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1 Introduction

The estimation of the conditional cumulative distribution function has great
importance. In fact, it is involved in many applications, such as reliability, sur-
vival analysis (see Zamanzade and all. [31], Tabti and Ait Saadi [28]), ... More-
over, there are several prediction tools in the nonparametric statistics branch,
for instance the conditional mode, the conditional median or the conditional
quantiles, which are based on the preliminary estimation of this nonparamet-
ric model. In the nonfunctional case, the local polynomial fitting has been the
subject of considerable studies and key references on this topic are Fan and
Yao [14], Fan [16], Fan and Gijbels [15] and references therein. However, only
few results are available for the local linear modeling in the functional statistics
setup. Indeed, the first results, in this direction, were established in Baillo and
Grané [6]. These papers focus on the local linear estimation of the regression
operator when the explanatory variable takes values in a Hilbert space. The
general case, where the regressors do not belong to a Hilbert space but just to
a semi-metric space, has been considered in Barrientos-Marin et al. [7] and El
Methni and Rachdi [13]. In these works, authors obtained the almost-complete
convergence (a.co.), with rates, of the proposed estimator. Other alternative
versions of the local linear modeling for functional data were investigated (see
Boj et al.[8]; Baillo and Grané [6]; E] Methni and Rachdi [13]), for the regres-
sion operator and Demongeot et al.[10]; Demongeot et al.[12], Xiong and al.
[30], for the conditional density function, Demongeot et al.[11] for the condi-
tional distribution function). in the case of spatial data Laksaci et al.[23] they
established pointwise almost complete convergence with rate.

Furthermore, the functional index model plays a major role in statistics. The
interest of this approach comes from its use to reduce the dimension of the
data by projection in fractal space. The literature on this topic is closely lim-
ited, the first work which was interested in the single-index model on the
nonparametric estimation is Ferraty et al.[17] they stated for i.i.d. variables
and obtained the almost complete convergence under some conditions. Based
on the cross-validation procedure, Ait Saidi et al. [2] proposed an estimator of
this parameter, where the functional single-index is unknown. See Ait Saidi et
al. [1] for the dependant case. Attaoui et al.[4] considered the nonparametric
estimation of the conditional density in the single functional model. They es-
tablished its pointwise and uniform almost complete convergence (a.co.) rates.
In the same topic, Attaoui et al.[5] proved the asymptotic results of a non-
parametric conditional cumulative distribution estimator for time series data.
Ait Saadi and Mecheri [3], established the pointwise and the uniform almost
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complete convergence (with the rate) of the kernel estimate of of the condi-
tional cumulative distribution function of a scalar response variable Y given a
Hilbertian random variable X when the observations are linked via a single-
index structure. Ferraty and al. [21] proposed an estimator based on the idea
of functional derivative estimation of a single index parameter. Hamdaoui and
al. [22] established The asymptotic normality of the conditional distribution
kernel estimator.

Tabti and al. [28] obtained the almost complete convergence and the uni-
form almost complete convergence of a kernel estimator of the hazard function
with quasi-association condition when the observations are linked with func-
tional single-index structure. In this paper, we focus on the local linear esti-
mation with the single-index structure to compute under some conditions, the
quadratic error of the conditional distribution function estimator. In practice,
this study has great importance, because, it permits to construct a prediction
method based on the maximum risk estimation with a single functional index.

In Section 2, We introduce the estimator of our model in the single-functional
index. In Section 3 we introduce assumptions and asymptotic properties are
given.

Finally, Section 5 is devoted to the proofs of the results.

2 The model

Let {(Xi, Yi), T <1i < n}be n random variables, independent and identically
distributed as the random pair (X,Y) with values in H x R, where H is a
separable real Hilbert space with the norm || . || generated by an inner prod-
uct < .,. >. We consider the semi-metric dg associated to the single index
0 € H defined by Vx1,x2 € H : dgo(x1,%x2) :=|< X1 — x2,0 >|. Assume that
the explanation of Y given X is done through a fixed functional index 6 in
H. In the sense that, there exists a 0 in H (unique up to a scale normaliza-
tion factor) such that: E[Y|X] = E[Y] < 0,X >]. The conditional probabil-
ity distribution of Y given X = x denoted by Fg(.|x) exists and is given by
Yy € R, Folylx) :=F(yl < x,0 >). In the following, we denote by F(0, .,x), the
conditional distribution function of Y given < x,0 > and we define the local
linear estimator for single-index structure F(e, . x) of F(B,.,x) by:

Y W0 0HMW Ty Y)Y QKjH

1<ij<n _1<j<n

Z Wi (6, x) N Z Q;K; )

1<ij<n 1<j<n

F(e>y)x) =
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with

Wi(0,%) = Bal(Xiy %) (Bo(Xiy X) — Ba(X;, X) ) Kl dalx, Xi) K (g do(x, X;)),

n
and Q;K; = ZWU- with Bg(Xi,x) is a known bi-functional operator from
i=1
#? into R where K is a kernel, H is a cumulative distribution function and
hy :=hpk (resp hy == hn,H) is a sequence that decrease to zero as n goes to
infinity.

