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Abstract. Let S = S(A,M,N,B) be a generalized matrix algebra over
a commutative ring with unity. In the present article, we study k-semi-
centralizing maps of generalized matrix algebras.

1 Historical development

Several authors studied commuting, centralizing and related maps on differ-
ent rings and algebras see [1, 5–12, 15, 17, 19–21] and references therein. The
study of centralizing mappings was initiated by a well known theorem due to
Posner [16] which states that “the existence of a nonzero centralizing deriva-
tion on a prime ring R must be commutative.” In [14] Mayne investigated
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centralizing automorphisms of prime rings and proved that “if R is a prime
ring with a nontrivial centralizing automorphism, then R is a commutative
integral domain.” These results due to Posner [16] and Mayne [14] have been
extended by many authors in different ways (see [3,15,19–21] and in their exist-
ing refernces). In [15] Miers proved theorems for certain centralizing mappings
of C∗-algebras and von Neumann algebras. Brešar [5] described that “all addi-
tive centralizing mappings f on prime rings R of characteristic different from
two has the form f(x) = λx + ξ(x), where λ is an element from the extended
centroid of R and ξ is an additive mapping from R into the extended cen-
troid of R.” Also, Bell and Lucier investigated some results concerning skew
commuting and skew centralizing additive maps in [3].
Cheung [7] initiated the study of linear commuting maps on matrix algebras

and proved that “every commuting map on triangular algberas has proper
form.” Inspired by this result, Xiao and Wei in [21] described the general
form of commuting maps on generalized matrix algebras and point out various
related applications. Also, Li and Wei [13] proved that “any skew-commuting
map on a class of generalized matrix algebras is zero and any semi-centralizing
derivation on a generalized matrix algebra is zero.”
Beidar [2] studied k-commuting maps in prime rings by applying the idea

of functional identities in rings. Du and Wang [8] proved that “under certain
conditions, each k-commuting mapping on a triangular algebra is proper.”
Recently, Li et al. [12] studied k-commuting mappings of generalized matrix
algebras and determined the general form of arbitrary k-commuting mapping
of a generalized matrix algebra. Now it is natural problem to study the k-
semi-centralizing maps on matrix algebras.
Influenced by above stated references, in this article, we find out the struc-

ture of k-semi-centralizing maps on generalized matrix algebra under certain
restrictions. Also, we prove that every k-centralizing map has the proper form
on generalized matrix algebras. Moreover, we discuss an important result of
this paper which states that every k-semi centralizing (commuting) derivation
on a 2-torsion free generalized matrix algebra becomes zero. Lastly, we point
out some direct consequences of our results.

2 Basic definitions & preliminaries

Let R be a commutative ring with unity. An R-algebra S denoted by the set

S = S(A,M,N,B) =

{[
a m

n b

]
a ∈ A,m ∈ M, n ∈ N, b ∈ B

}
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is said to be generalized matrix algebra under matrix like multiplication and
usual matrix addition, if (A,B,M,N, ξMN,ΩNM) is a Morita context and either
M ̸= 0 or N ̸= 0. A Morita context (A,B,M,N, ξMN,ΩNM) consisting of two
unital R-algebras A and B, two bimodules (A,B)-bimodule M and (B,A)-
bimodule N, and two bimodule homomorphisms called the bilinear pairings
ξMN : M ⊗

B
N −→ A and ΩNM : N ⊗

A
M −→ B which satisfies the following

commutative diagrams:

M⊗
B
N⊗

A
M

ξMN⊗IM //

IM⊗ΩNM

��

A⊗
A
M

∼=

��
M⊗

B
B

∼= //M

and N⊗
A
M⊗

B
N

ΩNM⊗IN //

IN⊗ξMN

��

B⊗
B
N

∼=

��
N⊗

A
A

∼= // N .

