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Abstract. In this article, we have studied the uniqueness problem of
Dirichlet series, which is convergent in a right half-plane and having
analytic continuation in the complex plane as a meromorphic function
sharing some sets and values. Our first result partially improve a result of
[Ann. Univ. Sci. Budapest., Sect. Comput., 48(2018), 117-128] by relaxing
the sharing conditions. Most importantly, we have pointed out a number
of big gaps in a recent paper [J. Contemp. Math. Anal., 56(2021), 80-86],
which makes the existence of the paper under question. Finally, under a
different approach, we have provided the corrected form of the result of
[J. Contemp. Math. Anal., 56(2021), 80-86] as much as practicable.

1 Introduction and Main results

In 1737, Euler showed that the series
∑

1
p extended over all primes, diverges,

which in turn actually proved the famous theorem on the existence of infinitely
many primes. He deduced this from the fact that, for Re(s) > 1, the zeta
function ζ(s) =

∑∞
n=1

1
ns and ζ(s) −→ ∞, when s −→ 1. Hundred years later,

while studying a more general series L(s, χ) =
∑∞

n=1
χ(n)
ns , where χ is a Dirichlet

character and s > 1, Dirichlet proved his theorem on primes. This two types
of series are actually a series of the form
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L(s, f) =
∑
n≥1

f(n)

ns
, (1)

where the coefficients are given by f : N → C, is arithmetical function. This
type of series are known as a Dirichlet series and these are very important in
analytic number theory.
We recall briefly some classical facts about such series. There are a number

of critical lines or abscissa connected to (1). We have the abscissa of absolute
convergence σa and the abscissa of ordinary convergence σc. These numbers
are such that the series converges in the prescribed sense to the right but not
to the left of the abscissa. We also have the abscissa of uniform convergence
σu, defined as the infimum of those σ for which the series converges uniformly
in the half-plane Re(s) > σ. We have trivially −∞ ≤ σc ≤ σu ≤ σa ≤ +∞
and σa−σc ≤ 1, if anyone of the abscissa is finite. A theorem of Bohr [2] says
that

0 ≤ σa − σu ≤ 1

2
. (2)

This article deals with the uniqueness problem of Dirichlet series while two
series share some values and set. In this paper, we will mainly study those
Dirichlet series which are convergent in half plane and analytically continued as
a meromorphic function. Uniqueness problem of Selberg class L-functions have
recently been studied in various settings (see [10], [6], [11]). Recently Oswald-
Steuding [12] considered a general class of entire functions re-presentable as
Dirichlet series in some half plane Ωa ({s = σ + it : σ > a}) and studied it’s
uniqueness properties.
Recall that two meromorphic functions f and g in M(C) are said to share

a value a (∈ C) CM (IM) if f − a and g − a have same zeros with same
multiplicity (ignoring it’s multiplicity).
Considering value sharing property of Dirichlet series in some right half

plane, Oswald-Steuding obtained the following result.

Theorem A. [12] Lj = L(s, fj) (j = 1, 2) be non-constant entire function
of finite order having convergent Dirichlet series representation in some right
half plane. If L(s, f1) and L(s, f2) share two complex values CM, then they are
identical.

Next, Li [8] showed that Theorem A still holds when L(s, fj) (j = 1, 2) have
finitely many poles and obtained the following result.

Theorem B. [8] Let Lj = L(s, fj) (j = 1, 2) be two Dirichlet series convergent
in a right half-plane and admit an analytic continuation in the complex plane
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as a meromorphic function of finite order having finitely many poles. If L1, L2
share two distinct complex values CM, then they are identical. The conclusion
need not to hold if they have infinitely many poles.

The above theorem does not hold for general Dirichlet series. Li in [8] showed
L1(s) = 1 + es L2(s) = 1 + e−s, which are not ordinary Dirichlet series share
0, 1 CM, but they are not identical. Again considering Dirichlet series with
infinitely many poles, Li proved the following theorem.

