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Abstract. Let 6 = G(A, M, N, B) be a generalized matrix algebra over
a commutative ring with unity. In the present article, we study k-semi-
centralizing maps of generalized matrix algebras.

1 Historical development

Several authors studied commuting, centralizing and related maps on differ-
ent rings and algebras see [1,5-12,15,17,19-21] and references therein. The
study of centralizing mappings was initiated by a well known theorem due to
Posner [16] which states that “the existence of a nonzero centralizing deriva-
tion on a prime ring R must be commutative.” In [14] Mayne investigated
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centralizing automorphisms of prime rings and proved that “if R is a prime
ring with a nontrivial centralizing automorphism, then R is a commutative
integral domain.” These results due to Posner [16] and Mayne [14] have been
extended by many authors in different ways (see [3,15,19-21] and in their exist-
ing refernces). In [15] Miers proved theorems for certain centralizing mappings
of C*-algebras and von Neumann algebras. Bresar [5] described that “all addi-
tive centralizing mappings f on prime rings R of characteristic different from
two has the form f(x) = Ax + &(x), where A is an element from the extended
centroid of R and & is an additive mapping from R into the extended cen-
troid of R.” Also, Bell and Lucier investigated some results concerning skew
commuting and skew centralizing additive maps in [3].

Cheung [7] initiated the study of linear commuting maps on matrix algebras
and proved that “every commuting map on triangular algberas has proper
form.” Inspired by this result, Xiao and Wei in [21] described the general
form of commuting maps on generalized matrix algebras and point out various
related applications. Also, Li and Wei [13] proved that “any skew-commuting
map on a class of generalized matrix algebras is zero and any semi-centralizing
derivation on a generalized matrix algebra is zero.”

Beidar [2] studied k-commuting maps in prime rings by applying the idea
of functional identities in rings. Du and Wang [8] proved that “under certain
conditions, each k-commuting mapping on a triangular algebra is proper.”
Recently, Li et al. [12] studied k-commuting mappings of generalized matrix
algebras and determined the general form of arbitrary k-commuting mapping
of a generalized matrix algebra. Now it is natural problem to study the k-
semi-centralizing maps on matrix algebras.

Influenced by above stated references, in this article, we find out the struc-
ture of k-semi-centralizing maps on generalized matrix algebra under certain
restrictions. Also, we prove that every k-centralizing map has the proper form
on generalized matrix algebras. Moreover, we discuss an important result of
this paper which states that every k-semi centralizing (commuting) derivation
on a 2-torsion free generalized matrix algebra becomes zero. Lastly, we point
out some direct consequences of our results.

2 Basic definitions & preliminaries
Let R be a commutative ring with unity. An PR-algebra & denoted by the set

G:G(A,M,N,B):{[i ‘:]

aeA,meM,neN,beB}
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is said to be generalized matrix algebra under matrix like multiplication and
usual matrix addition, if (A, B, M, N, &y, Qnm) is a Morita context and either
M # 0 or N # 0. A Morita context (A, B, M, N, &vn, Onm) consisting of two
unital PR-algebras A and B, two bimodules (A, B)-bimodule M and (B, A)-
bimodule N, and two bimodule homomorphisms called the bilinear pairings
Evn c M % N — A and Ony @ N % M — B which satisfies the following

commutative diagrams:

EMN®Im ONM®IN

M&@N®M A®M and N@M®N B®N
B A A A B B
IM®ONM = INn®&EmN =
M® B = M N® A = N.
B A

More precisely, an PR-algebra generated in this way is called as generalized
matriz algebra of order 2 which was first introduced by Sands in [18]. & be-
comes an upper triangular algebra provided N = 0 and & degenerates a lower
triangular algebra provided M = 0. Both upper and lower triangular algebras
are collectively known as triangular algebras.