More precisely, an R-algebra generated in this way is called as generalized
matrix algebra of order 2 which was first introduced by Sands in [18]. S be-
comes an upper triangular algebra provided N = 0 and S degenerates a lower
triangular algebra provided M = 0. Both upper and lower triangular algebras
are collectively known as triangular algebras.
The center of S is

Z(S) =

{[
a 0

0 b

]
am = mb,na = bn for all m ∈ M, n ∈ N

}
.

Indeed Z(S) is a set diagonal matrices

[
a 0

0 b

]
, where a ∈ Z(A), b ∈ Z(B)

and am = mb,na = bn for all m ∈ M, n ∈ N. Also, if M is faithful left
A-module and right B-module, then the condition a ∈ Z(A), b ∈ Z(B) is
superfluous and can be removed. Define two natural projections πA : S →
A and πB : S → B by πA

([
a m

n b

])
= a and πB

([
a m

n b

])
= b.

Moreover, πA(Z(S)) ⊆ Z(A) & πB(Z(S)) ⊆ Z(B) and there exists a unique
algebraic isomorphism ξ : πA(Z(S)) → πB(Z(S)) such that am = mξ(a) and
na = ξ(a)n for all a ∈ πA(Z(S)),m ∈ M and n ∈ N.
Let 1A (resp.1B) be the identity of the algebra A (resp.B) and let I be

the identity of generalized matrix algebra S, e =

[
1A 0

0 0

]
, f = I − e =
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0 0

0 1B

]
and S11 = eSe, S12 = eSf, S21 = fSe, S22 = fSf. Thus

S = eSe + eSf + fSe + fSf = S11 + S12 + S21 + S22 where S11 is sub-
algebra of S isomorphic to A, S22 is subalgebra of S isomorphic to B, S12 is
(S11,S22)-bimodule isomorphic to M and S21 is (S22,S11)-bimodule isomor-
phic to N. Also, πA(Z(S)) and πB(Z(S)) are isomorphic to eZ(S)e and fZ(S)f
respectively. Then there is an algebra isomorphisms ξ : eZ(S)e→ fZ(S)f such
that am = mξ(a) and na = ξ(a)n for all m ∈ eSf and n ∈ fSe.
LetR be a commutative ring with unity andA be anR-algebra. Z(A) denote

the center of A and define Z(A)k by {a ∈ A [a, y]k = 0 ∀ y ∈ A}. In particular
Z(A)1 = Z(A). For arbitrary elements x, y ∈ A, we denote [x, y]0 = x, [x, y]1 =
xy− yx, and inductively [x, y]k = [[x, y]k−1, y], where k > 0 is a fixed positive
integer. Also, denote x ◦0 y = x, x ◦1 y = xy+ yx and x ◦k y = (x ◦k−1 y) ◦1 y
for all x, y ∈ A. An R-linear map g : A → A is said to semi-centralizing
if [g(x), x] ∈ Z(A) or g(x) ◦ x ∈ Z(A) for all a ∈ A. Particularly, g is said
to be centralizing if [g(x), x] ∈ Z(A) and g is said to be skew centralizing
if g(x) ◦ x ∈ Z(A) for all x ∈ A. In general, for positive integer k > 0, an
R-linear map g : A → A is said to k-semi-centralizing if [g(x), x]k ∈ Z(A) or
g(x) ◦k x ∈ Z(A) for all a ∈ A. In particular, g is said to be k-centralizing if
[g(x), x]k ∈ Z(A) and g is said to be k-skew centralizing if g(x) ◦k x ∈ Z(A)
for all x ∈ A. Further, for positive integer k > 0, an R-linear map g : A → A
is said to k-semi-commuting if [g(x), x]k = 0 or g(x) ◦k x = 0 for all a ∈ A.
In particular, g is said to be k-commuting if [g(x), x]k = 0 and g is said to be
k-skew commuting if g(x) ◦k x = 0 for all x ∈ A.
At this point, we shall mention some important results, which are essential

for developing the proof of our main result:

Lemma 1 [12, Lemma 3.1] Let n be a positive integer and R be a unital
associative ring. For a left R-module M, if α : R → M is a mapping such that
α(x + 1) = α(x) and xnα(x) = 0 for all x ∈ R, then α = 0. Similarly, for
a right R-module N, a mapping β : R → N is zero if β(x + 1) = β(x) and
β(x)xn = 0 for all x ∈ R.