Theorem C. [8] Lj = L(s, fj) (j = 1, 2) be two Dirichlet series convergent in a
right half-plane and admit an analytic continuation in the complex plane as a
meromorphic function of finite order and f1(1) = f2(1). If L(s, f1) and L(s, f2)
share two complex values a, b CM and f1(1) ̸= a, b then they are identical.

Natural question comes to one’s mind whether it is possible to relax the
strictly CM sharing condition in Theorem A, B. In our next theorem we will
discuss this.
Let f and g be two non-constant meromorphic functions and consider a

finite value a ∈ C. In [9], Li defined that f−a and g−a have enough common
zeros if f − a and g − a have same zeros with same multiplicities except an
exceptional set G (say) of their zeros such that n(r,G) = o(r) as r −→ ∞.
Here by n(r,G) we denote the counting function of G, i.e., the number of
points in G ∩ {|s| ≤ r} counted according it’s multiplicity.
The order of G is denoted by ρ(G) and is defined in a standard way as

follows:

ρ(G) = lim sup
r−→∞

logn(r,G)

log r
,

where n(r,G) is an increasing function. According to (see p.17, [4]) we know

that G is said to be of order k convergence type if
∫∞
r0

n(r,G)
rk+1 dr converges.

Now let us consider L(s, fp) =
∑

n≥1
fp(n)
ns where fp : N −→ C is an arith-

metical function with fp(n+x) = fp(n) for some positive integer x. This series
converges for σ > 1. Also by the periodicity of fp we can write the series as

L(s, fp) =
∑
n≥1

fp(n)

ns

=
1

xs

fp(1)
∑
n≥0

1

(n+ 1/x)s
+ fp(2)

∑
n≥0

1

(n+ 2/x)s
+ . . .+ fp(x)

∑
n≥1

1

ns


=

1

xs

x∑
a=1

fp(a) ζ
(
s,

a

x

)
.

(3)
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The analytic continuation of the Hurwitz zeta-function (ζ (s, a/x)) leads
immediately to an analytic continuation of L(s, fp). Hence, L(s, fp) is analytic
throughout the whole complex plane and it can have a simple pole at s = 1,

if

x∑
a=1

fp(a) ̸= 0.

Considering Dirichlet series with coefficients as periodic arithmetical func-
tions and a meromorphic function g with finitely many poles, we have relaxed
the CM sharing in Theorems A, B and obtained the following result.

Theorem 1 Let L = L(s, fp) be a Dirichlet series where fp is periodic arith-
metical function. Also let g be a meromorphic function with finitely many poles
and of order < 2 and a, b ∈ C. If L and g share the value a CM except possibly
a set G of order one convergence type and share b IM, then they are identical.

Corollary 1 Let L = L(s, fp) be an Dirichlet series and fp is periodic arith-
metical function. Also let g be a meromorphic function having finitely many
poles and of order < 2 and a, b ∈ C. If L, g share a CM and b IM, then they
are identical.

Corollary 2 Let Lj = L(s, fj) (j = 1, 2) be analytic functions of finite order
having a convergent Dirichlet series representation of the form (1.1) in some
right half-plane and fj (j = 1, 2) are periodic functions. Also let a, b ∈ C. If
L1 and L2 share a CM, b IM then they are identical.

Before proceeding further, we require the following definitions.

Definition 1 Let f and g be two non-constant meromorphic functions in
M(C) and let S be a subset of C. For some a ∈ C ∪ {∞}, we define Ef(S) =
∪a∈S{z : f(z)−a = 0}, where each point is counted according to its multiplicity.
If we do not count the multiplicity then the set ∪a∈S{z : f(z)−a = 0} is denoted
by Ef(S). If Ef(S) = Eg(S) then we say f and g share the set S CM. On the
other hand, if Ef(S) = Eg(S) then we say f and g share the set S IM.

Recently inspired by Theorem A, under IM sharing of some set of zeros of
a uniqueness polynomial, Halder-Sahoo [3] obtained the following result.

