differential polynomial of an entire function
f whose coefficients are small functions of f and we improve Theorem G and
Theorem H by considering small function sharing by an entire function and its
differential polynomials of various orders. The following theorem is our main
result in the paper.

Theorem 1 Let f be a non-constant entire function and a = a(z)( ̸= 0,∞)
be a small function of f with a ̸≡ a(1). Suppose that A = E(a; f)△ E(a; f(1)),
B = E(a; f(1)) \ {E(a;L(p)) ∩ E(a;L(q))}, and L = a1(z)f

(1)(z) + a2(z)f
(2)(z) +

... + an(z)f
(n)(z) , where a1(z), a2(z), ..., an(z)( ̸= 0) are small functions of f

and n, p, q are positive integers, q > p ≥ 0. If

(i) E1)(a; f) ⊂ E(a; f(1)),

(ii) NA(r, a; f) +NA∪B(r, a; f
(1)) = S(r, f), and

(iii) each common zero of f− a and f(1) − a has the same multiplicity,

then f = L = δez, where δ( ̸= 0) is a constant.

Putting A = B = ∅, we get the following corollary.

Corollary 1 Let f be a non-constant entire function and a = a(z)( ̸= 0,∞)
be a small function of f with a ̸≡ a(1). If E(a; f) = E(a; f(1)) and E(a; f(1)) ⊂
{E(a;L(p)) ∩ E(a;L(q))}, where L is defined as in Theorem 1, then f = L = δez,
where δ( ̸= 0) is a constant.
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In Corollary 1, if we consider that a is a constant and L be a linear differential
polynomial with constant coefficient then it is a particular case of Theorem G.
Also in corollary if we consider that a is a polynomial with deg(a) ̸= deg(f), L
is a linear differential polynomial with constant coefficient and a1 = 0, p = 0,
q = 1 then it is Theorem H.
We assume the following:

1. The degree of a transcendental entire function is infinity.

2. The order of a differential polynomial of f is the order of the highest
ordered derivative of f presented in the polynomial.

2 Lemmas

In this section we give some necessary lemmas.

Lemma 1 [1] Let f be a meromorphic function and k be a positive integer.
Suppose that f is a solution of the following differential equation : a0w

(k) +
a1w

(k−1) + ... + akw = 0, where a0( ̸= 0), a1, a2, ..., ak are constants. Then
T(r, f) = O(r). Furthermore, if f is transcendental, then r = O(T(r, f)).

Lemma 2 [1] Let f be a meromorphic function and n be a positive integer. If
there exists meromorphic functions a0( ̸≡ 0), a1, a2, ..., an such that

a0f
n + a1f

n−1 + ...+ an−1f+ an ≡ 0,

then

m(r, f) ≤ nT(r, a0) +

n∑
j=1

m(r, aj) + (n− 1) log 2.

Lemma 3 ([2], p. 68). Let f be a transcendental meromorphic function and
fnP(z) = Q(z), where P(z), Q(z) are differential polynomials generated by f
and the degree of Q is at most n. Then m(r, P) = S(r, f).

Lemma 4 ([2], p. 69). Let f be a non-constant meromorphic function and

g(z) = fn(z) + Pn−1(f),

where Pn−1(f) is a differential polynomial generated by f and of degree at most
n− 1.
If N(r,∞; f)+N(r, 0;g) = S(r, f), then g(z) = hn(z), where h(z) = f(z)+ a(z)

n

and hn−1(z)a(z) is obtained by substituting h(z) for f(z), h(1)(z) for f(1)(z) etc.
in the terms of degree n− 1 in Pn−1(f).
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Lemma 5 ([2], p. 57). Suppose that g be a non-constant meromorphic func-
tion and ψ =

∑l
ν=0 aνg

(ν), where a ′
νs are meromorphic functions satisfying

T(r, aν) = S(r, g) for ν = 1, 2, . . . , l. If ψ is non-constant, then

T(r, g) ≤ N(r,∞;g) +N(r, 0;g) +N(r, 1;ψ) + S(r, g).

Lemma 6 Let f be a non-constant meromorphic function and a = a(z) be a
small function of f with a ̸≡ a(1). Then

T(r, f) ≤ N(r,∞; f) +N(r, a; f) +N(r, a; f(1)) + S(r, f).