3 Assumptions and Mains results

All along the paper, we will denote by C, C’ and Cgx some strictly positive
generic constants and by Ki(6,x) := K(h?de(x, Xi)), Vx € H,i=1,..,n,
Hj == Hhy '(y=Y))), Yy € R,j =1,..,n., Bayi == Ba(Xi, x), Wi(0,%) 1= Wo
and we will use the notation Bg(x,hx) :={x; € H: 0 <|<x—%7,0 > | < hg},

the ball centered at x with radius hx. Moreover, for find the results in our paper
O'F(.,v,.
we denote: for any 1 € {0,2} P (.,y) = (a;;’»),

O1(s) = E[pi(X,y) — di(x,y)IBe(x, X) = s],
and Pgx(r1,712) =P(r1 < do(x,X) < 12).
In order to study our asymptotic results we need the following assumptions:

(H1) (i) P(X € Bo(x, hk)) = dox(hk) >0,

(ii) assume that there exists a function xgx(-) such that

Vs € [-1,1] lim box(shi, hie)

he—0 gy (hi) = Xox(s).

(iii) For any 1 € {0, 2}, the quantities ®{(0) and (D{z)(()) exist, where @/
resp.(D(z) denotes the first (resp. the second) derivative of @y
1

(H2) The conditional distribution function F(6,y,x) satisfies that there exist
some positive constants by and by, such that for all (x1,%2,y1,Y2)

IF(0,y1,%) — F(0,y2,%)] < ClIde(x1,%2)["" + [y1 — y2I*?)

(H3) The bi-functional Bg(.,.) satisfies:
(1) ' € Jr) C] dG(X)X,) < ”SS(X)X,N < CZ dG(X)X,)) where C])CZ > O)
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(ii) supyep(x IBo(uyx) —da(x,u)| = o(r),
(i) Tk ) B0, X)AP(W) = 0 ([ ) BBty X) AP(w))

Where Bg(x,7) = {x’ € H/|dg(x,x’) <1} and dP(x) is the cumulative
distribution of X.

(H4) (i) The kernel K is a positive function, which is supported within [—1, 1],
and K(1) > 0.

(ii) The kernel K is a differentiable function and its derivative K’ satisfies
] /
K1) = [ 1€ ) xo(wdu > 0
-1

(H5) The kernel H is a differentiable function and bounded, such that:

ﬁwmhuﬂ,memm¢<wmnjmm&<w.
(H6) The bandwidths hy,hy satisfies:

A B : B ) loglogm
() Jim b =0, lim =0 and lim Z0 =y

(i) Ino € N, ¥n > o, m IL dox (thi, hx) 4 (t2K(t))dt > C3 > 0

Comments on assumptions: The first part of assumption (H1) character-
izes the concentration property of the probability measure of the functional
variable X, which permits to control the effect of the topological structure in
the asymptotic results (see Ferraty et al. [19]), the second part of assumption
is known as (for small h) the concentration assumption acting on the distribu-
tion of X in infinite dimensional spaces.The function xyx plays a determinant
role. It is possible to specify this function in the above examples by

1. xo(u) = 61 (u); where 81(.) is Dirac function,

2. Xo(uw) = Tyoy(w).

The third part of (H1) characterizes the functional space of our model, it is
obvious that this condition is closely related to the existence of the functions,
Py and @y, (see Ferraty et al.[20], for more discussions on the link between
their derivatives). Moreover, this condition is used in order to keep the usual
form of the quadratic error (see Vieu, 1991 [29]). However, if we replace the
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third part of assumption (H1), by the following Lipschitz condition (where N
denotes a neighborhood of z):
V(y1,y2) € ./\/;J X Ny and V(X],Xz) e Ny x Ny

IF(0,y1,%) — F(8,y2,%)] < CIde(x1,%2)["" + [y1 — y2l*?)

which is less restrictive than assumption (H2), then Theorem 3.1’s final result
becomes as follows:

= 2 4 2 |

E [F(0,y,x) — F(0,y,x)| = o[k, + h}) + 0 (ncbe,x(hK)) .