Theorem D. [3] Let Lj j = 1, 2, be two non constant entire functions having
convergent Dirichlet series representations of the form (1) in certain right
half-plane and one of them is of finite order. Let S = {a1, a2, . . . , al}, where
a1, a2, . . . , al are all distinct roots of the algebraic equation P(w) = wp +
awq + b = 0. Here, l is a positive integer satisfying 1 ≤ l ≤ p, and p , q are
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relatively prime positive integers with p > 2 and p > q, and a and b are two
finite nonzero constants. If L1 and L2 share S IM and they assume a common
complex value c ( ̸= aj, 1 ≤ j ≤ l) for some s0 ∈ C, then L1 = L2 in some right
half-plane.

Remark 1 The proof of Theorem D was mainly based on the Lemma 2.5 in
[3]. But there are some logical errors in the proof of the lemma and this also
caused a flaw in the proof of the Theorem D.
(i) First we would like to discuss the equation (2.6) and the argument just be-
fore (2.6) in [3]. We recall that, in [3] F(s; fi) =

∏k
j=1(L(s; fi)−γj)

lj (i = 1, 2).
Since the set of Dirichlet series form a ring, it follows that each F(s; fi) is
also a Dirichlet series and obviously it is zero free in some half plane. But
that does not mean limσ−→+∞ F(s; fi) = some non zero constant, because as
we know limσ−→+∞ L(s; f) = f(1) = 0(̸= 0) according as f(1) = 0(̸= 0). The
authors claimed that “ limσ−→+∞ F(s; f1) = d1 and limσ−→+∞ F(s; f2) = d2 for
some non-zero constants d1, d2 ∈ C, as F(s; f1) and F(s; f2) are non vanish-
ing and convergent for all sufficiently large Re s”. But it is easy to verify if

fi(1) = γj for some 1 ≤ j ≤ k, then we will have F(s; fi) =
∑

n≥2
f̂i(n)
ns and

therefore lim supr−→+∞ F(s; fi) = 0. Next in p. 83, l. 11; using Lemma 2.1 au-
thors get (L(s, f2) − γj)

−1 = L(s, g), but the statement of Lemma 2.1 in [3];
which is actually Landu’s theorem, is valid only when the constant term of the
convergent Dirichlet series is non-zero. In [3] ( see p. 83, l. 18), using the same

lemma the authors get F(s;f1)
F(s;f2)

= L(s; x) =
∑

n≥m1

x(n)
ns ; but clearly if f2(1) = γj,

for some 1 ≤ j ≤ k, then we can not get any Dirichlet series as an inverse of
(L(s; f2)−γj)

−1, and so the construction of L(s; x) is possible only if f2(1) ̸= γj.

Also limσ−→+∞ F(s;f1)
F(s;f2)

= 0 or ∞ according as f1(1) = γj or f2(1) = γj; for some
1 ≤ j ≤ k. Since there is no restriction on the choices of γj, j = 1, 2, . . . , k; one

can not always get limσ−→+∞ F(s;f1)
F(s;f2)

= non-zero constant. Hence the set consid-

ered in Theorem D should have been S = {a1, a2, . . . , al} with fi(1) ̸∈ S, i = 1, 2

and since the most important part of this lemma was based on the argument
“ limσ−→+∞ F(s;f1)

F(s;f2)
= d3 ( ̸= 0,∞)”, the proof of the theorem [3] is cease to be

hold.
(ii) Next we want to point out another lacuna corresponding to Lemma 2.5
which actually makes a question about the existence of this lemma and conse-
quently the same of the theorem. First we note that, as F(s; fi), i = 1, 2 are

zero free in half plane, it follows that W(s) = F(s;f1)
F(s;f2)

is also zero and pole free
in some half plane. Using this fact, with the assistance of the Hadamard fac-
torization theorem, for sufficiently large Re s; the authors claimed that in some
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half plane, W(s) can be expressed as W(s) = F(s;f1)
F(s;f2)

= eP1(s), where P1(s) is a

polynomial with degree(P1) ≤ max{ρ(F(s; f1)), ρ(F(s; f2))}. But the Hadamard
factorization theorem is only stands for the entire complex plane, not for some
half plane. From p. 142, [13], we know that if a function f is holomorphicc and
zero free in some simply connected domain D, then we can write it as f = eg

for some g, holomorphic in D and therefore we can have some P̂, holomorphic
in the same half plane, so that we can write W(s) = eP̂. That is to say, in this
case one can not assure P̂ as a polynomial because it is not holomorphic in the
entire plane.

