

DOI: 10.2478/ausm-2023-0011

On k-semi-centralizing maps of generalized matrix algebras

Mohammad Ashraf

Department of Mathematics Aligarh Muslim University, Aligarh-202002, India email: mashraf80@hotmail.com

Aisha Jabeen

Department of Applied Sciences & Humanities Jamia Millia Islamia, New Delhi-110025, India email: ajabeen329@gmail.com

Mohit Kumar

Department of Mathematics Aligarh Muslim University, Aligarh-202002, India email: mohitkumaramu123@gmail.com

Musheer Ahmad

Department of Applied Sciences & Humanities Jamia Millia Islamia, New Delhi-110025, India email: mahmad@jmi.ac.in

Abstract. Let $\mathfrak{S} = \mathfrak{S}(A, M, N, B)$ be a generalized matrix algebra over a commutative ring with unity. In the present article, we study k-semicentralizing maps of generalized matrix algebras.

1 Historical development

Several authors studied commuting, centralizing and related maps on different rings and algebras see [1,5-12,15,17,19-21] and references therein. The study of centralizing mappings was initiated by a well known theorem due to Posner [16] which states that "the existence of a nonzero centralizing derivation on a prime ring \mathfrak{R} must be commutative." In [14] Mayne investigated

2010 Mathematics Subject Classification: 16W25, 47L35, 15A78 Key words and phrases: generalized matrix algebras, semi-commutin,

centralizing automorphisms of prime rings and proved that "if \mathfrak{R} is a prime ring with a nontrivial centralizing automorphism, then \mathfrak{R} is a commutative integral domain." These results due to Posner [16] and Mayne [14] have been extended by many authors in different ways (see [3,15,19–21] and in their existing references). In [15] Miers proved theorems for certain centralizing mappings of C*-algebras and von Neumann algebras. Brešar [5] described that "all additive centralizing mappings f on prime rings \mathfrak{R} of characteristic different from two has the form $f(x) = \lambda x + \xi(x)$, where λ is an element from the extended centroid of \mathfrak{R} and ξ is an additive mapping from \mathfrak{R} into the extended centroid of \mathfrak{R} ." Also, Bell and Lucier investigated some results concerning skew commuting and skew centralizing additive maps in [3].

Cheung [7] initiated the study of linear commuting maps on matrix algebras and proved that "every commuting map on triangular algebras has proper form." Inspired by this result, Xiao and Wei in [21] described the general form of commuting maps on generalized matrix algebras and point out various related applications. Also, Li and Wei [13] proved that "any skew-commuting map on a class of generalized matrix algebras is zero and any semi-centralizing derivation on a generalized matrix algebra is zero."

Beidar [2] studied k-commuting maps in prime rings by applying the idea of functional identities in rings. Du and Wang [8] proved that "under certain conditions, each k-commuting mapping on a triangular algebra is proper." Recently, Li et al. [12] studied k-commuting mappings of generalized matrix algebras and determined the general form of arbitrary k-commuting mapping of a generalized matrix algebra. Now it is natural problem to study the k-semi-centralizing maps on matrix algebras.

Influenced by above stated references, in this article, we find out the structure of k-semi-centralizing maps on generalized matrix algebra under certain restrictions. Also, we prove that every k-centralizing map has the proper form on generalized matrix algebras. Moreover, we discuss an important result of this paper which states that every k-semi centralizing (commuting) derivation on a 2-torsion free generalized matrix algebra becomes zero. Lastly, we point out some direct consequences of our results.

2 Basic definitions & preliminaries

Let \Re be a commutative ring with unity. An \Re -algebra \Im denoted by the set

$$\mathfrak{S} = \mathfrak{S}(A, M, N, B) = \left\{ \left[\begin{array}{cc} \mathfrak{a} & \mathfrak{m} \\ \mathfrak{n} & \mathfrak{b} \end{array} \right] \ \middle| \ \mathfrak{a} \in A, \mathfrak{m} \in M, \mathfrak{n} \in N, \mathfrak{b} \in B \right\}$$

is said to be generalized matrix algebra under matrix like multiplication and usual matrix addition, if $(A,B,M,N,\xi_{MN},\Omega_{NM})$ is a Morita context and either $M \neq 0$ or $N \neq 0$. A Morita context $(A,B,M,N,\xi_{MN},\Omega_{NM})$ consisting of two unital \mathfrak{R} -algebras A and B, two bimodules (A,B)-bimodule M and (B,A)-bimodule N, and two bimodule homomorphisms called the bilinear pairings $\xi_{MN}: M \otimes N \longrightarrow A$ and $\Omega_{NM}: N \otimes M \longrightarrow B$ which satisfies the following commutative diagrams:

More precisely, an \mathfrak{R} -algebra generated in this way is called as *generalized* matrix algebra of order 2 which was first introduced by Sands in [18]. \mathfrak{S} becomes an upper triangular algebra provided N=0 and \mathfrak{S} degenerates a lower triangular algebra provided M=0. Both upper and lower triangular algebras are collectively known as triangular algebras.

The center of \mathfrak{S} is

$$\mathfrak{Z}(\mathfrak{S}) = \left\{ \left[\begin{array}{cc} \mathfrak{a} & \mathfrak{0} \\ \mathfrak{0} & \mathfrak{b} \end{array} \right] \ \middle| \ \mathfrak{am} = \mathfrak{mb}, \mathfrak{na} = \mathfrak{bn} \ \mathrm{for \ all} \ \mathfrak{m} \in \mathrm{M}, \mathfrak{n} \in \mathrm{N} \right\}.$$

Indeed $\mathfrak{Z}(\mathfrak{S})$ is a set diagonal matrices $\begin{bmatrix} \mathfrak{a} & \mathfrak{d} \\ \mathfrak{d} & \mathfrak{b} \end{bmatrix}$, where $\mathfrak{a} \in \mathfrak{Z}(A), \mathfrak{b} \in \mathfrak{Z}(B)$ and $\mathfrak{a}\mathfrak{m} = \mathfrak{m}\mathfrak{b}, \mathfrak{n}\mathfrak{a} = \mathfrak{b}\mathfrak{n}$ for all $\mathfrak{m} \in M$, $\mathfrak{n} \in N$. Also, if M is faithful left A-module and right B-module, then the condition $\mathfrak{a} \in \mathfrak{Z}(A), \mathfrak{b} \in \mathfrak{Z}(B)$ is superfluous and can be removed. Define two natural projections $\pi_A : \mathfrak{S} \to A$ and $\pi_B : \mathfrak{S} \to B$ by $\pi_A \left(\begin{bmatrix} \mathfrak{a} & \mathfrak{m} \\ \mathfrak{n} & \mathfrak{b} \end{bmatrix} \right) = \mathfrak{a}$ and $\pi_B \left(\begin{bmatrix} \mathfrak{a} & \mathfrak{m} \\ \mathfrak{n} & \mathfrak{b} \end{bmatrix} \right) = \mathfrak{b}$. Moreover, $\pi_A(\mathfrak{Z}(\mathfrak{S})) \subseteq \mathfrak{Z}(A) \& \pi_B(\mathfrak{Z}(\mathfrak{S})) \subseteq \mathfrak{Z}(B)$ and there exists a unique algebraic isomorphism $\xi : \pi_A(\mathfrak{Z}(\mathfrak{S})) \to \pi_B(\mathfrak{Z}(\mathfrak{S}))$ such that $\mathfrak{a}\mathfrak{m} = \mathfrak{m}\xi(\mathfrak{a})$ and $\mathfrak{n}\mathfrak{a} = \xi(\mathfrak{a})\mathfrak{n}$ for all $\mathfrak{a} \in \pi_A(\mathfrak{Z}(\mathfrak{S})), \mathfrak{m} \in M$ and $\mathfrak{n} \in N$.