Proof. Lemma follows from Lemma 5 for g = f− a and ψ = g(1)

a−a(1)
. □

Lemma 7 Let f be a non-constant entire function and a = a(z)( ̸= 0,∞) be
a small function of f with a ̸≡ a(1). If

(i) NA(r, a; f) +NA(r, a; f
(1)) = S(r, f), where A = E(a; f)△ E(a; f(1)),

(ii) each common zero of f− a and f(1) − a has the same multiplicity,

then T(r, f) ≤ 2N(r, a; f) + S(r, f).

Proof. Let z0 be a zero of f − a and f(1) − a with multiplicity q(≥ 2).
Then z0 is a zero of f(1) − a(1) with multiplicity q − 1. Hence z0 is a zero
of a− a(1) = (f(1) − a(1)) − (f(1) − a) with multiplicity q− 1.

Then we have

N(2(r, a; f) ≤ 2N(r, 0;a− a(1)) +NA(r, a; f)

= S(r, f). (2)

Again

N(r, a; f(1) ≤ N(r, a; f) +NA(r, a; f
(1)) + S(r, f)

= N(r, a; f) + S(r, f). (3)

Now using (2) and (3) and from Lemma 6, we get

T(r, f) ≤ 2N(r, a; f) + S(r, f).

□
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Lemma 8 ([2], p.47). Let f be a non-constant meromorphic function and
a1, a2, a3 be three distinct meromorphic functions satisfying T(r, aν) = S(r, f)
for ν = 1, 2, 3. Then

T(r, f) ≤
3∑
ν=1

N(r, aν; f) + S(r, f).

Lemma 9 ([10], p.92). Suppose that f1, f2, . . . , fn(n ≥ 3) are meromorphic
functions which are not constants except for fn. Furthermore, let

∑n
j=1 fj ≡ 1.

If fn ̸≡ 0 and
∑n
j=1N(r, 0; fj) + (n− 1)

∑n
j=1N(r,∞; fj) < {λ+ o(1)}T(r, fk),

where r ∈ I, k = 1, 2, . . . , n− 1 and λ < 1, then fn ≡ 1.

Lemma 10 Let f be a non-constant entire function and a = a(z)( ̸= 0,∞) be
a small function of f with a ̸≡ a(1). Suppose that A = E(a; f) △ E(a; f(1)) ,
B = E(a; f(1)) \ {E(a;L(p)) ∩ E(a;L(q))}, where L is defined in Theorem 1 and
q > p ≥ 0. If

(i) E1)(a; f) ⊂ E(a; f(1)),

(ii) NA(r, a; f) +NA∪B(r, a; f
(1)) = S(r, f), and

(iii) each common zero of f− a and f(1) − a has the same multiplicity,

then the function h = f(1)−a
f−a is a small function of f.

Proof. Let F = f− a. Then from

h =
f(1) − a

f− a
, (4)

we get

F(1) = f(1) − a(1) = f(1) − a+ (a− a(1))

= hF+ (a− a(1))

= b1F+ c1, (5)

where b1 = h, c1 = a− a(1) = b (say).
Differentiating (5) and then using (5), we get

F(2) = b1F
(1) + b

(1)
1 F+ c

(1)
1

= b1(b1F+ c1) + b
(1)
1 F+ c

(1)
1
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= (b1b1 + b
(1)
1 )F+ b1c1 + c

(1)
1

= b2F+ c2,

where b2 = b1b1 + b
(1)
1 and c2 = b1c1 + c

(1)
1 .

Similarly,
F(k) = bkF+ ck, (6)

where bk+1 = b1bk + b
(1)
k and ck+1 = c1bk + c

(1)
k .

If h is a constant then T(r, h) = S(r, f) i.e. h is a small function of f. So we
suppose h is non-constant.
Clearly from the hypothesis, we can obtain

N(r, 0;h) +N(r,∞;h) ≤ NA(r, a; f) +NA(r, a; f
(1))

= S(r, f). (7)

Now putting k = 1 in bk+1 = b1bk + b
(1)
k , we get

b2 = b1b1 + b
(1)
1 = h2 + h(1) = h2 + hd1,

where d1 =
h(1)

h .