Lemma 2 [13, Proposition 4.2] Let S = S(A,M,N,B) be a generalized ma-
trix algebra over a commutative ring R. An additive map Φ : S → S is a
derivation if and only if Φ has the following form

Φ

([
a m

n b

])
=

[
∆1(a) −mn0 −m0n am0 + T2(m) −m0b

n0a− bn0 + V3(n) U4(b) + nm0 + n0m

]
,

where a ∈ A; b ∈ B; m,m0 ∈ M; n,n0 ∈ N and ∆1 : A → A, T2 : M →
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M, V3 : N → N, U4 : B → B are R-linear maps satisfying the following
conditions:

1. ∆1 is a derivation of A and ∆1(mn) = T2(m)n+mV3(n);

2. U4 is a derivation of B and U4(nm) = V3(n)m+ nT2(m);

3. T2(am) = ∆1(a)m+ aT2(m) and T2(mb) = T2(m)b+mU4(b);

4. V3(na) = V3(n)a+ n∆1(a) and V3(bn) = U4(b)n+ bV3(n).

Lemma 3 [12, Theorem 3.5] Let S = S(A,M,N,B) be a generalized matrix
algebra over a commutative ring R and Φ : S → S be a k-commuting map on
S. If the following conditions are satisfied:

1. Z(A)k = πA(Z(S)) or [A,A] = A;

2. Z(B)k = πB(Z(S)) or [B,B] = B;

3. there exist m0 ∈ M, n0 ∈ N such that

Z(S) =

{[
a 0

0 b

]
a ∈ Z(A), b ∈ Z(B), am0 = m0b, n0a = bn0

}
,

then Φ is proper i.e., Φ has the form Φ = λ+ξ, where λ ∈ Z(S) and ξ : S →
Z(S) is an R-linear mapping.

3 Key content

In this section, we investigate the significant results of the article as follows:

Theorem 1 Let S = S(A,M,N,B) be a generalized matrix algebra over a
commutative ring R. An R-linear map Φ : S → S is a k-centralizing map on
S if Φ has the following form

Φ

([
a m

n b

])
=

[
∆1(a) + ∆2(m) + ∆3(n) + ∆4(b) T2(m)

V3(n) U1(a) +U2(m) +U3(n) +U4(b)

]
,

(♠)

where a ∈ A; b ∈ B; m ∈ M; n ∈ N and ∆1 : A → A, ∆2 : M → Z(A)k, ∆3 :
N → Z(A)k, ∆4 : B → A, T2 : M → M, V3 : N → N, U1 : A → B, U2 :
M → Z(B)k, U3 : N → Z(B)k, U4 : B → B are R-linear maps satisfying the
following conditions:
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1. ∆1 is k-commuting map of A and ∆1(1) ∈ Z(A)k;

2. U4 is k-commuting map of B and U4(1) ∈ Z(B)k;

3. [∆4(b), a]k ∈ Z(A)k and [U1(a), b]k ∈ Z(B)k;

4. (∆1(1) + ∆4(1) + 2∆2(m))m = m(U1(1) +U4(1) + 2U2(m));

5. 2T2(m) = (∆1(1) − ∆4(1))m−m(U1(1) −U4(1));

6. n(∆1(1) + ∆4(1) + 2∆3(n)) = (U1(1) +U4(1) + 2U3(n))n;

7. 2V3(n) = n(∆1(1) − ∆4(1)) − (U1(1) −U4(1))n.