Let 1_A (resp. 1_B) be the identity of the algebra A (resp.B) and let I be the identity of generalized matrix algebra $\mathfrak{S},\ e=\begin{bmatrix} 1_A & 0\\ 0 & 0 \end{bmatrix},\ f=I-e=$

 $\begin{bmatrix} 0 & 0 \\ 0 & 1_B \end{bmatrix} \text{ and } \mathfrak{S}_{11} = \mathfrak{eSe}, \ \mathfrak{S}_{12} = \mathfrak{eSf}, \ \mathfrak{S}_{21} = \mathfrak{fSe}, \ \mathfrak{S}_{22} = \mathfrak{fSf}. \ \text{Thus} \\ \mathfrak{S} = \mathfrak{eSe} + \mathfrak{eSf} + \mathfrak{fSe} + \mathfrak{fSf} = \mathfrak{S}_{11} + \mathfrak{S}_{12} + \mathfrak{S}_{21} + \mathfrak{S}_{22} \text{ where } \mathfrak{S}_{11} \text{ is subalgebra of } \mathfrak{S} \text{ isomorphic to } A, \ \mathfrak{S}_{22} \text{ is subalgebra of } \mathfrak{S} \text{ isomorphic to } B, \ \mathfrak{S}_{12} \text{ is} \\ (\mathfrak{S}_{11}, \mathfrak{S}_{22}) \text{-bimodule isomorphic to } M \text{ and } \mathfrak{S}_{21} \text{ is } (\mathfrak{S}_{22}, \mathfrak{S}_{11}) \text{-bimodule isomorphic to } N. \ Also, \ \pi_A(\mathfrak{Z}(\mathfrak{S})) \text{ and } \pi_B(\mathfrak{Z}(\mathfrak{S})) \text{ are isomorphic to } \mathfrak{e3}(\mathfrak{S})\mathfrak{e} \text{ and } \mathfrak{f3}(\mathfrak{S})\mathfrak{f} \text{ respectively.}$ Then there is an algebra isomorphisms $\xi: \mathfrak{e3}(\mathfrak{S})\mathfrak{e} \to \mathfrak{f3}(\mathfrak{S})\mathfrak{f} \text{ such that } \mathfrak{am} = \mathfrak{m}\xi(\mathfrak{a}) \text{ and } \mathfrak{na} = \xi(\mathfrak{a})\mathfrak{n} \text{ for all } \mathfrak{m} \in \mathfrak{e\mathfrak{S}}\mathfrak{f} \text{ and } \mathfrak{n} \in \mathfrak{f\mathfrak{S}}\mathfrak{e}.$

Let \Re be a commutative ring with unity and A be an \Re -algebra. $\mathfrak{Z}(A)$ denote the center of \mathcal{A} and define $\mathfrak{Z}(\mathcal{A})_k$ by $\{a \in \mathcal{A} \mid [a,y]_k = 0 \ \forall \ y \in \mathcal{A}\}$. In particular $\mathfrak{Z}(\mathcal{A})_1 = \mathfrak{Z}(\mathcal{A})$. For arbitrary elements $x, y \in \mathcal{A}$, we denote $[x, y]_0 = x$, $[x, y]_1 = x$ xy - yx, and inductively $[x, y]_k = [[x, y]_{k-1}, y]$, where k > 0 is a fixed positive integer. Also, denote $x \circ_0 y = x$, $x \circ_1 y = xy + yx$ and $x \circ_k y = (x \circ_{k-1} y) \circ_1 y$ for all $x, y \in A$. An \Re -linear map $g: A \to A$ is said to semi-centralizing if $[q(x), x] \in \mathfrak{Z}(\mathcal{A})$ or $q(x) \circ x \in \mathfrak{Z}(\mathcal{A})$ for all $a \in \mathcal{A}$. Particularly, q is said to be centralizing if $[q(x), x] \in \mathfrak{Z}(A)$ and q is said to be skew centralizing if $g(x) \circ x \in \mathfrak{Z}(\mathcal{A})$ for all $x \in \mathcal{A}$. In general, for positive integer k > 0, an \mathfrak{R} -linear map $\mathfrak{q}:\mathcal{A}\to\mathcal{A}$ is said to k-semi-centralizing if $[\mathfrak{q}(x),x]_k\in\mathfrak{Z}(\mathcal{A})$ or $g(x) \circ_k x \in \mathfrak{Z}(\mathcal{A})$ for all $a \in \mathcal{A}$. In particular, g is said to be k-centralizing if $[g(x),x]_k \in \mathfrak{Z}(\mathcal{A})$ and g is said to be k-skew centralizing if $g(x) \circ_k x \in \mathfrak{Z}(\mathcal{A})$ for all $x \in A$. Further, for positive integer k > 0, an \Re -linear map $g : A \to A$ is said to k-semi-commuting if $[q(x), x]_k = 0$ or $q(x) \circ_k x = 0$ for all $\alpha \in A$. In particular, g is said to be k-commuting if $[g(x), x]_k = 0$ and g is said to be k-skew commuting if $g(x) \circ_k x = 0$ for all $x \in A$.

At this point, we shall mention some important results, which are essential for developing the proof of our main result:

Lemma 1 [12, Lemma 3.1] Let \mathfrak{n} be a positive integer and \mathfrak{R} be a unital associative ring. For a left \mathfrak{R} -module M, if $\alpha:\mathfrak{R}\to M$ is a mapping such that $\alpha(x+1)=\alpha(x)$ and $x^n\alpha(x)=0$ for all $x\in\mathfrak{R}$, then $\alpha=0$. Similarly, for a right \mathfrak{R} -module N, a mapping $\beta:\mathfrak{R}\to N$ is zero if $\beta(x+1)=\beta(x)$ and $\beta(x)x^n=0$ for all $x\in\mathfrak{R}$.