So in the proof of Theorem D, there are several gaps and as a result the
existence of the whole paper is under question. Under these circumstances,
it will be interesting to re-investigate the theorem. Here considering some
arbitrary set S ⊂ C, in the next theorem, we have obtained the best possible
analogous corrected form of Theorem D.
Before going to the next theorem we recall the following definition.

Definition 2 A polynomial P is called a uniqueness polynomial for mero-
morphic functions if for any two non-constant meromorphic functions f, g ∈
M(C), the condition P(f) = P(g) implies f ≡ g.

Now let us consider a set S = {a1, a2, . . . , an} ⊂ C and denote the polynomial
generated by the set S as

P(s) = sn −
(∑

ai

)
sn−1 + . . .+ (−1)n−1

∑
(ai1ai2 ...ain−1

)s+ (−1)na1a2...an.

We also have

P ′(s) = nsn−1 − (n− 1)
(∑

ai

)
sn−2 + . . .+ (−1)n−1

∑
(ai1ai2 ...ain−1

).

Theorem 2 Let Lj = L(s, fj), j = 1, 2, be entire functions of finite order
having a convergent Dirichlet series representation of the form (1) in some
right half-plane. Also let us consider a set S = {ai; i = 1, 2, . . . , n} and L1, L2
share the set S CM except for a set G with n(r,G) = o(r). Also let f1(1) = f2(1)
and P(f1(1)), P

′(f1(1)) ̸= 0 , then we will have L1 ≡ L2.

Corollary 3 Let Lj = L(s, fj), j = 1, 2, be an entire function of finite order
having a convergent Dirichlet series representation of the form (1) in some
right half-plane. Also let us consider a set S = {w : Q(w) = 0}, where Q is a
uniqueness polynomial and Q(fj(1)) ̸= 0 for j = 1, 2 and L1 and L2 share the
set S CM except for a set G with n(r,G) = o(r). If there exist a s0 ∈ C where
both L1, L2 take the same value c (Q(c) ̸= 0), then we will have L1 ≡ L2.
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As in Theorem D, it is easy to verify that the considered polynomial wn +
awm + b is an uniqueness polynomial, so Corollary 3 is also applicable to the
set of zeros of the same polynomial.
In this paper we use Nevanlinna theory to prove our results. It is assumed

that the readers are familiar with standard notations like the characteristic
function T(r, f), the proximity function m(r, f), counting (reduced counting)
function N(r, f) (N(r, f)) that are also explained in [15]. By S(r, f) we mean
any quantity that satisfies S(r, f) = O(log(rT(r, f))) when r −→ ∞, except
possibly on a set of finite Lebesgue measure. When f has finite order, then
S(r, f) = O(log r) for all r.
Let us take f a meromorphic function over C, then the order of f is defined

as

ρ(f) := lim sup
r−→∞

log T(r, f)

log r
.

In this paper we will need the following definition.

Definition 3 Let f and g share a value a CM except for a set G. Let s0 be
a zero of f − a of order p and a zero of g − a of order q then by N(r, a; f |

p = q) (N(r, a; f | p ̸= q)); we denote the reduced counting function of those
common zeros of f− a and g− a where p = q (p ̸= q) where p ≥ 1, q ≥ 0.

2 Lemma

Lemma 1 [5] Let g(s) a non-vanishing function represented by a convergent

Dirichlet series g(s) =
∑∞

n=1
f(n)
ns for some right half plane Ωp and f(1) ̸= 0

then its reciprocal also obeys a Dirichlet series representation, i.e., 1/g(s) =∑∞
n=1

fo(n)
ns in the same half-plane.