Proof. Suppose that k-centralizing map Φ takes the following form

Φ

([
a m

n b

])
=

[
∆1(a) + ∆2(m) + ∆3(n) + ∆4(b) T1(a) + T2(m) + T3(n) + T4(b)
V1(a) + V2(m) + V3(n) + V4(b) U1(a) +U2(m) +U3(n) +U4(b)

]
(1)

for all

[
a m

n b

]
∈ S and ∆1 : A → A, ∆2 : M → A, ∆3 : N → A, ∆4 : B → A;

T1 : A → M, T2 : M → M, T3 : N → M, T4 : B → M; V1 : A → N, V2 : M →
N, V3 : N → N, V4 : B → N and U1 : A → B, U2 : M → B, U3 : N → B, U4 :
B → B are R-linear maps. Since

[Φ(G), G]k ∈ Z(S) for all G ∈ S. (2)

Now if we consider G =

[
1 0

0 0

]
in (2), then it follows that

[Φ(G), G]k =

[
0 (−1)kT1(1)

V1(1) 0

]
∈ Z(S).

This implies that T1(1) = 0 = V1(1). Again on assuming G =

[
0 0

0 1

]
in

(2), we have T4(1) = 0 = V4(1). On applying inductive approach with G =[
a 0

0 0

]
, we find that

[Φ(G), G]k =

[
[∆1(a), a]k (−1)kakT1(a)
V1(a)a

k 0

]
∈ Z(S).
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This leads to akT1(a) = 0 = V1(a)a
k, [∆1(a), a]k ∈ Z(A)k and 0 ∈ Z(B)k.

Also, it is easy to observe that T1(a) = T1(a + 1) and V1(a) = V1(a + 1). In
view of Lemma 1, we arrive at T1(a) = 0 = V1(a) for all a ∈ A. Further, we
have [∆1(a), a]k = 0, i.e., ∆1 is k-commuting map on A. Further, replacing a
by a+ 1 in [∆1(a), a]k = 0, we conclude that [∆1(1), a]k = 0 for all a ∈ A and
hence ∆1(1) ∈ Z(A)k.

On similar pattern for G =

[
0 0

0 b

]
, we can show that T4(b) = 0 = V4(b)

for all b ∈ B and U4 is k-commuting map on B and hence U4(1) ∈ Z(B)k. If

G =

[
a 0

0 b

]
in (2), then it follows that

[Φ(G), G]k =

[
[∆1(a) + ∆4(b), a]k 0

0 [U1(a) +U4(b), b]k

]
=

[
[∆1(a), a]k + [∆4(b), a]k 0

0 [U1(a), b]k + [U4(b), b]k

]
∈ Z(S).

(3)

On using the fact ∆1 and U4 are k-commuting mappings on A and B respec-
tively, we find that [∆4(b), a]k ∈ Z(A)k and [U1(a), b]k ∈ Z(B)k for all a ∈ A
and b ∈ B.

Suppose that G =

[
1 m

0 0

]
in (2) and consider

[Φ(G), G]i = hi =

[
hi(11) hi(12)
hi(21) hi(22)

]
for all 0 ≤ i < k and hk ∈ Z(S). (4)

This implies to

hi+1 =

[
hi+1(11) hi+1(12)
hi+1(21) hi+1(22)

]
= [hi, G]

=

[[
hi(11) hi(12)
hi(21) hi(22)

]
,

[
1 m

0 0

]]
=

[
−mhi(11) hi(11)m−mhi(22) − hi(12)
hi(21) hi(21)m

]
.

It follows that hi+1(21) = hi(21) and hence V2(m) = h0(21) = hk(21) . On using
the fact hk ∈ Z(S), we get V2(m) = 0 for all m ∈ M. Therefore,

h0 =

[
∆1(1) + ∆2(m) T2(m)

0 U1(1) +U2(m)

]
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and

h1 = [h0, G] =

[
0 ∆1(1)m+ ∆2(m)m− T2(m) −mU1(1) −mU2(m)
0 0

]
.

Now by induction we arrive at hi = (−1)i−1h1, i > 0 and hence hk =
(−1)k−1h1. This implies that h1 ∈ Z(S). It follows that

T2(m) = ∆1(1)m+ ∆2(m)m−mU1(1) −mU2(m) for all m ∈ M.

On the similar pattern with G =

[
0 m

0 1

]
, we find that

T2(m) = mU4(1) +mU2(m) − ∆4(1)m− ∆2(m)m for all m ∈ M.