Lemma 2 [13, Proposition 4.2] Let $\mathfrak{S} = \mathfrak{S}(A, M, N, B)$ be a generalized matrix algebra over a commutative ring \mathfrak{R} . An additive map $\Phi : \mathfrak{S} \to \mathfrak{S}$ is a derivation if and only if Φ has the following form

$$\Phi\left(\left[\begin{array}{cc}a&m\\n&b\end{array}\right]\right)=\left[\begin{array}{cc}\Delta_1(a)-mn_0-m_0n&am_0+T_2(m)-m_0b\\n_0a-bn_0+V_3(n)&U_4(b)+nm_0+n_0m\end{array}\right],$$

where $a \in A; b \in B; m, m_0 \in M; n, n_0 \in N \ \text{and} \ \Delta_1 : A \rightarrow A, \ T_2 : M \rightarrow$

 $M,\ V_3:N\to N,\ U_4:B\to B$ are $\mathfrak{R}\text{-linear}$ maps satisfying the following conditions:

- 1. Δ_1 is a derivation of A and $\Delta_1(mn) = T_2(m)n + mV_3(n)$;
- 2. U_4 is a derivation of B and $U_4(nm) = V_3(n)m + nT_2(m)$;
- 3. $T_2(am) = \Delta_1(a)m + aT_2(m)$ and $T_2(mb) = T_2(m)b + mU_4(b)$;
- 4. $V_3(na) = V_3(n)a + n\Delta_1(a)$ and $V_3(bn) = U_4(b)n + bV_3(n)$.

Lemma 3 [12, Theorem 3.5] Let $\mathfrak{S} = \mathfrak{S}(A, M, N, B)$ be a generalized matrix algebra over a commutative ring \mathfrak{R} and $\Phi : \mathfrak{S} \to \mathfrak{S}$ be a k-commuting map on \mathfrak{S} . If the following conditions are satisfied:

- 1. $\mathfrak{Z}(A)_k = \pi_A(\mathfrak{Z}(\mathfrak{S})) \ or [A, A] = A;$
- 2. $\mathfrak{Z}(B)_k = \pi_B(\mathfrak{Z}(\mathfrak{S})) \ or \ [B, B] = B;$
- 3. there exist $m_0 \in M$, $n_0 \in N$ such that

$$\mathfrak{Z}(\mathfrak{S}) = \left\{ \left[\begin{array}{cc} \mathfrak{a} & \mathfrak{0} \\ \mathfrak{0} & \mathfrak{b} \end{array} \right] \ \middle| \ \mathfrak{a} \in \mathfrak{Z}(A), \mathfrak{b} \in \mathfrak{Z}(B), \mathfrak{am}_0 = \mathfrak{m}_0 \mathfrak{b}, \mathfrak{n}_0 \mathfrak{a} = \mathfrak{bn}_0 \right\},$$

then Φ is proper i.e., Φ has the form $\Phi = \lambda + \xi$, where $\lambda \in \mathfrak{Z}(\mathfrak{S})$ and $\xi : \mathfrak{S} \to \mathfrak{Z}(\mathfrak{S})$ is an \mathfrak{R} -linear mapping.

3 Key content

In this section, we investigate the significant results of the article as follows:

Theorem 1 Let $\mathfrak{S} = \mathfrak{S}(A, M, N, B)$ be a generalized matrix algebra over a commutative ring \mathfrak{R} . An \mathfrak{R} -linear map $\Phi : \mathfrak{S} \to \mathfrak{S}$ is a k-centralizing map on \mathfrak{S} if Φ has the following form

$$\begin{split} &\Phi\left(\left[\begin{array}{cc}\alpha & m \\ n & b\end{array}\right]\right) \\ &= \left[\begin{array}{cc}\Delta_1(\alpha) + \Delta_2(m) + \Delta_3(n) + \Delta_4(b) & T_2(m) \\ V_3(n) & U_1(\alpha) + U_2(m) + U_3(n) + U_4(b)\end{array}\right], \end{split}$$

where $\alpha \in A$; $b \in B$; $m \in M$; $n \in N$ and $\Delta_1 : A \to A$, $\Delta_2 : M \to \mathfrak{Z}(A)_k$, $\Delta_3 : N \to \mathfrak{Z}(A)_k$, $\Delta_4 : B \to A$, $T_2 : M \to M$, $V_3 : N \to N$, $U_1 : A \to B$, $U_2 : M \to \mathfrak{Z}(B)_k$, $U_3 : N \to \mathfrak{Z}(B)_k$, $U_4 : B \to B$ are \mathfrak{R} -linear maps satisfying the following conditions:

- 1. Δ_1 is k-commuting map of A and $\Delta_1(1) \in \mathfrak{Z}(A)_k$;
- 2. U_4 is k-commuting map of B and $U_4(1) \in \mathfrak{Z}(B)_k$;
- 3. $[\Delta_4(b), a]_k \in \mathfrak{Z}(A)_k$ and $[U_1(a), b]_k \in \mathfrak{Z}(B)_k$;

4.
$$(\Delta_1(1) + \Delta_4(1) + 2\Delta_2(m))m = m(U_1(1) + U_4(1) + 2U_2(m));$$

5.
$$2T_2(m) = (\Delta_1(1) - \Delta_4(1))m - m(U_1(1) - U_4(1));$$

6.
$$n(\Delta_1(1) + \Delta_4(1) + 2\Delta_3(n)) = (U_1(1) + U_4(1) + 2U_3(n))n;$$

7.
$$2V_3(n) = n(\Delta_1(1) - \Delta_4(1)) - (U_1(1) - U_4(1))n$$
.

Proof. Suppose that k-centralizing map Φ takes the following form

$$\begin{split} & \Phi \left(\begin{bmatrix} \alpha & m \\ n & b \end{bmatrix} \right) \\ & = \begin{bmatrix} \Delta_1(\alpha) + \Delta_2(m) + \Delta_3(n) + \Delta_4(b) & T_1(\alpha) + T_2(m) + T_3(n) + T_4(b) \\ V_1(\alpha) + V_2(m) + V_3(n) + V_4(b) & U_1(\alpha) + U_2(m) + U_3(n) + U_4(b) \end{bmatrix} \end{aligned} \tag{1}$$

 $\begin{array}{l} \text{for all } \left[\begin{array}{l} \alpha & m \\ n & b \end{array} \right] \in \mathfrak{S} \text{ and } \Delta_1: A \rightarrow A, \ \Delta_2: M \rightarrow A, \ \Delta_3: N \rightarrow A, \ \Delta_4: B \rightarrow A; \\ T_1: A \rightarrow M, \ T_2: M \rightarrow M, \ T_3: N \rightarrow M, \ T_4: B \rightarrow M; \ V_1: A \rightarrow N, \ V_2: M \rightarrow N, \ V_3: N \rightarrow N, \ V_4: B \rightarrow N \ \text{and} \ U_1: A \rightarrow B, \ U_2: M \rightarrow B, \ U_3: N \rightarrow B, \ U_4: B \rightarrow B \ \text{are} \ \mathfrak{R}\text{-linear maps. Since} \end{array}$

$$[\Phi(G), G]_k \in \mathfrak{Z}(\mathfrak{S})$$
 for all $G \in \mathfrak{S}$. (2)