Such expression of the rate of convergence of our estimator is inaccurate and
cannot be useful to determine the smoothing parameters. In other words,
the third part of assumption (H1) on the differentiability of the conditional
density permits to determine the unknown constants in the mean squared
error (MSE). Thus, the third part of assumption (H1) may be considered as
a good compromise permitting to obtain an asymptotically exact expression
of the convergence rate of (0, x,y). while the assumption (H2) is a regularity
condition which characterizes the functional space, of our model, and is needed
to evaluate the bias term in the asymptotic results. Then, assumption (H3)
has been introduced and commented, first, in Barrientos et al. [7] and it plays
an important role in our methodology, particularly when we will compute
exact constant terms involved in the asymptotic result. The second part of
the condition (H3) is verified, for instance, if dg(-,-) = Be(+,-) , moreover if

BS (LL, X)

—1
de (X) U)

=0.

dg (x,u)—0

Moreover, assumption (H6) is classicaly used and is standard in the context
of the quadratic error determination in functional statistics and is common in
the setting of functional local linear fitting (see for instance Laksaci et al. [23]
and Rachdi et al. [26]). The rest of the hypotheses are imposed for a sake of
brevity of our results’s proofs. Moreover, one could find in Ferraty and Vieu
[18] some examples of kernels K and H satisfying assumptions (H4) and (H5).
The small ball probability effects are really inherent to our infinite dimensional
context, as exemples, we can cite diffusion processes and Gaussian processes
(see F.Ferraty, A.Laksaci and P. Vieu [19]).

3.1 Mean square convergence

In this part, we are going to show the asymptotic results of quadratic-mean
convergence
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Theorem 1 Under assumptions (H1)-(H6), we obtain:

~ 2 V; 0
 [F(0,y,%) — F(0,y,1)| = B (6, %, )kl + BY (0, y i + LK 00Y)
nd)@,x(hl()

o(hﬂl) + o(hﬁ) +o0 (1) ,

nd)e,x(hK)
where
19%F(0,y, x) 1 M
Bu(0,x%,y) = Zay’f’jtzH(”(t)dt, Bk(8,%,y) = 5057 (0) 3% +o(hi),
and
M,
VHK(e X)y) M F(e)y) )(1 _F(e)l:bx)))
1

with

1

My = K(1) —J s?K'(s)Xo(s)ds and
—1
1
My =K - | (9) (s)xasls)ds for j=1,2.
we set
~ F
F(0,y,x) = 7§(6,y,x).
FD(G)X)
where
~ 1
1<1;é]<n
and
~ 1
Fp(0,x) = > Wy(6,x),

n(n —1E[W;,(6,x)]

1<i#<n

The following lemmas will be useful for proof of Theorem 1.

Lemma 1 Under the assumptions of Theorem 1, we obtain:

E [?N(e,y,x)} —F(0,y,%) = Br(0,x,y)hZ + Bk (0, x,y)h& + o(h) + o(h2).
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Lemma 2 Under the assumptions of Theorem 1, we obtain:

. ~ Vik(6,x,y) 1
Var [FN(GJJ»X)} ~ ndox(y) to <nd)e,x(hk)> .

Lemma 3 Under the assumptions of Theorem 1, we get:

R R 1
COV(FN(G,U)X))FD(9>X)) =0 (Tld)e,x(h]<)> -

Lemma 4 Under the assumptions of Theorem 1, we get:

-~ 1
Var |:FD(9,X):| =0 <1‘1%(]’L]()> .

Comments

Since the mean squart error depend on the bias and variance, The idea of
the proof of both variance term, and bias term is to treat separately the
numerator and the denominator of the estimator. Lemma 3.2 is auxiliary result
wish allow us to determine the bias of the estimator, wile Lemma 3.3-3.5,
allow us to determine the variance of our estimator, by means the variance
decomposition of Sarda and Vieu [27] and Lecoutre [24], see also Ferraty and
al. [20]. As all asymptotic result in functional statistic, the dispersion term
is related to the ”dimensionality” of the functional variable in sense that the
variance term depends on the function ¢y (hyg) which is closely linked on bi-
functional operator § and the latter can be related to the topological structure
on the functional space H.

Another way to highlight the interest of our asymptotic result is to show how
the exact calculation of the leading terms in the quadratic error leads to the
build of confidence intervals. Indeed, it is well known that the computation of
the bias and the variance terms is commonly a preliminary result permitting
to obtain the asymptotic normality result of the estimator.