Combining the last two expressions, we arrive at

(∆1(1) + ∆4(1) + 2∆2(m))m = m(U1(1) +U4(1) + 2U2(m))

and
2T2(m) = (∆1(1) − ∆4(1))m−m(U1(1) −U4(1)).

On assuming G =

[
1 0

n 0

]
and G =

[
0 0

n 1

]
respectively and applying

similar techniques as above we can easily find that

V3(n) = n∆1(1) + n∆3(n) −U1(1)n−U3(n)n for all n ∈ N.

and

V3(n) = U4(1)n+U3(n)n− n∆4(1) − n∆3(n) for all n ∈ N.

The above two expressions leads to

n(∆1(1) + ∆4(1) + 2∆3(n)) = (U1(1) +U4(1) + 2U3(n))n

and
2V3(n) = n(∆1(1) − ∆4(1)) − (U1(1) −U4(1))n.

Let us take G =

[
a m

0 0

]
in (2) to find that [∆1(a), a]k+[∆2(m), a]k ∈ Z(S).

Since ∆1 is k-commuting map of A it follows that ∆2(m) ∈ Z(A)k by the

arbitrariness of m ∈ M. In the similar way for G =

[
0 m

0 b

]
in (2), we have

U2(m) ∈ Z(B)k for all m ∈ M.
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With the similar arguments as used above with G =

[
a 0

n 0

]
and G =[

0 0

n b

]
in (2) respectively, we observe that ∆3(n) ∈ Z(A)k and U3(n) ∈

Z(B)k for all n ∈ N. □

As an immediate consequence of the above theorem, we obtain the following
result:

Corollary 1 [12, Proposition 3.2] Let S = S(A,M,N,B) be a generalized
matrix algebra over a commutative ring R. An R-linear map Φ : S → S is a
k-commuting map on S if Φ has the following form

Φ

([
a m

n b

])
=

[
∆1(a) + ∆2(m) + ∆3(n) + ∆4(b) T2(m)

V3(n) U1(a) +U2(m) +U3(n) +U4(b)

]
,

(5)

where a ∈ A; b ∈ B; m ∈ M; n ∈ N and ∆1 : A → A, ∆2 : M → Z(A)k, ∆3 :
N → Z(A)k, ∆4 : B → Z(A)k, T2 : M → M, V3 : N → N, U1 : A → Z(B)k , U2 :
M → Z(B)k, U3 : N → Z(B)k, U4 : B → B are R-linear maps satisfying the
following conditions:

1. ∆1 is k-commuting map of A and ∆1(1) ∈ Z(A)k;

2. U4 is k-commuting map of B and U4(1) ∈ Z(B)k;

3. (∆1(1) + ∆4(1) + 2∆2(m))m = m(U1(1) +U4(1) + 2U2(m));

4. 2T2(m) = (∆1(1) − ∆4(1))m−m(U1(1) −U4(1));

5. n(∆1(1) + ∆4(1) + 2∆3(n)) = (U1(1) +U4(1) + 2U3(n))n;

6. 2V3(n) = n(∆1(1) − ∆4(1)) − (U1(1) −U4(1))n.

In view of Lemma 3 and Theorem 1, it is easy to see that

Theorem 2 Let S = S(A,M,N,B) be a generalized matrix algebra over a
commutative ring R and Φ : S → S be a k-centralizing map on S. If the
following conditions are satisfied:

1. ∆4(B) ⊆ Z(A)k and U1(A) ⊆ Z(B)k;
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2. Z(A)k = πA(Z(S)) and Z(B)k = πB(Z(S));

3. there exist m0 ∈ M, n0 ∈ N such that

Z(S) =

{[
a 0

0 b

]
a ∈ Z(A), b ∈ Z(B), am0 = m0b, n0a = bn0

}
,

then Φ is proper i.e., Φ has the form Φ = λ+ξ, where λ ∈ Z(S) and ξ : S →
Z(S) is an R-linear mapping.