Now if we consider $G = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$ in (2), then it follows that

$$[\Phi(G),G]_k = \left[\begin{array}{cc} 0 & (-1)^k T_1(1) \\ V_1(1) & 0 \end{array} \right] \in \mathfrak{Z}(\mathfrak{S}).$$

This implies that $T_1(1)=0=V_1(1)$. Again on assuming $G=\begin{bmatrix}0&0\\0&1\end{bmatrix}$ in (2), we have $T_4(1)=0=V_4(1)$. On applying inductive approach with $G=\begin{bmatrix}\alpha&0\\0&0\end{bmatrix}$, we find that

$$[\Phi(G),G]_k = \left[\begin{array}{cc} [\Delta_1(\alpha),\alpha]_k & (-1)^k\alpha^kT_1(\alpha) \\ V_1(\alpha)\alpha^k & 0 \end{array} \right] \in \mathfrak{Z}(\mathfrak{S}).$$

This leads to $\mathfrak{a}^k T_1(\mathfrak{a}) = 0 = V_1(\mathfrak{a})\mathfrak{a}^k$, $[\Delta_1(\mathfrak{a}),\mathfrak{a}]_k \in \mathfrak{Z}(A)_k$ and $0 \in \mathfrak{Z}(B)_k$. Also, it is easy to observe that $T_1(\mathfrak{a}) = T_1(\mathfrak{a}+1)$ and $V_1(\mathfrak{a}) = V_1(\mathfrak{a}+1)$. In view of Lemma 1, we arrive at $T_1(\mathfrak{a}) = 0 = V_1(\mathfrak{a})$ for all $\mathfrak{a} \in A$. Further, we have $[\Delta_1(\mathfrak{a}),\mathfrak{a}]_k = 0$, i.e., Δ_1 is k-commuting map on A. Further, replacing \mathfrak{a} by $\mathfrak{a}+1$ in $[\Delta_1(\mathfrak{a}),\mathfrak{a}]_k = 0$, we conclude that $[\Delta_1(1),\mathfrak{a}]_k = 0$ for all $\mathfrak{a} \in A$ and hence $\Delta_1(1) \in \mathfrak{Z}(A)_k$.

On similar pattern for $G=\begin{bmatrix}0&0\\0&b\end{bmatrix}$, we can show that $T_4(b)=0=V_4(b)$ for all $b\in B$ and U_4 is k-commuting map on B and hence $U_4(1)\in \mathfrak{Z}(B)_k$. If $G=\begin{bmatrix}a&0\\0&b\end{bmatrix}$ in (2), then it follows that

$$\begin{split} [\Phi(G),G]_k &= \left[\begin{array}{ccc} [\Delta_1(\alpha) + \Delta_4(b),\alpha]_k & 0 \\ 0 & [U_1(\alpha) + U_4(b),b]_k \end{array} \right] \\ &= \left[\begin{array}{ccc} [\Delta_1(\alpha),\alpha]_k + [\Delta_4(b),\alpha]_k & 0 \\ 0 & [U_1(\alpha),b]_k + [U_4(b),b]_k \end{array} \right] \in \mathfrak{Z}(\mathfrak{S}). \end{split} \tag{3}$$

On using the fact Δ_1 and U_4 are k-commuting mappings on A and B respectively, we find that $[\Delta_4(b), a]_k \in \mathfrak{Z}(A)_k$ and $[U_1(a), b]_k \in \mathfrak{Z}(B)_k$ for all $a \in A$ and $b \in B$.

Suppose that
$$G = \begin{bmatrix} 1 & m \\ 0 & 0 \end{bmatrix}$$
 in (2) and consider

$$[\Phi(G), G]_{\mathfrak{i}} = h_{\mathfrak{i}} = \left[\begin{array}{cc} h_{\mathfrak{i}_{(11)}} & h_{\mathfrak{i}_{(12)}} \\ h_{\mathfrak{i}_{(21)}} & h_{\mathfrak{i}_{(22)}} \end{array} \right] \quad \text{for all} \quad 0 \leq \mathfrak{i} < k \quad \text{and} \quad h_k \in \mathfrak{Z}(\mathfrak{S}). \quad (4)$$

This implies to

$$\begin{split} h_{i+1} &= \begin{bmatrix} h_{i+1_{(11)}} & h_{i+1_{(12)}} \\ h_{i+1_{(21)}} & h_{i+1_{(22)}} \end{bmatrix} \\ &= [h_i, G] \\ &= \begin{bmatrix} \begin{bmatrix} h_{i_{(11)}} & h_{i_{(12)}} \\ h_{i_{(21)}} & h_{i_{(22)}} \end{bmatrix}, \begin{bmatrix} 1 & m \\ 0 & 0 \end{bmatrix} \end{bmatrix} \\ &= \begin{bmatrix} -mh_{i_{(11)}} & h_{i_{(11)}}m - mh_{i_{(22)}} - h_{i_{(12)}} \\ h_{i_{(21)}} & h_{i_{(21)}}m \end{bmatrix}. \end{split}$$

It follows that $h_{i+1_{(21)}}=h_{i_{(21)}}$ and hence $V_2(\mathfrak{m})=h_{0_{(21)}}=h_{k_{(21)}}$. On using the fact $h_k\in\mathfrak{Z}(\mathfrak{S}),$ we get $V_2(\mathfrak{m})=0$ for all $\mathfrak{m}\in M$. Therefore,

$$h_0 = \begin{bmatrix} \Delta_1(1) + \Delta_2(m) & T_2(m) \\ 0 & U_1(1) + U_2(m) \end{bmatrix}$$

and

$$h_1 = [h_0, G] = \left[\begin{array}{cc} 0 & \Delta_1(1)m + \Delta_2(m)m - T_2(m) - mU_1(1) - mU_2(m) \\ 0 & 0 \end{array} \right].$$

Now by induction we arrive at $h_i=(-1)^{i-1}h_1,\ i>0$ and hence $h_k=(-1)^{k-1}h_1.$ This implies that $h_1\in\mathfrak{Z}(\mathfrak{S}).$ It follows that

$$T_2(\mathfrak{m}) = \Delta_1(1)\mathfrak{m} + \Delta_2(\mathfrak{m})\mathfrak{m} - \mathfrak{m} U_1(1) - \mathfrak{m} U_2(\mathfrak{m}) \quad \mathrm{for \ all} \ \mathfrak{m} \in \mathrm{M}.$$

On the similar pattern with $G = \begin{bmatrix} 0 & m \\ 0 & 1 \end{bmatrix}$, we find that

$$T_2(\mathfrak{m})=\mathfrak{m} U_4(1)+\mathfrak{m} U_2(\mathfrak{m})-\Delta_4(1)\mathfrak{m}-\Delta_2(\mathfrak{m})\mathfrak{m}\quad \mathrm{for\ all}\ \mathfrak{m}\in\mathrm{M}.$$