The center of & is

so-{(¢]

Indeed 3(6) is a set diagonal matrices

am =mb,na =bn for all me M,n € N}.

a
0 b
and am = mb,na = bn for all m € M, n € N. Also, if M is faithful left
A-module and right B-module, then the condition a € 3(A),b € 3(B) is
superfluous and can be removed. Define two natural projections 7y : & —

AandnB:GﬂBbynA<[i m}) :aauachB({?l m]) = b.

wammaeymmesm)

b b
Moreover, A (3(6)) C 3(A) & mg(3(6)) C 3(B) and there exists a unique
algebraic isomorphism & : A (3(&)) — g(3(S)) such that am = mé(a) and
na=§&(a)n for all a € ma(3(6)),m € M and n € N.
Let 15 (resp.1g) be the identity of the algebra A (resp.B) and let I be

1a O],le—e:

the identity of generalized matrix algebra &, e = [ 0 0
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0 1p
S = eGe + eSf + fGe + f6f = G171 + G112 + 6321 + &2 where &17 is sub-
algebra of & isomorphic to A, &;; is subalgebra of & isomorphic to B, &y, is
(611, S22)-bimodule isomorphic to M and G371 is (S22, &11)-bimodule isomor-
phic to N. Also, 74 (3(6)) and 7tg(3(S)) are isomorphic to e3(&)e and f3(S)f
respectively. Then there is an algebra isomorphisms & : e3(&)e — f3(6)f such
that am = mé(a) and na = &(a)n for all m € eSf and n € fGSe.

Let R be a commutative ring with unity and A be an JR-algebra. 3(.A) denote
the center of A and define 3(A)y by {a € A|la,ylx =0V y € A}. In particular
3(A); = 3(A). For arbitrary elements x,y € A, we denote [x,yly = x, [x,yl; =
xy — yx, and inductively [x,ylx = [[x, ylk—1,yl, where k > 0 is a fixed positive
integer. Also, denote x ooy =%, xojy =xy+yx and x oy = (xox_1y) o1y
for all x,y € A. An R-linear map g : A — A is said to semi-centralizing
if [g(x),x] € 3(A) or g(x) ox € 3(A) for all a € A. Particularly, g is said
to be centralizing if [g(x),x] € 3(.A) and g is said to be skew centralizing
if g(x) ox € 3(A) for all x € A. In general, for positive integer k > 0, an
R-linear map g : A — A is said to k-semi-centralizing if [g(x),x]x € 3(A) or
g(x) o x € 3(A) for all a € A. In particular, g is said to be k-centralizing if
[g(x),x]x € 3(A) and g is said to be k-skew centralizing if g(x) ox x € 3(.A)
for all x € A. Further, for positive integer k > 0, an fR-linear map g: A — A
is said to k-semi-commuting if [g(x),x]x = 0 or g(x) ox x = 0 for all a € A.
In particular, g is said to be k-commuting if [g(x),x]x = 0 and ¢ is said to be
k-skew commuting if g(x) ox x =0 for all x € A.

At this point, we shall mention some important results, which are essential
for developing the proof of our main result:

|:0 0 :| and 611 = 666, 612 = 661:, 621 = f6€, 622 = f&f. Thus

Lemma 1 [12, Lemma 3.1] Let n be a positive integer and R be a unital
associative ring. For a left R-module M, if o : R — M is a mapping such that
a(x +1) = a(x) and x"o(x) = 0 for all x € R, then o« = 0. Similarly, for
a right R-module N, a mapping B : R — N is zero if B(x + 1) = B(x) and
B(x)x™ =0 for all x € fR.

Lemma 2 [13, Proposition 4.2] Let & = &(A, M, N, B) be a generalized ma-
triz algebra over a commutative ring R. An additive map ® : & — & is a
derivation if and only if ® has the following form

o a m | Ar(a) =—mng—men  amg + Tr(m) —meb
n b | npa—bng+V3(n)  Uy(b) +nmy+nom |’

where a € A; b e B, mmoe M, nyng e Nand Ay : A —= A Th: M —
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M, V3 : N = N, Uy : B — B are R-linear maps satisfying the following
conditions:

1. Ay is a derivation of A and Aj(mn) = T(m)n + mVsz(n);

2. Uy is a derivation of B and Us(nm) = Vz(n)m + nTy(m);

3. H(am) =A;(a)m+ aT,(m) and Tr(mb) = Tr(m)b + mU4(b);
4. V3(na) = Vz(n)a+nAj(a) and V3(bn) = Uys(b)n + bV3(n).

Lemma 3 [12, Theorem 3.5] Let S = SG(A,M,N,B) be a generalized matrix
algebra over a commutative ring R and © : & — & be a k-commuting map on
G. If the following conditions are satisfied:

1. 3(A) =ma(3(6)) or [A,A] = A;
2. 3(B)x =mg(3(6)) or [B,B] =B;

3. there exist mg € M, nog € N such that

sor-{[5 §

then @ is proper i.e., ® has the form ® = A+ &, where A € 3(6) and & : S —
3(6) is an R-linear mapping.

ac 3(A))b € 3(B)) amy = mob, npa = bnO} )

3 Key content

In this section, we investigate the significant results of the article as follows:

Theorem 1 Let G = S(A,M,N,B) be a generalized matriz algebra over a
commutative ring R. An R-linear map ©® : & — & is a k-centralizing map on
S if © has the following form

o2 %))

_ [ Ar(a) +Az(m) + Az(n) + Aq(b) T2 (m)
- V3(n) Ui (a) + Uz(m) + Us(n) + Uag(b) |’
(&)
wherea € A; beB, meM; neNand Aj: A— Ay Ay M — 3(A)y, As:
N—)B(A)k, A4:B—)A, Tz:M—)M, V3:N—)N, U]ZA—)B, u, :
M — 3(B)k, U3 : N — 3(B)y, Uy : B — B are R-linear maps satisfying the
following conditions:



218 M. Ashraf, M. Kumar, A. Jabeen, M. Ahmad

1. Ay is k-commuting map of A and Aq1(1) € 3(A)y;

Uy is k-commuting map of B and Ug(1) € 3(B);

[A4(b), alk € 3(A)x and [Ui(a),blx € 3(B)y;

(A1(1) + Aq(1) + 242(m))m = m(Us (T) + Ug(T) + 2Uz(m));
2To(m) = (A1(1) = Ag(1))m — m(Us (1) — Ug(T));

(A (1) + Ag(1) + 2A3(n)) = (U (1) + Us (1) 4 2U3(n))ny
2V3(n) = n(Aq(1) — Ag(1)) — (U (1) — Ua(T)).

NS & e e

Proof. Suppose that k-centralizing map @ takes the following form

o(lx %))

_ [ Ar(a) +Az(m) + Az(n) + Aq(b)  Ty(a) + To(m) + T3(n) + T4(b)
Vi(a) + Va(m) +Vi(n) + V4(b)  Uj(a) + Uz(m) + Uz(n) + Uy (b)

(1)

T{; EGand A1 A—- A Ay): M- A A;:N—= A Aj:B—o A
Th:A-M, Lh:M—>M, 3:N—>M, T4:B—=M, Vi:A—->N, V, :M —
N, V32N—)N, V42B—)NandU]:AHB,u2:M—>B, Uz : N — B, Uy :
B — B are fR-linear maps. Since

for all

[D(G),Glx € 3(6) for all G e &. (2)
Now if we consider G = [ 0 8 } in (2), then it follows that
[ o (=DFn)
T . . 0 0.
This implies that T;(1) = 0 = V;(1). Again on assuming G = [ 0 1 ] in
(2), we have T4(1) = 0 = V4(1). On applying inductive approach with G =

a O
[O O},Weﬁndthat

[Ar(a),alk  (—=1)*a*Ti(a)

@(6),Gl = | ‘T SR
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This leads to a*Ty(a) = 0 = Vi(a)a¥, [Aj(a),alx € 3(A)x and 0 € 3(B)x.
Also, it is easy to observe that T;(a) = Ty(a+ 1) and Vi(a) = Vi(a+1). In
view of Lemma 1, we arrive at Ti(a) = 0 = V;(a) for all a € A. Further, we
have [A1(a), alx =0, i.e., Ay is k-commuting map on A. Further, replacing a
by a+ 1 in [Aj(a), alx = 0, we conclude that [A;(1),aly =0 for all a € A and
hence Aq(1) € 3(A)x.