Also, we can see the implication of the above result in the settings of some
nice examples of generalized matrix algebras (for detail see [12] and references
therein) which follows directly:

Corollary 2 Let M be a von Neumann algebra without central summands of
type I1. Then any k-centralizing map on M is proper.

Corollary 3 [8, Theorem 1.1] Let A = Tri(A,M,B) be a triangular algebra
over a commutative ring R and Φ : A → A be a k-centralizing map on A. If
the following conditions are satisfied:

1. Z(A)k = πA(Z(A)) and Z(B)k = πB(Z(A));

2. there exist m0 ∈ M, n0 ∈ N such that

Z(A) =

{[
a 0

0 b

]
a ∈ Z(A), b ∈ Z(B), am0 = m0b

}
,

then Φ is proper i.e., Φ has the form Φ = λ+ ξ, where λ ∈ Z(A) and ξ : A →
Z(A) is an R-linear mapping.

Now we describe the general form of k-skew centralizing maps on generalized
matrix algebras as follows:

Theorem 3 Let S = S(A,M,N,B) be a 2-torsion free generalized matrix
algebra over a commutative ring R. An R-linear map Φ : S → S is a k-skew
centralizing map on S if Φ has the following form

Φ

([
a m

n b

])
=

[
∆1(a) + ∆4(b) T2(m)

V3(n) U1(a) +U4(b)

]
, (6)

where a ∈ A; b ∈ B; m ∈ M; n ∈ N and ∆1 : A → A, ∆4 : B → A, T2 : M →
M, V3 : N → N, U1 : A → B , U4 : B → B are R-linear maps satisfying the
following conditions:
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1. ∆1 is k-skew commuting map of A;

2. U4 is k-skew commuting map of B;

3. ∆4(b) ◦k a ∈ Z(A)k and U1(a) ◦k b ∈ Z(B)k;

4. T2(m) = −m∆1(1) and V3(n) = −U1(1)n.

Proof. Assume that k-skew centralizing map Φ takes the following form

Φ

([
a m

n b

])
=

[
∆1(a) + ∆2(m) + ∆3(n) + ∆4(b) T1(a) + T2(m) + T3(n) + T4(b)
V1(a) + V2(m) + V3(n) + V4(b) U1(a) +U2(m) +U3(n) +U4(b)

]
(7)

for all

[
a m

n b

]
∈ S and ∆1 : A → A, ∆2 : M → A, ∆3 : N → A, ∆4 : B →

A; T1 : A → M, T2 : M → M, T3 : N → M, T4 : B → M; V1 : A → N, V2 :
M → N, V3 : N → N, V4 : B → N and U1 : A → B, U2 : M → B, U3 : N →
B, U4 : B → B are R-linear maps. As we know that

Φ(G) ◦k G ∈ Z(S) for all G ∈ S. (8)

Now if we assume G =

[
1 0

0 0

]
in (8), then we find that

Φ(G) ◦k G =

[
2k∆1(1) T1(1)
V1(1) 0

]
∈ Z(S).

Therefore by using 2-torsion freeness, we get ∆1(1) = T1(1) = V1(1) = 0.

Similarly with G =

[
0 0

0 1

]
, we find that T4(1) = V4(1) = U4(1) = 0.

Consider G =

[
a 0

0 0

]
to get

Φ(G) ◦k G =

[
∆1(a) ◦k a akT1(a)
V1(a)a

k 0

]
∈ Z(S).

This implies that akT1(a) = 0 = V1(a)a
k and ∆1(a)◦ka ∈ Z(A)k & 0 ∈ Z(B)k.

Also, it is easy to observe that T1(a) = T1(a + 1) and V1(a) = V1(a + 1). In
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view of Lemma 1, we arrive at T1(a) = 0 = V1(a) for all a ∈ A. Also, we have
∆1(a) ◦k a = 0, i.e., ∆1 is k-skew commuting map on A.