Lemma 2 [1] Let f(s) =
∑∞

n=1
fo(n)
ns in some Ω0 and g(s) =

∑∞
n=1

go(n)
ns in

some Ω1. Then in some right half-plane

f(s)g(s) =

∞∑
n=1

h(n)

ns
,

where h = fo ∗ go Dirichlet convolution and h(n) =
∑

d|n fo(d)go(
n
d ).

Lemma 3 [1] Assume that
∑∞

n=1
f(n)
ns converges absolutely for σ > σa and let

F(s) denote the sum function

F(s) =

∞∑
n=1

f(n)

ns
for σ > σa,
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then limσ−→+∞ F(s) = f(1).

Lemma 4 [9] Let f(s) =
∑

ane
−λns uniformly convergent in a half-plane Ωb

and admit an analytic continuation in C as a meromorphic function of finite
order. Suppose that f(s) tends to a finite non-zero limit as σ −→ ∞, then,

lim sup
r−→+∞

n(r, 0; f) + n(r,∞; f)

r
> 0.

Lemma 5 ([4], p.27]) If D = {an} is a sequence of non zero complex number
such that

∑
|an|

−1 converges, then the product E(s) =
∏

(1− s
an

) is an entire
function and satisfies

log |E(s)| ≤
∫ |s|
0

n(t,D)

t
dt+ |s|

∫+∞
|s|

n(t,D)

t2
dt.

3 Proofs of the theorems

Proof. [Proof of Theorem 2] It is given that
∏n

i=1(L1−ai) and
∏n

i=1(L2−ai)
have enough common zeros. Let us denote the following function

F =

∏n
i=1(L1 − ai)∏n
i=1(L2 − ai)

.

From the given condition we must have n(r, 0; F) + n(r,∞; F) ≤ n(r,G) =
o(r).
Now arranging the zeros ck (k = 1, 2 . . .) and poles dk (k = 1, 2, . . .) of F in

an increasing order according to their moduli, we can make infinite Weierstrass

product of it’s zeros
∏

1 =
∏

E
(

s
ck
, r1

)
and

∏
2 =

∏
E
(

s
dk
, r2

)
of poles.

Then we can write F as

F =

∏
1∏
2

skep, (4)

where k is an integer and p is a polynomial.

Again Lj =
∑∞

n=1
fj(n)
ns is convergent in some half plane. Now consider ϵ :

N −→ C by ϵ(n) = 1 when n = 1 and 0 elsewhere. Now we can define
L(s; fj)−ai = L(s; fj−aiϵ) is convergent in some half plane. Since the collection

of Dirichlet series form a ring then clearly
∏n

i=1(Lj − ai) =
∑∞

n=1
hj(n)
ns for

j = 1, 2 is also a Dirichlet series under Dirichlet convolution ‘*’ and convergent
in the same half plane.
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From Lemma 2 clearly hj(1) ̸= 0 for j = 1, 2, since fj(1) ̸∈ S for j = 1, 2.

Then in the same half plane we can write it as
∏n

i=1(L1−ai)∏n
i=1(L2−ai)

=
∑∞

n=1
h1(n)

ns∑∞
n=1

h2(n)

ns

.

Again using Lemma 1 we have the reciprocal of
∑∞

n=1
h2(n)
ns is also Dirichlet

series convergent in the same half plane. Now using this fact and Dirichlet
convolution we will get∏n

i=1(L1 − ai)∏n
i=1(L2 − ai)

=

∞∑
n=1

f̂(n)

ns
=

∞∑
n≥ma

f̂(n)

ns
,

in some half plane, where ma is the least natural number with f̂(ma) ̸= 0.
Now we can write it as

∞∑
n≥ma

f̂(n)

ns
= f̂(ma)m

−s
a

∑
n≥ma

f̂(n)

f̂(ma)