On similar pattern for G = [ 00 ] , we can show that T4(b) = 0 = V4(b)

0 b
for all b € B and Uy is k-commuting map on B and hence Ug(1) € 3(B)k. If

G= [ a 0 ] in (2), then it follows that

0O b
[ [Ar(a) + Aq(b), aly 0
[@(G), Gl = { 0 Uy (a) + Ug(b), bl ]
o [A] (Cl), a]k + [A4(b)) a}k 0
= [ 0 [Us (@), bli + [Us (b), bl } €3(8).
(3)

On using the fact Ay and Uy are k-commuting mappings on A and B respec-
tively, we find that [A4(b), alx € 3(A)x and [Uj(a),blx € 3(B)y for all a € A
and b € B.

Suppose that G = [ Im

0 0 ] in (2) and consider

hy hy
[@(G),Gly =h; = [ hT“” hﬁm ] forall 0 <i<k and hg € 3(8&). (4)
121 1(22)
This implies to
[ hig hit ]
h: — (am (12)
i+l L hl+](2]) h1+1(22)
= [hi, G]

_ [ Ry Rigy 1T m
| hiy, hiy, |0]0 0O

@) M)
_ | Mgy higym—mbg,, = higg, ]

L hi(zn hi(znm
It follows that hit1,y, = higy, and hence V,(m) = ho,,, = hx
the fact hy € 3(&), we get Vo(m) = 0 for all m € M. Therefore,

h = { Ar(1) + Az (m) T2(m) ]
o 0 U; (1) + Uy(m)

(21, On using
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and
hy = [ho, G] = 0 A(T)m+Ay(m)m —To(m) —mU; (1) — mUy(m)
0 0
Now by induction we arrive at hy = (—=1)""Thy, 1 > 0 and hence hy =

(—=1)* Th;. This implies that h; € 3(&). It follows that
TH(m)=A1(1)m+ Ay (m)m —mU; (1) —mUy(m) for all m € M.

0 m

On the similar pattern with G = { 0 1

} , we find that

To(m) = mUg(1) + mUy(m) — Ag(1)m —Ay(m)m  for all m € M.
Combining the last two expressions, we arrive at
(Ar(1) + Ag(1) + 2A5(m))m = m(U; (1) 4+ Ua(T) + 2Uz (m))

and
2To(m) = (Ar(1) — Ag(1))m — m(U; (1) — Ug(1)).

g (]) ] respectively and applying

similar techniques as above we can easily find that

On assuming G = [T]L ] and G =

Vi) =nAi(1) + nAz(n) —Uj(I)n —Uz(n)n for all n € N.
and

Vi(n) = Us(1)n+ Us(m)n —nA4(1) —nA3(n) for all neN.
The above two expressions leads to

n(A1(1) 4+ A4(1) + 243(n)) = (U (1) + Us(1) + 2Uz(n))n
and
2V3(n) = n (A (1) — Ag(1)) — (U (1) — Us(T))n.

Let us take G = [ g ’g ] in (2) to find that [A;(a), alx +[A2(m), dlx € 3(6).
Since A; is k-commuting map of A it follows that Ay;(m) € 3(A)x by the

0 m } in (2), we have

arbitrariness of m € M. In the similar way for G = { 0 b

Uy (m) € 3(B)y for all m € M.
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With the similar arguments as used above with G = [ « g } and G =
0 g in (2) respectively, we observe that A3(n) € 3(A)x and Usz(n) €

3(B)k for all n € N. O

As an immediate consequence of the above theorem, we obtain the following
result:

Corollary 1 [12, Proposition 3.2] Let & = G(A,M,N,B) be a generalized
matriz algebra over a commutative ring R. An R-linear map ©® : 6 — & is a
k-commuting map on & if © has the following form

o2 %))