Similarly for G =

[
0 0

0 b

]
, we find T4(b) = 0 = V4(b) for all b ∈ B and U4

is k-skew commuting map on B. Replacing G =

[
a 0

0 b

]
in (8), we find that

Φ(G) ◦k G =

[
(∆1(a) + ∆4(b)) ◦k a 0

0 (U1(a) +U4(b)) ◦k b

]
=

[
∆1(a) ◦k a+ ∆4(b) ◦k a 0

0 U1(a) ◦k b+U4(b) ◦k b

]
∈ Z(S).

(9)

On using the fact ∆1 and T4 are k-skew commuting mappings on A and B
respectively, we find that ∆4(b) ◦k a ∈ Z(A)k and U1(a) ◦k b ∈ Z(B)k for all

a ∈ A and b ∈ B. Assume G =

[
1 m

0 0

]
in (8) and consider

Φ(G) ◦i G = hi =

[
hi(11) hi(12)
hi(21) hi(22)

]
for all 0 ≤ i < k and hk ∈ Z(S). (10)

Then[
hi+1(11) hi+1(12)
hi+1(21) hi+1(22)

]
= hi+1 = hi ◦G

=

[
hi(11) hi(12)
hi(21) hi(22)

]
◦
[
1 m

0 0

]
=

[
2hi(11) +mhi(11) hi(11)m+mhi(22) + hi(12)

hi(21) hi(21)m

]
.

This implies that hi+1(21) = hi(21) and hence V2(m) = h0(21) = hk(21) . On using
the fact hk ∈ Z(S) we get V2(m) = 0 for all m ∈ M. Therefore,

h0 =

[
∆2(m) T2(m)
0 U1(1) +U2(m)

]
and since hk ∈ Z(S) and S is 2-torsion free,

hk = h0 ◦k G =

[
2k∆2(m) hk(12)

0 0

]
.
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Therefore, ∆2(m) = 0 for all m ∈ M. Also, we arrive at

h0 =

[
0 T2(m)
0 U1(1) +U2(m)

]
and hence

h1 = h0 ◦G =

[
0 T2(m) +mU1(1) +mU2(m)
0 0

]
.

By induction we have hi = h1, i > 0 and hence hk = h1. This implies that
h1 ∈ Z(S). It follows that

T2(m) = −mU1(1) −mU2(m) for all m ∈ M.

On the similar pattern withG =

[
0 m

0 1

]
, we find thatU2(m) = 0 for allm ∈

M. Combining last two expressions we arrive at T2(m) = −mU1(1) for all m ∈
M.

Let us take G =

[
1 0

n 0

]
and G =

[
0 0

n 1

]
respectively and applying

similar techniques as above we can easily find that T3(n) = 0, ∆3(n) =
0, V3(n) = −U1(1)n − U3(n)n and U3(n) = 0 for all n ∈ N. These
lead to V3(n) = −U1(1)n for all n ∈ N. □

Now we mention a significant result of this article as follows:

Theorem 4 Let S = S(A,M,N,B) be a 2-torsion free generalized matrix
algebra over a commutative ring R. Then any k-semi centralizing derivation
on S is zero.

Proof. Let Φ be a k-semi centralizing derivation on S. Then by Lemma 2, Φ
has the following form

Φ

([
a m

n b

])
=

[
∆1(a) −mn0 −m0n am0 + T2(m) −m0b

n0a− bn0 + V3(n) U4(b) + nm0 + n0m

]
,

where a ∈ A; b ∈ B; m,m0 ∈ M; n,n0 ∈ N and ∆1 : A → A, T2 : M →
M, V3 : N → N, U4 : B → B are R-linear maps satisfying condition (1) − (4)
given in Lemma 2. Also from the proof of Theorem 1 or Theorem 3, it can
be easily seen that n0 = V1(1) = 0 and m0 = T1(1) = 0. Now Φ takes the
following form

Φ

([
a m

n b

])
=

[
∆1(a) T2(m)
V3(n) U4(b)