Combining the last two expressions, we arrive at

$$(\Delta_1(1) + \Delta_4(1) + 2\Delta_2(m))m = m(U_1(1) + U_4(1) + 2U_2(m))$$

and

$$2T_2(m) = (\Delta_1(1) - \Delta_4(1))m - m(U_1(1) - U_4(1)).$$

On assuming $G=\begin{bmatrix}1&0\\n&0\end{bmatrix}$ and $G=\begin{bmatrix}0&0\\n&1\end{bmatrix}$ respectively and applying similar techniques as above we can easily find that

$$V_3(n) = n \Delta_1(1) + n \Delta_3(n) - U_1(1)n - U_3(n)n \quad {\rm for \ all} \ n \in {\rm N}.$$

and

$$V_3(n)=U_4(1)n+U_3(n)n-n\Delta_4(1)-n\Delta_3(n)\quad {\rm for\ all}\ n\in {\rm N}.$$

The above two expressions leads to

$$n(\Delta_1(1) + \Delta_4(1) + 2\Delta_3(n)) = (U_1(1) + U_4(1) + 2U_3(n))n$$

and

$$2V_3(n) = n(\Delta_1(1) - \Delta_4(1)) - (U_1(1) - U_4(1))n.$$

Let us take $G = \begin{bmatrix} \alpha & m \\ 0 & 0 \end{bmatrix}$ in (2) to find that $[\Delta_1(\alpha), \alpha]_k + [\Delta_2(m), \alpha]_k \in \mathfrak{Z}(\mathfrak{S})$. Since Δ_1 is k-commuting map of A it follows that $\Delta_2(m) \in \mathfrak{Z}(A)_k$ by the arbitrariness of $m \in M$. In the similar way for $G = \begin{bmatrix} 0 & m \\ 0 & b \end{bmatrix}$ in (2), we have $U_2(m) \in \mathfrak{Z}(B)_k$ for all $m \in M$.

With the similar arguments as used above with $G=\begin{bmatrix} a & 0 \\ n & 0 \end{bmatrix}$ and $G=\begin{bmatrix} 0 & 0 \\ n & b \end{bmatrix}$ in (2) respectively, we observe that $\Delta_3(n)\in \mathfrak{Z}(A)_k$ and $U_3(n)\in \mathfrak{Z}(B)_k$ for all $n\in \mathbb{N}$.

As an immediate consequence of the above theorem, we obtain the following result:

Corollary 1 [12, Proposition 3.2] Let $\mathfrak{S} = \mathfrak{S}(A, M, N, B)$ be a generalized matrix algebra over a commutative ring \mathfrak{R} . An \mathfrak{R} -linear map $\Phi : \mathfrak{S} \to \mathfrak{S}$ is a k-commuting map on \mathfrak{S} if Φ has the following form

$$\begin{split} &\Phi\left(\left[\begin{array}{cc}\alpha & m \\ n & b\end{array}\right]\right) \\ &= \left[\begin{array}{cc}\Delta_1(\alpha) + \Delta_2(m) + \Delta_3(n) + \Delta_4(b) & T_2(m) \\ V_3(n) & U_1(\alpha) + U_2(m) + U_3(n) + U_4(b)\end{array}\right], \end{split}$$

where $a \in A$; $b \in B$; $m \in M$; $n \in N$ and $\Delta_1 : A \to A$, $\Delta_2 : M \to \mathfrak{Z}(A)_k$, $\Delta_3 : N \to \mathfrak{Z}(A)_k$, $\Delta_4 : B \to \mathfrak{Z}(A)_k$, $T_2 : M \to M$, $V_3 : N \to N$, $U_1 : A \to \mathfrak{Z}(B)_k$, $U_2 : M \to \mathfrak{Z}(B)_k$, $U_3 : N \to \mathfrak{Z}(B)_k$, $U_4 : B \to B$ are \mathfrak{R} -linear maps satisfying the following conditions:

- 1. Δ_1 is k-commuting map of A and $\Delta_1(1) \in \mathfrak{Z}(A)_k$;
- 2. U_4 is k-commuting map of B and $U_4(1) \in \mathfrak{Z}(B)_k$;

3.
$$(\Delta_1(1) + \Delta_4(1) + 2\Delta_2(m))m = m(U_1(1) + U_4(1) + 2U_2(m));$$

4.
$$2T_2(m) = (\Delta_1(1) - \Delta_4(1))m - m(U_1(1) - U_4(1));$$

5.
$$n(\Delta_1(1) + \Delta_4(1) + 2\Delta_3(n)) = (U_1(1) + U_4(1) + 2U_3(n))n;$$

6.
$$2V_3(n) = n(\Delta_1(1) - \Delta_4(1)) - (U_1(1) - U_4(1))n$$
.

In view of Lemma 3 and Theorem 1, it is easy to see that

Theorem 2 Let $\mathfrak{S} = \mathfrak{S}(A, M, N, B)$ be a generalized matrix algebra over a commutative ring \mathfrak{R} and $\Phi : \mathfrak{S} \to \mathfrak{S}$ be a k-centralizing map on \mathfrak{S} . If the following conditions are satisfied:

1.
$$\Delta_4(B) \subseteq \mathfrak{Z}(A)_k$$
 and $U_1(A) \subseteq \mathfrak{Z}(B)_k$;

- 2. $\mathfrak{Z}(A)_k = \pi_A(\mathfrak{Z}(\mathfrak{S}))$ and $\mathfrak{Z}(B)_k = \pi_B(\mathfrak{Z}(\mathfrak{S}))$;
- 3. there exist $m_0 \in M$, $n_0 \in N$ such that

$$\mathfrak{Z}(\mathfrak{S}) = \left\{ \left[\begin{array}{cc} \mathfrak{a} & \mathfrak{0} \\ \mathfrak{0} & \mathfrak{b} \end{array} \right] \ \middle| \ \mathfrak{a} \in \mathfrak{Z}(A), \mathfrak{b} \in \mathfrak{Z}(B), \mathfrak{am}_0 = \mathfrak{m}_0 \mathfrak{b}, \mathfrak{n}_0 \mathfrak{a} = \mathfrak{bn}_0 \right\},$$

then Φ is proper i.e., Φ has the form $\Phi = \lambda + \xi$, where $\lambda \in \mathfrak{Z}(\mathfrak{S})$ and $\xi : \mathfrak{S} \to \mathfrak{Z}(\mathfrak{S})$ is an \mathfrak{R} -linear mapping.

Also, we can see the implication of the above result in the settings of some nice examples of generalized matrix algebras (for detail see [12] and references therein) which follows directly:

Corollary 2 Let \mathfrak{M} be a von Neumann algebra without central summands of type I_1 . Then any k-centralizing map on \mathfrak{M} is proper.