B [ Ar(a) + Az(m) + Az(n) + A4(b) T2(m)
B V3(n) Ui (a) + Uz(m) + Uz(n) + Us(b) |°
(5)

wherea € A; beB;, meM; neNand Aj: A — A, Ay: M — 3(A)y, As:
N—)S(A)k, A4ZB—>3(A)k, Tz:M—)M, VgtN%N, U, ZA—)S(B)k,Uzi
M — 3(B)k, U3 : N — 3(B)y, Uy : B — B are R-linear maps satisfying the
following conditions:

1. Ay is k-commuting map of A and A1(1) € 3(A)y;

Uy is k-commuting map of B and Uy(1) € 3(B)y;

(A1(1) + Ag(1) +2A2(m))m = m(U; (1) + Uy (1) 42Uz (m));
2T (m) = (Ar(1) — Ag(1))m — m(U; (1) — Ua(1));

n(AT(1) + Aq(1) + 2A3(n)) = (Ug (1) + Uy (1) + 2Uz(n))n;

S v e e

2V3(n) = n(A1(1) — Ag(1)) — (U (T) — Us(1))m.
In view of Lemma 3 and Theorem 1, it is easy to see that

Theorem 2 Let 6 = G(A,M,N,B) be a generalized matriz algebra over a
commutative ring R and © : & — & be a k-centralizing map on &. If the
following conditions are satisfied:

1. A4(B) € 3(A)x and Uq(A) C 3(B)y;
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2. 3(A =ma(3(6)) and 3(B)x = mp(3(6));

3. there exist my € M, ng € N such that

so-{[ ¢}

then @ is proper i.e., ® has the form ® = A+ &, where A € 3(6) and &: 6 —
3(6) is an R-linear mapping.

a € 3(A),b € 3(B),amp = mpb,noa = bno} ;

Also, we can see the implication of the above result in the settings of some
nice examples of generalized matrix algebras (for detail see [12] and references
therein) which follows directly:

Corollary 2 Let 9 be a von Neumann algebra without central summands of
type 1. Then any k-centralizing map on 9M is proper.

Corollary 3 [8, Theorem 1.1] Let 2 = Tri(A, M, B) be a triangular algebra
over a commutative ring R and O : A — A be a k-centralizing map on A. If
the following conditions are satisfied:

1. 3(A)x = ma(3(A)) and 3(B) = me(3(A));

2. there exist mg € M, ng € N such that

=[5 ¢]

then @ is proper i.e., ® has the form ® = XN+ &, where A € 3(A) and & : A —
320 is an R-linear mapping.

a € 3(A),b € 3(B), amo — mob} ,

Now we describe the general form of k-skew centralizing maps on generalized
matrix algebras as follows:

Theorem 3 Let & = G(A,M,N,B) be a 2-torsion free generalized matriz
algebra over a commutative ring R. An R-linear map © : S — & is a k-skew
centralizing map on & if ® has the following form

a m [\ | Ar(a)+ A4(b) T2(m)
‘D({n b D—[ Vsn)  Upla) +Us(b) | (6)

wherea€ A; beB,meM; neNand A :A— A, Ay:B—o A, Th,:M—
M, V3:N =N, Uj: A —= B, Us: B — B are R-linear maps satisfying the
following conditions:
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1. Ay is k-skew commuting map of A;

2. Uy is k-skew commuting map of B,

3. A4(b) ox a € 3(A)x and Uj(a) ox b € 3(B)y;
4. THh(m)=—mA;(1) and V3(n) = —-U;(1)n.

Proof. Assume that k-skew centralizing map @ takes the following form

o2 %))

_ [ Ar(a) +Ax(m) + Az(n) + Aq(b)  Ty(a) + To(m) + T3(n) + T4(b)
Vi(a) + V2(m) + V3(n) + V4(b)  Uj(a) + Uz(m) + Usz(n) + Uy(b)

(7)

for all 2 ?]EGandm:A—)A, Ay:M S A, Ay:N S A Ag:B o
A, T:A->M, h: M—>M T3:N—>M, T4:B—>M, Vi:A—=>N, V,:
M—->N V3:N>N, Vy:B>Nand U :A—-B, U;:M—=B, U3: N —

B, U4 : B — B are R-linear maps. As we know that
D(G) oy G € 3(6) for all Ge 6. (8)

10

Now if we assume G = [ 0 0

] in (8), then we find that

2*A:(1) T(1)

vi(1) 0 € 3(6).