]
.
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In view of k-centralizing case, condition (5) & (7) of Theorem 1 implies that
T2(m) = 0 and V3(n) = 0 for all m ∈ M and n ∈ N. Also, for k-skew cen-
tralizing case, we have T2(m) = 0 and V3(n) = 0 follows from condition (4) of
Theorem 3.
Further, in view of condition (3) & (4) from Lemma 2 and using the faith-

fulness of M, for both k-centralizing and k-skew centralizing, we find that
∆1(a) = 0 and U4(b) = 0 for all a ∈ A and b ∈ B. Thus we conclude that

Φ

([
a m

n b

])
=

[
0 0

0 0

]
for all

[
a m

n b

]
∈ S. □

In view of the above theorem, we get the following results:

Corollary 4 Let S = S(A,M,N,B) be a 2-torsion free generalized matrix
algebra over a commutative ring R. Then any k-semi commuting derivation
on S is zero.

Corollary 5 Let M be a von Neumann algebra without central summands of
type I1. Then any k-semi centralizing (commuting) derivation on M is zero.

Corollary 6 Let A = Tri(A,M,B) be a 2-torsion free triangular algebra over
a commutative ring R. Then any k-semi centralizing (commuting) derivation
on A is zero.

4 For future discussions

In view of [4, Propostion 2.1, 2.2], we can write the structure of automorphisms
on generalized matrix algebras respectively as follows:

Lemma 4 Let S = S(A,M,N,B) be a generalized matrix algebra and (γ, δ, µ,
ν,m0, n0) be a 6-tuple such that γ : A → A and δ : B → B are algebraic
automorphisms, µ : M → M is γ− δ−bimodule automorphism, ν : N → N is a
δ−γ−bimodule automorphism and m0 ∈ M & n0 ∈ N are fixed elements such
that following conditions are satisfied:

(i) [m0,N] = 0 and (N,m0) = 0,

(ii) [M, n0] = 0 and (n0,M) = 0,

(iii) [µ(m), ν(n)] = γ([m.n]) and (ν(n), µ(m)) = δ((n,m)).

Then the map ϕ : S → S defined by

ϕ

([
a m

n b

])
=

[
γ(a) γ(a)m0 −m0δ(b) + µ(m)

n0γ(a) − δ(b)n0 + ν(n) δ(b)

]
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is an algebraic automorphism.

Lemma 5 Let S = S(A,M,N,B) be a generalized matrix algebra and (ρ, σ, µ,
ν,m∗, n∗) be a 6-tuple such that ρ : A → B & σ : B → A are algebraic auto-
morphisms, µ : (M,+) → (N,+) & ν : (N,+) → (M,+) are group automor-
phisms such that µ(amb) = ρ(a)µ(m)σ(b) & ν(bna) = σ(b)ν(n)ρ(a) for all
a ∈ A, b ∈ B,m ∈ M, n ∈ N and m∗ ∈ M & n∗ ∈ N are fixed elements such
that following conditions are satisfied:

(i) [m∗,N] = 0 and (N,m∗) = 0,

(ii) [M, n∗] = 0 and (n∗,M) = 0,

(iii) (µ(m), ν(n)) = ρ([m,n]) and [ν(n), µ(m)] = σ((n,m)).

Then the map ψ : S → S defined by

σ

([
a m

n b

])
=

[
σ(a) m∗ρ(a) − σ(b)m∗ + ν(n)

ρ(a)n∗ − n∗σ(b) + µ(m) ρ(b)

]
is an algebraic automorphism.

Now at this point, it is natural to raise a question:

Question 5 What is the most general form of k-semi centralizing (commut-
ing) automorphisms on generalized matrix algebras and which constraints are
needed to apply on generalized matrix algebras?

5 Conclusions

In this article, we find out the structures of k-centralizing and k-skew cen-
tralizing maps on generalized matrix algebras. Further, we conclude that k-
centralizing map has proper form. In addition, we prove that k-semi central-
izing derivation is zero on generalized matrix algebras. In the end of article,
we draw the attention of readers towards the investigation of k-semi central-
izing (commuting) automorphisms on generalized matrix algebras for future
research works.
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