Corollary 3 [8, Theorem 1.1] Let $\mathfrak{A} = \mathsf{Tri}(A, M, B)$ be a triangular algebra over a commutative ring \mathfrak{R} and $\Phi : \mathfrak{A} \to \mathfrak{A}$ be a k-centralizing map on \mathfrak{A} . If the following conditions are satisfied:

- 1. $\mathfrak{Z}(A)_k = \pi_A(\mathfrak{Z}(\mathfrak{A}))$ and $\mathfrak{Z}(B)_k = \pi_B(\mathfrak{Z}(\mathfrak{A}))$;
- 2. there exist $m_0 \in M$, $n_0 \in N$ such that

$$\mathfrak{Z}(\mathfrak{A}) = \left\{ \left[\begin{array}{cc} \mathfrak{a} & \mathfrak{0} \\ \mathfrak{0} & \mathfrak{b} \end{array} \right] \; \middle| \; \mathfrak{a} \in \mathfrak{Z}(A), \mathfrak{b} \in \mathfrak{Z}(B), \mathfrak{am}_{0} = \mathfrak{m}_{0}\mathfrak{b} \right\},$$

then Φ is proper i.e., Φ has the form $\Phi = \lambda + \xi$, where $\lambda \in \mathfrak{Z}(\mathfrak{A})$ and $\xi : \mathfrak{A} \to \mathfrak{Z}(\mathfrak{A})$ is an \mathfrak{R} -linear mapping.

Now we describe the general form of k-skew centralizing maps on generalized matrix algebras as follows:

Theorem 3 Let $\mathfrak{S} = \mathfrak{S}(A, M, N, B)$ be a 2-torsion free generalized matrix algebra over a commutative ring \mathfrak{R} . An \mathfrak{R} -linear map $\Phi : \mathfrak{S} \to \mathfrak{S}$ is a k-skew centralizing map on \mathfrak{S} if Φ has the following form

$$\Phi\left(\left[\begin{array}{cc} \alpha & m \\ n & b \end{array}\right]\right) = \left[\begin{array}{cc} \Delta_1(\alpha) + \Delta_4(b) & T_2(m) \\ V_3(n) & U_1(\alpha) + U_4(b) \end{array}\right], \tag{6}$$

where $a \in A$; $b \in B$; $m \in M$; $n \in N$ and $\Delta_1 : A \to A$, $\Delta_4 : B \to A$, $T_2 : M \to M$, $V_3 : N \to N$, $U_1 : A \to B$, $U_4 : B \to B$ are \mathfrak{R} -linear maps satisfying the following conditions:

- 1. Δ_1 is k-skew commuting map of A;
- 2. U₄ is k-skew commuting map of B;
- 3. $\Delta_4(b) \circ_k a \in \mathfrak{Z}(A)_k$ and $U_1(a) \circ_k b \in \mathfrak{Z}(B)_k$;
- 4. $T_2(m) = -m\Delta_1(1)$ and $V_3(n) = -U_1(1)n$.

Proof. Assume that k-skew centralizing map Φ takes the following form

$$\begin{split} & \Phi \left(\left[\begin{array}{cc} \alpha & m \\ n & b \end{array} \right] \right) \\ & = \left[\begin{array}{cc} \Delta_1(\alpha) + \Delta_2(m) + \Delta_3(n) + \Delta_4(b) & T_1(\alpha) + T_2(m) + T_3(n) + T_4(b) \\ V_1(\alpha) + V_2(m) + V_3(n) + V_4(b) & U_1(\alpha) + U_2(m) + U_3(n) + U_4(b) \end{array} \right] \end{aligned} \tag{7}$$

 $\begin{array}{l} \mathrm{for\ all}\,\left[\begin{array}{c} a & m \\ n & b \end{array}\right] \in \mathfrak{S}\ \mathrm{and}\ \Delta_1: A \to A,\ \Delta_2: M \to A,\ \Delta_3: N \to A,\ \Delta_4: B \to A;\ T_1: A \to M,\ T_2: M \to M,\ T_3: N \to M,\ T_4: B \to M;\ V_1: A \to N,\ V_2: M \to N,\ V_3: N \to N,\ V_4: B \to N\ \mathrm{and}\ U_1: A \to B,\ U_2: M \to B,\ U_3: N \to B,\ U_4: B \to B\ \mathrm{are}\ \mathfrak{R}\text{-linear\ maps.}\ \mathrm{As\ we\ know\ that} \end{array}$

$$\Phi(G) \circ_k G \in \mathfrak{Z}(\mathfrak{S}) \text{ for all } G \in \mathfrak{S}.$$
 (8)

Now if we assume $G = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$ in (8), then we find that

$$\Phi(G)\circ_k G=\left[\begin{array}{cc}2^k\Delta_1(1) & T_1(1)\\V_1(1) & 0\end{array}\right]\in\mathfrak{Z}(\mathfrak{S}).$$

Therefore by using 2-torsion freeness, we get $\Delta_1(1) = T_1(1) = V_1(1) = 0$. Similarly with $G = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$, we find that $T_4(1) = V_4(1) = U_4(1) = 0$. Consider $G = \begin{bmatrix} \alpha & 0 \\ 0 & 0 \end{bmatrix}$ to get

$$\Phi(G)\circ_k G=\left[\begin{array}{cc} \Delta_1(\alpha)\circ_k \alpha & \alpha^kT_1(\alpha)\\ V_1(\alpha)\alpha^k & 0 \end{array}\right]\in \mathfrak{Z}(\mathfrak{S}).$$

This implies that $a^kT_1(a) = 0 = V_1(a)a^k$ and $\Delta_1(a) \circ_k a \in \mathfrak{Z}(A)_k \& 0 \in \mathfrak{Z}(B)_k$. Also, it is easy to observe that $T_1(a) = T_1(a+1)$ and $V_1(a) = V_1(a+1)$. In view of Lemma 1, we arrive at $T_1(\alpha) = 0 = V_1(\alpha)$ for all $\alpha \in A$. Also, we have $\Delta_1(\alpha) \circ_k \alpha = 0$, i.e., Δ_1 is k-skew commuting map on A.

Similarly for $G=\left[\begin{array}{cc}0&0\\0&b\end{array}\right]$, we find $T_4(b)=0=V_4(b)$ for all $b\in B$ and U_4

is k-skew commuting map on B. Replacing $G = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}$ in (8), we find that

$$\Phi(G) \circ_{k} G = \begin{bmatrix}
(\Delta_{1}(a) + \Delta_{4}(b)) \circ_{k} a & 0 \\
0 & (U_{1}(a) + U_{4}(b)) \circ_{k} b
\end{bmatrix} \\
= \begin{bmatrix}
\Delta_{1}(a) \circ_{k} a + \Delta_{4}(b) \circ_{k} a & 0 \\
0 & U_{1}(a) \circ_{k} b + U_{4}(b) \circ_{k} b
\end{bmatrix} \in \mathfrak{Z}(\mathfrak{S}). \tag{9}$$