CD(G)okG:[

Therefore by using 2-torsion freeness, we get A(1) = T;(1) = V4(1) = 0.

Similarly with G — [8 ? ] we find that T4(1) = Va(1) = Us(1) = 0.
. a O
Consider G = [ 0 0 ] to get
A](Cl) oxa a T](Cl)
(D(G) OkG_ |: V1(a)ak 0 63(6)

This implies that a*Tj(a) =0 = V;(a)a* and Aj(a)ora € 3(A)x &0 € 3(B)y.
Also, it is easy to observe that T;(a) = Ti(a+ 1) and Vi(a) = Vi(a+1). In
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view of Lemma 1, we arrive at T;(a) =0 = V;(a) for all a € A. Also, we have
Ar(a) ox a =0, i.e., Ay is k-skew commuting map on A.

Similarly for G = [ g 8 ] , we find T4(b) = 0 = V4(b) for all b € B and Uy

is k-skew commuting map on B. Replacing G = [ 8 }(3 } in (8), we find that
(Ar(a) + A4(b)) ok a 0
) —
Gloc6 = | 0 (e + Uslo)
| Ar(a) ox a4 A4(b) ok a 0
- { 0 Us(a) o b+ Us(b) o b | 3
(9)

On using the fact A; and Ty are k-skew commuting mappings on A and B
respectively, we find that A4(b) o a € 3(A)x and U;(a) ox b € 3(B)y for all

a€ A and b € B. Assume G = { 2) T(T)l } in (8) and consider

h; h;
O(G)ojG=hy=| v 12 forall 0 <i<k and hy € 3(6). (10)
Ny My,
Then
h'i-‘r](]” h‘i."r](]z] :|
= hiy1=h;joG
Riv15y, Rig1,,, o '
b 1]
hi(zl) h'i(zz) 0 0
— [ 2Ry Hmhyg, Ry meb mhig,, g,
i) ien M

This implies that hit1,,, = hy,,, and hence Vo(m) = ho,yy = higyy) - On using
the fact hy € 3(&) we get Va2(m) = 0 for all m € M. Therefore,

| Az(m) T2(m)
ho—[ 0 U1(1)+U2(m)}

and since hy € 3(6) and & is 2-torsion free,

2% (m)  hy,,, }

hy = hOOkG:|: 0 0
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Therefore, Ay(m) = 0 for all m € M. Also, we arrive at

hy — 0 Tz(m)
0 0 U (1) + Us(m)

and hence

W = hooG:[O Tz(m)—i—mU](])—i—muz(m)}

0 0

By induction we have hy = h;, 1 > 0 and hence hy = h;. This implies that
hy € 3(6). It follows that

TH(m) = —mU;(1) —mUy(m) for all m e M.

0 m
0 1
M. Combining last two expressions we arrive at T(m) = —mU;(1) for all m €

On the similar pattern with G = [ } , we find that Uy(m) = 0 for allm €

0
0
similar techniques as above we can easily find that T3(n) = 0, Az(n) =
0, Vs(n) = —Uj(1)n — Us(m)n and Uz(n) = 0 for all n € N. These
lead to V3(n) = —U;(1)n for all n € N. O

Now we mention a significant result of this article as follows:

Let us take G = { T]l ] and G = [ 3 (1) } respectively and applying

Theorem 4 Let G = S(A,M,N,B) be a 2-torsion free generalized matrix
algebra over a commutative ring R. Then any K-semi centralizing derivation
on & 1is zero.