(
n

ma

)−s

= f̂(ma)m
−s
a ĝ(s), (5)

where ĝ(s) =
∑

n≥ma

f̂(n)

f̂(ma)
e−αns and {αn} is a strictly increasing sequence

−→ ∞ as n −→ ∞.
Since ĝ(s) −→ 1 as σ −→ +∞ and clearly the Dirichlet series is convergent

in some Ωq and hence σc is finite. Now using the fact (2) we can say it
converges uniformly in some Ωuo .
Now from Lemma 4 we must have

lim sup
r−→+∞

n(r, 0; ĝ) + n(r,∞; ĝ)

r
> 0 =⇒ lim sup

r−→+∞
n(r, 0; F) + n(r,∞; F)

r
> 0,

a contradiction. Hence we must have ĝ = 1.
Clearly from (4) and (5) we have

F =

∏n
i=1(L1 − ai)∏n
i=1(L2 − ai)

= f̂(ma)m
−s
a . (6)

Again from Lemma 3, taking σ −→ +∞ the left hand side of (6) tends to a
finite value 1, and hence we must have ma = 1 and then it becomes∏n

i=1(L1 − ai)∏n
i=1(L2 − ai)

= 1. i.e.,
P(L1)

P(L2)
= 1. (7)

Now

P(L1) = P(L2)
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(Ln1 −Ln2 )−
∑

ai

(
Ln−1
1 −Ln−1

2

)
+. . . (−1)n−1

∑
(ai1ai2 . . . ain−1

)(L1−L2)=0.(8)

Taking σ −→ +∞ from (8) and the fact P ′(f1(1)) ̸= 0 we have L1 ≡ L2.
□

Proof. [Proof of Theorem 1] The proof of this theorem is mainly based on the
idea of a paper of Li [7].
Here it is given that g is a meromorphic function of order < 2 and g, L share

two values b IM and a CM except a set G of order one convergence type, i.e.,∫+∞
r0

n(t,G)
t2

< +∞ for some r0 ≥ 0. Now let ai, i = 1, 2, . . . be the non-zero
elements of the set G repeated according to its multiplicity then we have

∞∑
i=1

|ai|
−1 =

∫∞
0

d(n(t, G\{0}))

t
≤

∫+∞
0

n(t, G\{0})

t2
< +∞.

Let us consider the following auxiliary function

H =
g− a

L− a
.

Clearly zeros and poles of H come from the set G as well as the poles of L and
g respectively. Let us consider two sets G1 and G2 such that G1 ∪G2 = G\{0}

and the elements of G1 are zeros of H and the elements of G2 are poles of H.

Next let us construct the functions hi(s) =
∏∞

k=1

(
1− s

ai
k

)
, where ai

k (i =

1, 2) are points of Gi arranging as |ai
k| ≤ |ai

k+1|, repeated according to their
multiplicities.. Since G is of order one convergence type then clearly Gi (i =

1, 2) are also order one convergence type, i.e.,
∫+∞
r0

n(t,Gi)
t2

dr < +∞ (i = 1, 2)
for some r0 ≥ 0.
We have,∑

|ai
k|
−1 =

∫+∞
0

dn(t, Gi)

t
≤ lim

t−→∞ n(t, Gi)

t
+

∫+∞
0

n(t, Gi)

t2
dt

=

∫+∞
0

n(t, Gi)

t2
dt < +∞.

Using Lemma 5 we have,

log |hi(s)| ≤
∫ |s|
0

n(t, Gi)

t
dt+ |s|

∫∞
|s|

n(t, Gi)

t2
dt (9)

=

∫ r0
0

n(t, Gi)

t
dt+

∫ |s|
r0

n(t, Gi)

t
dt+ |s|

∫∞
|s|

n(t, Gi)

t2
dt.
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As we have
∫∞
r0

n(t,Gi)
t2

dt < +∞ for some r0 ≥ 0, it follows that we can have

a positive ϵ such that
∫∞
r

n(t,Gi)
t2

dt < ϵ for some large r ≥ r0 and so we have∫ r1
r

n(t, Gi)

t2
dt < ϵ.