On using the fact Δ_1 and T_4 are k-skew commuting mappings on A and B respectively, we find that $\Delta_4(b)\circ_k \alpha\in \mathfrak{Z}(A)_k$ and $U_1(\alpha)\circ_k b\in \mathfrak{Z}(B)_k$ for all $\alpha\in A$ and $b\in B$. Assume $G=\begin{bmatrix}1&m\\0&0\end{bmatrix}$ in (8) and consider

$$\Phi(G) \circ_{i} G = h_{i} = \left[\begin{array}{cc} h_{i_{(11)}} & h_{i_{(12)}} \\ h_{i_{(21)}} & h_{i_{(22)}} \end{array} \right] \ \ \text{for all} \ \ 0 \leq i < k \ \ \text{and} \ \ h_{k} \in \mathfrak{Z}(\mathfrak{S}). \ \ (10)$$

Then

This implies that $h_{i+1_{(21)}}=h_{i_{(21)}}$ and hence $V_2(\mathfrak{m})=h_{0_{(21)}}=h_{k_{(21)}}$. On using the fact $h_k\in\mathfrak{Z}(\mathfrak{S})$ we get $V_2(\mathfrak{m})=0$ for all $\mathfrak{m}\in M$. Therefore,

$$h_0 = \left[\begin{array}{cc} \Delta_2(m) & T_2(m) \\ 0 & U_1(1) + U_2(m) \end{array} \right]$$

and since $h_k \in \mathfrak{Z}(\mathfrak{S})$ and \mathfrak{S} is 2-torsion free,

$$h_k = h_0 \circ_k G = \begin{bmatrix} 2^k \Delta_2(\mathfrak{m}) & h_{k_{(12)}} \\ 0 & 0 \end{bmatrix}.$$

Therefore, $\Delta_2(\mathfrak{m}) = 0$ for all $\mathfrak{m} \in M$. Also, we arrive at

$$h_0 = \left[\begin{array}{cc} 0 & T_2(\mathfrak{m}) \\ 0 & U_1(1) + U_2(\mathfrak{m}) \end{array} \right]$$

and hence

$$h_1 \ = \ h_0 \circ G = \left[\begin{array}{cc} 0 & T_2(m) + m U_1(1) + m U_2(m) \\ 0 & 0 \end{array} \right].$$

By induction we have $h_i = h_1$, i > 0 and hence $h_k = h_1$. This implies that $h_1 \in \mathfrak{Z}(\mathfrak{S})$. It follows that

$$T_2(\mathfrak{m}) = -\mathfrak{m} U_1(1) - \mathfrak{m} U_2(\mathfrak{m}) \quad \mathrm{for \ all} \ \mathfrak{m} \in \mathrm{M}.$$

On the similar pattern with $G=\begin{bmatrix}0&m\\0&1\end{bmatrix}$, we find that $U_2(m)=0$ for all $m\in M$. Combining last two expressions we arrive at $T_2(m)=-mU_1(1)$ for all $m\in M$.

Let us take $G=\begin{bmatrix}1&0\\n&0\end{bmatrix}$ and $G=\begin{bmatrix}0&0\\n&1\end{bmatrix}$ respectively and applying similar techniques as above we can easily find that $T_3(n)=0,\ \Delta_3(n)=0,\ V_3(n)=-U_1(1)n-U_3(n)n$ and $U_3(n)=0$ for all $n\in\mathbb{N}$. These lead to $V_3(n)=-U_1(1)n$ for all $n\in\mathbb{N}$.

Now we mention a significant result of this article as follows:

Theorem 4 Let $\mathfrak{S} = \mathfrak{S}(A, M, N, B)$ be a 2-torsion free generalized matrix algebra over a commutative ring \mathfrak{R} . Then any k-semi centralizing derivation on \mathfrak{S} is zero.

Proof. Let Φ be a k-semi centralizing derivation on \mathfrak{S} . Then by Lemma 2, Φ has the following form

$$\Phi\left(\left[\begin{array}{cc}a&m\\n&b\end{array}\right]\right)=\left[\begin{array}{cc}\Delta_1(a)-mn_0-m_0n&am_0+T_2(m)-m_0b\\n_0a-bn_0+V_3(n)&U_4(b)+nm_0+n_0m\end{array}\right],$$

where $a \in A$; $b \in B$; $m, m_0 \in M$; $n, n_0 \in N$ and $\Delta_1 : A \to A$, $T_2 : M \to M$, $V_3 : N \to N$, $U_4 : B \to B$ are \mathfrak{R} -linear maps satisfying condition (1) - (4) given in Lemma 2. Also from the proof of Theorem 1 or Theorem 3, it can be easily seen that $n_0 = V_1(1) = 0$ and $m_0 = T_1(1) = 0$. Now Φ takes the following form

$$\Phi\left(\left[\begin{array}{cc}a&m\\n&b\end{array}\right]\right)=\left[\begin{array}{cc}\Delta_1(a)&T_2(m)\\V_3(n)&U_4(b)\end{array}\right].$$

In view of k-centralizing case, condition (5) & (7) of Theorem 1 implies that $T_2(\mathfrak{m})=0$ and $V_3(\mathfrak{n})=0$ for all $\mathfrak{m}\in M$ and $\mathfrak{n}\in N$. Also, for k-skew centralizing case, we have $T_2(\mathfrak{m})=0$ and $V_3(\mathfrak{n})=0$ follows from condition (4) of Theorem 3.

Further, in view of condition (3) & (4) from Lemma 2 and using the faithfulness of M, for both k-centralizing and k-skew centralizing, we find that $\Delta_1(\mathfrak{a}) = 0$ and $U_4(\mathfrak{b}) = 0$ for all $\mathfrak{a} \in A$ and $\mathfrak{b} \in B$. Thus we conclude that $\Phi\left(\left[\begin{array}{cc} \mathfrak{a} & \mathfrak{m} \\ \mathfrak{n} & \mathfrak{b} \end{array} \right]\right) = \left[\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array} \right]$ for all $\left[\begin{array}{cc} \mathfrak{a} & \mathfrak{m} \\ \mathfrak{n} & \mathfrak{b} \end{array} \right] \in \mathfrak{S}$.

In view of the above theorem, we get the following results:

Corollary 4 Let $\mathfrak{S} = \mathfrak{S}(A, M, N, B)$ be a 2-torsion free generalized matrix algebra over a commutative ring \mathfrak{R} . Then any k-semi commuting derivation on \mathfrak{S} is zero.

Corollary 5 Let \mathfrak{M} be a von Neumann algebra without central summands of type I_1 . Then any k-semi centralizing (commuting) derivation on \mathfrak{M} is zero.

Corollary 6 Let $\mathfrak{A} = Tri(A, M, B)$ be a 2-torsion free triangular algebra over a commutative ring \mathfrak{R} . Then any k-semi centralizing (commuting) derivation on \mathfrak{A} is zero.