Proof. Let @ be a k-semi centralizing derivation on &. Then by Lemma 2, @
has the following form

o a m | Ar(a) =—mng—men  amg + Tp(m) —meb
n b | npa—bng+ Vz(n) Ug(b) +nmy+nem |’

where a € A; be B, mmoe M; n,ng € Nand Ay : A - A, T, : M —
M, V3:N — N, Uy : B — B are f-linear maps satisfying condition (1) — (4)
given in Lemma 2. Also from the proof of Theorem 1 or Theorem 3, it can
be easily seen that ng = V4(1) = 0 and my = T;(1) = 0. Now @ takes the

following form
®<[a mD:[ANG) Tz(m)]
n b Vi(n) U4(b) |
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In view of k-centralizing case, condition (5) & (7) of Theorem 1 implies that
To(m) = 0 and V3(n) = 0 for all m € M and n € N. Also, for k-skew cen-
tralizing case, we have To(m) = 0 and V3(n) = 0 follows from condition (4) of
Theorem 3.

Further, in view of condition (3) & (4) from Lemma 2 and using the faith-
fulness of M, for both k-centralizing and k-skew centralizing, we find that
Ai(a) = 0 and Uy(b) = 0 for all a € A and b € B. Thus we conclude that

({2 T [3e a2 :

In view of the above theorem, we get the following results:

Corollary 4 Let & = S(A,M,N,B) be a 2-torsion free generalized matrix
algebra over a commutative ring R. Then any k-semi commuting derivation
on & 1is zero.

Corollary 5 Let 9 be a von Neumann algebra without central summands of
type Ij. Then any k-semi centralizing (commuting) derivation on M is zero.

Corollary 6 Let 2l = Tri(A, M, B) be a 2-torsion free triangular algebra over
a commutative ring R. Then any k-semi centralizing (commuting) derivation
on A s zero.

4 For future discussions

In view of [4, Propostion 2.1, 2.2], we can write the structure of automorphisms
on generalized matrix algebras respectively as follows:

Lemma 4 Let G = &(A,M, N, B) be a generalized matriz algebra and (7y, d, W,
v, my,Ng) be a 6-tuple such that vy : A — A and 6 : B — B are algebraic
automorphisms, L: M — M is y — d—bimodule automorphism, v:N — N is a
O —y—bimodule automorphism and my € M & ng € N are fixed elements such
that following conditions are satisfied:

(i) [mo,N] =0 and (N, mp) =0,

(i) [M, 1] = 0 and (ng, M) =0,

(iii) [u(m),v(n)] =vy(lmn]) and (v(n),u(m)) = ((n, m)).
Then the map ¢ : & — & defined by

o <[ a m D _ [ v(a) Y(a)mo — mod(b) + p(m)
n b | ngy(a) —8(b)ng +v(n) 5(b)
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s an algebraic automorphism.

Lemma 5 Let & = S(A, M, N, B) be a generalized matriz algebra and (p, o, W,
V, My, Ny ) be a 6-tuple such that p: A — B & o: B — A are algebraic auto-
morphisms, uw: (M,+) — (N,+) & v : (N,+) — (M, +) are group automor-
phisms such that u(amb) = p(a)u(m)o(b) & v(bna) = o(b)v(n)p(a) for all
acAbeBmeMmneNand m, € M & n, € N are fixed elements such
that following conditions are satisfied:

(1) [m*)N} =0 and (N’m*) = O)
(ii) [M,n,] =0 and (n.,M) =0,

(iii) (n(m),v(n)) = p(lm,n]) and [v(n), u(m)] = o((n, m)).
Then the map P : & — & defined by

_ o(a) m.p(a) —o(b)m. +v(n)

(R
“\In b ]) 7| plan. —n.o(b) + u(m) o(b)

1s an algebraic automorphism.

Now at this point, it is natural to raise a question:

Question 5 What is the most general form of k-semi centralizing (commut-
ing) automorphisms on generalized matriz algebras and which constraints are
needed to apply on generalized matrix algebras?

5 Conclusions

In this article, we find out the structures of k-centralizing and k-skew cen-
tralizing maps on generalized matrix algebras. Further, we conclude that k-
centralizing map has proper form. In addition, we prove that k-semi central-
izing derivation is zero on generalized matrix algebras. In the end of article,
we draw the attention of readers towards the investigation of k-semi central-
izing (commuting) automorphisms on generalized matrix algebras for future
research works.
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