Again putting k = 2 in bk+1 = b1bk + b
(1)
k , we have

b3 = b1b2 + b
(1)
2

= h3 + 3d1h
2 + d2h,

where d2 = d
(1)
1 + d21 .

Similarly,

b4 = h
4 + 6d1h

3 + (d2 + 6d
2
1 + 3d

(1)
1 )h2 + (d

(1)
2 + d1d2)h.

Therefore in general, we get for k ≥ 2

bk = h
k +

k−1∑
j=1

αjh
j, (8)

where T(r, αj) = O(N(r, 0;h) +N(r,∞;h)) + S(r, h) = S(r, f), for j = 1, 2, . . . ,
k− 1.
Again putting k = 1 in ck+1 = c1bk + c

(1)
k , we have

c2 = c1b1 + c
(1)
1 = hb+ b(1).
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Also putting k = 2 in ck+1 = c1bk + c
(1)
k , we can obtain

c3 = bh
2 + (b(1) + 2bd1)h+ b(2).

Similarly,

c4 = bh
3 + (5hd1 + b

(1))h2 + (3b(1)d1 + 4bd
(1)
1 + b2 + d2b)h+ b(3).

Therefore in general, we get for k ≥ 2

ck =

k−1∑
j=1

βjh
j + b(k−1), (9)

where T(r, βj) = O(N(r, 0;h) +N(r,∞;h)) + S(r, h) = S(r, f), for j = 1, 2, . . . ,
k− 1.

Case 1. In this case we suppose that either n ≥ 2 or n = 1, a1 ̸= 1 and p ≥ 0
or n = 1, a1 = 1 and p > 0.
We put

Ψ =
(a− L(p)(a))(f(1) − a(1)) − (a− a(1))(L(p)(f) − L(p)(a))

f− a
(10)

Then by lemma of the logarithmic derivative, we get m(r, Ψ) = S(r, f).
Also from the hypothesis

N(r, Ψ) ≤ N(2(r, a; f) +NA(r, a; f) +NB(r, a; f
(1)) +N(r,∞;ak)

= S(r, f).

Therefore T(r, Ψ) = S(r, f).
Now from (11), we have

ΨF = (a− L(p)(a))F(1) − bL(p)(F)

= (a− L(p)(a))(hF+ b) − b

n∑
k=1

akF
(k+p), using (5)

= (a− L(p)(a))(hF+ b) − b

n∑
k=1

ak[bk+pF+ ck+p], using (6)

= (a− L(p)(a))(hF+ b) − b

n∑
k=1

ak

{
hk+p +

k+p−1∑
j=1

αjh
j

}
F
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−b

n∑
k=1

ak

{ k+p−1∑
j=1

βjh
j + b(k+p−1)

}
, using (8), using (9)

Or, [
Ψ− h(a−L(p)(a)) +b

n∑
k=1

ak

{
hk+p+

k+p−1∑
j=1

αjh
j

}]
F

+

[
b

n∑
k=1

ak

{ k+p−1∑
j=1

βjh
j+b(k+p−1)

}
− b(a−L(p)(a))

]
= 0.

(11)

Or,
∆1F+ ∆2 = 0, (12)

where

∆1 = Ψ− h(a− L(p)(a)) + b

n∑
k=1

ak

{
hk+p +

k+p−1∑
j=1

αjh
j

}
and

∆2 = b

n∑
k=1

ak

{ k+p−1∑
j=1

βjh
j + b(k+p−1)

}
− b(a− L(p)(a)).

If ∆1 ≡ 0, then by Lemma 2 we get m(r, h) = S(r, f) and from (7), T(r, h) =
S(r, f).
Therefore we suppose ∆1 ̸≡ 0.
From (12) we get

F = −
∆2
∆1
. (13)

From First Fundamental theorem and the properties of characteristic func-
tion, we can obtain

T(r, F) = O(T(r, h)) + S(r, f)

i.e.

T(r, f) = T(r, F) + S(r, f)

= O(T(r, h)) + S(r, f). (14)

Here ∆1 is a polynomial of h of degree n + p and ∆2 is a polynomial of h
of degree n + p − 1 . Also the coefficients of both the polynomials are small
functions of h .
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Without loss of generality we may suppose F is irreducible if not cancelling
the common factor it can be made irreducible.
Since N(r, F) = S(r, f), from (13) and (14), we get

N(r, 0;∆1) = S(r, h).