4 For future discussions

In view of [4, Propostion 2.1, 2.2], we can write the structure of automorphisms on generalized matrix algebras respectively as follows:

Lemma 4 Let $\mathfrak{S} = \mathfrak{S}(A, M, N, B)$ be a generalized matrix algebra and $(\gamma, \delta, \mu, \nu, \mathfrak{m}_0, \mathfrak{n}_0)$ be a 6-tuple such that $\gamma: A \to A$ and $\delta: B \to B$ are algebraic automorphisms, $\mu: M \to M$ is $\gamma - \delta$ -bimodule automorphism, $\nu: N \to N$ is a $\delta - \gamma$ -bimodule automorphism and $\mathfrak{m}_0 \in M$ & $\mathfrak{n}_0 \in N$ are fixed elements such that following conditions are satisfied:

- (i) $[m_0, N] = 0$ and $(N, m_0) = 0$,
- (ii) $[M, n_0] = 0$ and $(n_0, M) = 0$,
- (iii) $[\mu(m), \nu(n)] = \gamma([m.n])$ and $(\nu(n), \mu(m)) = \delta((n, m))$.

Then the map $\phi:\mathfrak{S}\to\mathfrak{S}$ defined by

$$\varphi\left(\left[\begin{array}{cc}a&m\\n&b\end{array}\right]\right)=\left[\begin{array}{cc}\gamma(a)&\gamma(a)m_0-m_0\delta(b)+\mu(m)\\n_0\gamma(a)-\delta(b)n_0+\nu(n)&\delta(b)\end{array}\right]$$

is an algebraic automorphism.

Lemma 5 Let $\mathfrak{S} = \mathfrak{S}(A, M, N, B)$ be a generalized matrix algebra and $(\rho, \sigma, \mu, \nu, m_*, n_*)$ be a 6-tuple such that $\rho : A \to B$ & $\sigma : B \to A$ are algebraic automorphisms, $\mu : (M, +) \to (N, +)$ & $\nu : (N, +) \to (M, +)$ are group automorphisms such that $\mu(\mathfrak{amb}) = \rho(\mathfrak{a})\mu(\mathfrak{m})\sigma(\mathfrak{b})$ & $\nu(\mathfrak{bna}) = \sigma(\mathfrak{b})\nu(\mathfrak{n})\rho(\mathfrak{a})$ for all $\mathfrak{a} \in A, \mathfrak{b} \in B, \mathfrak{m} \in M, \mathfrak{n} \in N$ and $\mathfrak{m}_* \in M$ & $\mathfrak{n}_* \in N$ are fixed elements such that following conditions are satisfied:

- (i) $[m_*, N] = 0$ and $(N, m_*) = 0$,
- (ii) $[M, n_*] = 0$ and $(n_*, M) = 0$,
- (iii) $(\mu(m), \nu(n)) = \rho([m, n])$ and $[\nu(n), \mu(m)] = \sigma((n, m))$.

Then the map $\psi : \mathfrak{S} \to \mathfrak{S}$ defined by

$$\sigma\left(\left[\begin{array}{cc}a & m \\ n & b\end{array}\right]\right) = \left[\begin{array}{cc}\sigma(a) & m_*\rho(a) - \sigma(b)m_* + \nu(n) \\ \rho(a)n_* - n_*\sigma(b) + \mu(m) & \rho(b)\end{array}\right]$$

is an algebraic automorphism.

Now at this point, it is natural to raise a question:

Question 5 What is the most general form of k-semi centralizing (commuting) automorphisms on generalized matrix algebras and which constraints are needed to apply on generalized matrix algebras?

5 Conclusions

In this article, we find out the structures of k-centralizing and k-skew centralizing maps on generalized matrix algebras. Further, we conclude that k-centralizing map has proper form. In addition, we prove that k-semi centralizing derivation is zero on generalized matrix algebras. In the end of article, we draw the attention of readers towards the investigation of k-semi centralizing (commuting) automorphisms on generalized matrix algebras for future research works.

Acknowledgments

This research is supported by Dr. D. S. Kothari Postdoctoral Fellowship under University Grants Commission (Grant No. F.4-2/2006 (BSR)/MA/18-19/0014), awarded to the second author.

References

- [1] M. Ashraf and A. Jabeen, Additivity of Jordan higher derivable maps on alternative rings, *Palest. J. Math.* 7 (2018), no. Special Issue I, 50–72.
- [2] K. I. Beidar, On functional identities and commuting additive mappings, *Comm. Algebra* **26** (1998), 1819–1850.
- [3] H. E. Bell and J. Lucier, On additive maps and commutativity in rings, *Results Math.* **36** (1999), 1–8.
- [4] C. Boboc, S. Dascalescu, and L. van Wyk, Isomorphisms between Morita context rings, *Linear Multilinear Algebra* **60** (2012), 545–563.
- [5] M. Brešar, Centralizing mappings and derivations in prime rings, J. Algebra 56 (1993), 385–394.
- [6] _____, Commuting maps: a survey, *Taiwanese J. Math.* 8 (2004), 361–397.
- [7] W. S. Cheung, Commuting maps of triangular algebras, *J. London Math. Soc.* **63** (2001), 117–127.
- [8] Y. Du and Y. Wang, k-commuting maps on triangular algebras, *Linear Algebra Appl.* **436** (2012), 1367–1375.
- [9] S. Ebrahimi and S. Talebi, Semi-centralizing maps and k-commuting maps of module extension algebras, *J. Math. Ext.* **9** (2015), no. 2, 9–25.
- [10] S. Huang, Ö. Gölbaşı, and E. Koç, On centralizing and strong commutativity preserving maps of semiprime rings, *Ukrainian Math. J.* **67** (2015), no. 2, 323–331.
- [11] A. Jabeen, Lie (Jordan) centralizers on generalized matrix algebras, Comm. Algebra 49 (2020), no. 1, 278–291.
- [12] Y. Li, F. Wei, and A. Fošner, k-commuting mappings of generalized matrix algebras, *Period. Math. Hung.* **79** (2019), no. 1, 50–77.
- [13] Y. B. Li and F. Wei, Semi-centralizing maps of genralized matrix algebras, *Linear Algebra Appl.* **436** (2012), 1122–1153.
- [14] J. H. Mayne, Centralizing automorphisms of prime rings, Canad. Math. Bull. 19 (1976), 113–115.

- [15] C. R. Miers, Centralizing mappings of operator algebras, *J. Algebra* **59** (1979), no. 1, 56–64.
- [16] E. C. Posner, Derivations in prime rings, Proc. Amer. Math. Soc. 8 (1957), 1093–1100.
- [17] X. Qi, Additive biderivations and centralizing maps on nest algebras, J. Math. Res. Appl. 33 (2013), no. 2, 246–252.
- [18] A. D. Sands, Radicals and Morita contexts, J. Algebra 24 (1973), 335–345.
- [19] J. Vukman, Commuting and centralizing mappings in prime rings, *Proc. Amer. Math. Soc.* **109** (1990), no. 1, 47–52.
- [20] Y. Wang, On functional identities of degree 2 and centralizing maps in triangular rings, *Oper. Matrices* **10** (2016), no. 2, 485–499.
- [21] Z. K. Xiao and F. Wei, Commuting mappings of generalized matrix algebras, *Linear Algebra Appl.* 433 (2010), 2178–2197.

Received: November 13, 2020