Again as n(t, Gi) is an increasing function so we get

n(r,Gi)

∫ r1
r

dt

t2
≤

∫ r1
r

n(t, Gi)

t2
dt

n(r,Gi)

Kr
≤ n(r,Gi)

∫ r1
r

dt

t2
≤

∫ r1
r

n(t, Gi)

t2
dt < ϵ,

hence for some large r we have n(r,Gi) ≤ Krϵ, where K is some constant.
From (9), we can have log |hi(s)| ≤ O(ϵ|s|). As hi’s, (i = 1, 2) are entire

functions, it follows that T(r, hi) = m(r, hi). Then,

T(r, hi) = m(r, hi) =
1

2π

∫ 2π
0

log+ |hi(re
iθ)|dθ

=
1

2π

∫
θ∈Θ

log |hi(re
iθ)|dθ ≤ O(r),

(10)

where Θ = {θ : |hi(re
iθ)| > 1}.

We can also write H as

H =
g− a

L− a
=

h1

h2
(s− 1)ksmQep(s), (11)

for some polynomial p(s) and a rational Q which actually comes from the
poles of g.
Using the Second Fundamental Theorem we have,

T(r, L) ≤ N(r, a;L) +N(r, b;L) +N(r,∞;L) + S(r, L)

≤ N(r, a;g | p = q) +N(r, b;g) +

2∑
i=1

N(r, 0;hi) +O(log r) + S(r, L)

≤ 2T(r, g) +O(r) +O(log r) + S(r, L) < O(r2) + S(r, L),

as r −→ ∞, clearly here ρ(L) < 2.
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Since g and L have order < 2 then from (11) we must have p(s) = p1s+p2,
a linear polynomial of degree at most one and so we have

H =
h1

h2
Qsm(s− 1)kep1s+p2 .

Again,

N(r, b;L) = N(r, b;g) ≤ N(r, 1;H) ≤ T(r,H) (12)

≤ T(r, h1) + T(r, h2) + T(r, ep1s+p2) +O(log r) ≤ O(r).

Now let us consider an auxiliary function

I =

(
g ′

(g− a)(g− b)
−

L ′

(L− a)(L− b)

)
(g− L). (13)

Clearly here the poles of I come from the poles of g and L which are finitely
many and from the set G. So in view of (10)-(12) we have, T(r, I) = m(r, I) +
N(r, I) ≤ O(T(r,H)) +O(log r) +O(r) ≤ O(r).
Now,

N(r, a;L) = N(r, a;L | p = q) +N(r, a;L | p ̸= q) (14)

≤ N(r, 0; I) +

2∑
i=1

N(r, 0;hi) ≤ O(r).

Using (14), (12) and the Second Fundamental Theorem we have,

T(r, L) ≤ N(r, a;L) +N(r, b;L) +O(log r) ≤ O(r), (15)

but in view of p. 214, [14] we know, O(r log r) = N(r, 0;L) ≤ T(r, L) ≤ O(r) ,
a contradiction.
Therefore in view of (12) and (14) we must have either I ≡ 0 or H ≡ 1.

Now H ≡ 1 gives f ≡ L. If f ̸≡ L, then from I ≡ 0, on integration we
have cg−a

g−b = L−a
L−b and hence using the First Fundamental Theorem we have

T(r, g) = T(r, L) +O(1). Now if c ̸= 1 then we get (c+1)g−ca−b
(c−1)g−ca+b

= 2L−a−b
b−a , since

L can have at most one pole at s = 1 then we can write (c − 1)g − ca + b =
(s− 1)mReq where R is a rational function, m = 0 or 1 and q is a polynomial
of degree at most one. From this we will have T(r, g) = O(r) and this implies
T(r, L) = O(r) which leads towards a contradiction. Hence c = 1 and therefore
we get g ≡ L. □
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Proof. [Proof of Corollary 2] It is given that L1 and L2 share a CM and b IM.
Now let us consider the following auxiliary function F = L1−a

L2−a . Now we can

have a polynomial ^p(s) such that F = L1−a
L2−a = e

^p(s). Now from Theorem 1.1 in
[8] we can write F as F = ceαs for some constant α and c. Now considering
the same auxiliary function I and proceeding similarly as done in (12)-(15) we
will have a contradiction. And finally we will get L1, L2 share a, b CM, then
with the help of Theorem B we will get the result. □
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