Also from (7) and (14), we have

N(r,∞;h) = S(r, f) = S(r, h).

Then by Lemma 4, we get

∆1 =

(
h+

c

n+ p

)n+p
, (15)

where c is the coefficient of hn+p−1 in ∆1.
If c ̸= 0 then from Lemma 8, we can obtain

T(r, h) ≤ N(r, 0;h) +N(r,∞;h) +N

(
r,−

c

n+ p
;h

)
+ S(r, h)

= N(r, 0;∆1) + S(r, h)

= S(r, h),

a contradiction.
Therefore c = 0 and from (15), ∆1 = h

n+p and from (13), F = − ∆2
hn+p .

Differentiating, we have

F(1) = −
hn+p∆

(1)
2 − (n+ p)hn+p−1∆2

(hn+p)2
h(1)

= d1
(n+ p)∆2 − h∆

(1)
2

hn+p
,

where d1 =
h(1)

h .
From the properties of characteristic function, we get

T(r, F(1)) = (n+ p)T(r, h) + S(r, h). (16)

Again

F(1) = hF+ b = −
∆2

hn+p−1
+ b,
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Therefore

T(r, F(1)) = (n+ p− 1)T(r, h) + S(r, h). (17)

From (16) and (17) we get T(r, h) = S(r, h), which is a contradiction. Therefore

T(r, h) = S(r, f).

Case 2. In this case we suppose n = 1, a1 = 1 and p = 0. Then L(p) = L = f(1).
We put

Ψ1 =
(a− L(q)(a))(f(1) − a(1)) − (a− a(1))(L(q)(f) − L(q)(a))

f− a
. (18)

From the hypothesis

N(r, Ψ1) ≤ NA(r, a; f) +NB(r, a; f
(1)) +N(2(r, a; f) +N(r,∞;ak)

= S(r, f).

Also m(r, Ψ1) = S(r, f).
Therefore T(r, Ψ1) = S(r, f).
Now following the similar arguments of case-1 and using (18), we can prove

T(r, h) = S(r, f).

This proves the lemma. □

3 Proof of the main theorem

Proof.
To prove the theorem let us consider h as defined in Lemma 10.
That is,

h =
f(1) − a

f− a
. (19)

By Lemma 10, T(r, h) = S(r, f).
Now from (19), we have

f(1) = hf+ a(1− h)

= ξ1f+ η1, (20)

where ξ1 = h and η1 = a(1− h).
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Differentiating (20) and then using it, we get

f(2) = ξ
(1)
1 f+ ξ1f

(1) + η
(1)
1

= ξ
(1)
1 f+ ξ1(ξ1f+ η1) + η

(1)
1

= (ξ
(1)
1 + ξ1ξ1)f+ ξ1η1 + η

(1)
1

= ξ2f+ η2, (21)

where ξ2 = ξ
(1)
1 + ξ1ξ1 and η2 = η

(1)
1 + ξ1η1.

Similarly
f(k) = ξkf+ ηk, (22)

where ξk+1 = ξ
(1)
k + ξ1ξk and ηk = η

(1)
k + η1ξk.

Since T(r, h) = S(r, f), we see that

T(r, ξk) + T(r, ηk) = S(r, f), (23)

for k = 1, 2, ... .
Now

L(p) =

n∑
k=1

akf
(k+p)

=

n∑
k=1

ak(ξk+pf+ ηk+p)

=

( n∑
k=1

akξk+p

)
f+

( n∑
k=1

akηk+p

)
= µ1f+ ν1, (24)

where

µ1 =

n∑
k=1

akξk+p and ν1 =

n∑
k=1

akηk+p.

Since each ak is a small function of f and from (23), T(r, µ1) + T(r, ν1) =
S(r, f).
Similarly

L(q) = µ2f+ ν2, (25)

where

µ2 =

n∑
k=1

akξk+q and ν2 =

n∑
k=1

akηk+q.
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Also T(r, µ2) + T(r, ν2) = S(r, f).
Let z1 be a zero of f − a such that z1 ̸∈ A ∪ B. Then f(z1) = f(1)(z1) =

L(p)(z1) = L
(q)(z1) = a(z1).

From (24) and (25), we get

µ1(z1)a(z1) + ν1(z1) − a(z1) = 0

and

µ2(z1)a(z1) + ν2(z1) − a(z1) = 0.

If µ1(z)a(z) + ν1(z) − a(z) ̸≡ 0, then

N(r, a; f) ≤ NA(r, a; f) +N(r, 0;µ1a+ ν1 − a) + S(r, f)

= S(r, f).

From Lemma 7, T(r, f) = S(r, f), a contradiction. Therefore

µ1(z)a(z) + ν1(z) ≡ a(z). (26)

Again if µ2(z)a(z) + ν2(z) − a(z) ̸≡ 0, then

N(r, a; f) ≤ NA(r, a; f) +N(r, 0;µ2a+ ν2 − a) + S(r, f)

= S(r, f).

From Lemma 7, T(r, f) = S(r, f), a contradiction. Therefore

µ2(z)a(z) + ν2(z) ≡ a(z). (27)

From (26) and (27), we see that µ1(z) ≡ µ2(z) ≡ 1 and ν1(z) ≡ ν2(z) ≡ 0.
Therefore from (24) and (25), we have L(p) ≡ L(q) ≡ f.
Let q− p = r. Then

L(p+r) ≡ L(q) or f(r) ≡ f. (28)

Solving (28), we get

f = p1e
α1z + p2e

α2z + ...+ pte
αtz, (29)

where α1, α2,...,αt are distinct roots of z
r−1 = 0 and p1, p2, ..., pt are constants

or polynomials.
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Differentiating (29), we have

f(1) = (p1α1 + p
(1)
1 )eα1z + (p2α2 + p

(1)
2 )eα2z + ...+ (ptαt + p

(1)
t )eαtz. (30)

Now from (19), (29) and (30), we can obtain

hf− f(1) = a(h− 1).

Or,
t∑
j=1

(hpj − pjαj − p
(1)
j )eαjz = a(h− 1). (31)

If h ̸≡ 1, then from (31) we get

t∑
j=1

(hpj − pjαj − p
(1)
j )

a(h− 1)
eαjz ≡ 1. (32)

Also we note that T(r, f) = O(T(r, eαjz)) for j = 1, 2, ..., t.
If the left hand side of (32) contains more than two terms, then from Lemma

9 we get

(hpj − pjαj − p
(1)
j )

a(h− 1)
eαjz ≡ 1, (33)

for one value of j ∈ {1, 2, ..., t}.

From (33), we see that

T(r, eαjz) = S(r, f) = S(r, eαjz),

a contradiction.
Now we suppose that the left hand side of (32) contains exactly two terms.
Suppose (32) is of the form

(hpl − plαl − p
(1)
l )

a(h− 1)
eαlz +

(hpm − pmαm − p
(1)
m )

a(h− 1)
)eαmz ≡ 1, (34)

where 1 ≤ l,m ≤ t.
From Lemma 8, we have

T(r, eαlz) ≤ N(r, 0; eαlz) +N(r,∞; eαlz)
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+N

(
r,

a(h− 1)

(hpl − plαl − p
(1)
l )

; eαlz) + S(r, eαlz

)
= N(r, 0; eαmz) + S(r, eαlz)

= S(r, eαlz),

which is a contradiction.
Finally we suppose that the left hand side of (32) contains exactly one term,

say, of the form

(hpl − plαl − p
(1)
l )

a(h− 1)
eαlz ≡ 1.

This implies T(r, eαlz) = S(r, eαlz), a contradiction.
Therefore h ≡ 1. i.e., f(1) ≡ f.

This implies f = δez, where δ( ̸= 0) is a constant. Now

L(p) =

n∑
k=1

akf
(p+k)

=

( n∑
k=1

ak

)
δez.

Since L(p) ≡ f i.e., ( n∑
k=1

ak

)
δez ≡ δez,

n∑
k=1

ak ≡ 1.

Therefore

L =

n∑
k=1

akf
(k)

=

( n∑
k=1

ak

)
δez = δez.

Hence f = L = δez, where δ( ̸= 0) is a constant. This completes the proof. □
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