3.2 Asymptotic normality

This section contains results on the asymptotic normality of F(G,y, x). Before
announcing our main results, we introduce the quantity N(a,b), which will
appear in the bias and variance dominant terms:

1
N(a,b) = K*(1) —J (UPK®(u)) xx(u)du for all a > 0 and b = 2,4
-1

Then, we have the following theorem:
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Theorem 2 Under assumptions (H1)-(H6), we obtain:
= D
nd)e,x(hK)(F(e)y)X) - F(Q»U»X) - Bn(e)x)y)) — N(O)VHK(eaXay)) (1)
where,
M;
VHK(e,X,U) = WF(G’U)X)“ - F(B,y,x)) (2)
1
and
E(Fn(0,y,%)(y))
n bl 79 (F (e x)) )y? ( )
with 2 denoting the convergence in distribution.
Proof of Theorem 2.
Inspired by the decomposition given in Masry [25], we set.
?(G,U,X) - F(O>U)X) - Bn(e)x>y)
_ FN(e)y)X) - F(eay)X)FD(e)X) - FD(e)X)Bn(e)X)y)
Fp(6,x)
If we denote by
Qn(8,%,y) = Fn(6,y,%) — F(8,y,x)Fo(8,x) —E(Fn(8,y,x)
—F(6,y,x)Fp(6,x) = Fn (6, y,x) (4)
_F(e Y, X )F (G,X) Bn(e X)y)

since

i:\N(e)yyx) - F(G»U,X)?D(G»X) = Qn(e,X,U) +Bn(eaxay)

then the proof of this theorem will be completed from the following expression

F(8,y,x) — F(6,y,x) — Bn(6,x,y)
_ Qu(8,%,y) —Ba(8,%,y)(Fo(8,x) —E(Fp(6,x)))
Fp(6,x)

(5)

and the following auxiliary results which play a main role and for which proofs

are given in the appendiz.
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Lemma 5 Under assumptions (H1)-(H5), we have
~ P ~
Fp(0,x) = E(Fp(6,x)) =1

where Xy denotes the convergence in probability.

Lemma 6 Under assumptions (H2), (H4) and (H5), as n — oo, we have

B (Kivar (1 (45 ) ) ) = EOGIFIO,u )01~ F0,9,x)

So, Lemma 5, implies that fD(G,x) — 1. Moreover, B,(0,x,y) = o(1) as
n — oo because of the continuity of F(0,.,x). Then, we obtain that

F(6,y, %) — F(6,y,x) — Bn(6,x,y) = &0 o gy,
FD(G)X)

Lemma 7 Under assumptions (H1)-(H5), we have

Vdo (M) Qn(8,%,y) 2 N(0, Vi (8,%,y)), (6)

where Vi1 (0, x,y) is defined by (2).
If we take advantage of the following assumptions,
(H7) E&l nhydex(hx)Bn(6,%,y) = 0, we can cancel the bias term and
n o

obtain the following corollary.

Corollary 1 Under the assumptions of Theorem 2, we get

nhHa\)G,x(hK) = B
W(F(9>U»X) F(0,y,x)) — N(0,1)

Indeed: by the additional assumption (H7), we firstly obtain,

Vo (i) (F(8,y, %) — F(8,y,x)) = N(0, Vik (8, %, Y)),

to avoid estimating the constants in this last expression, one may consider the
simple uniform kernel (M; = M; = 1) and get the above corollary (Corollary
3.11). So the practical utilization of our result in confidence intervals con-
struction requires only the estimation of the function ¢g x(t). This last can be
empirically estimated by:

Box(t) = L (X x)l < 8]

n
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where #(A) denote the cardinality of the set A.
Finally, for v € (0,1), we obtain the following (1 —y) confidence interval for
F(6,%,y):

F(6,y,%) iy x UL )

TLdA)e,x(hK)

where t;_ y is the quantile of standard normal distribution, and 6%(x,y) denote
the estimators of Vik (0, x,y).

Discussion on the importance of our model and on impacts of
our results

It is well known that, the conditional distribution function (cdf) has the advan-
tage of completely characterizing the conditional law of the considered random
variables. In fact, the determination of the cdf allows to obtain the conditional
density, the conditional hazard and the conditional quantile functions. Thus,
even if the estimation of the conditional distribution has an interest in its own
right, it is moreover of great aid in estimating various conditional models. On
the other hand, the asymptotic results, obtained here, would have a great im-
pact on the theoretical as well as on the practical aspects. The determination
of the bias and of the variance terms of the estimator is a basic ingredient
to obtain its asymptotic normality. This question is a natural way to extend
results of this work. Notice also that this asymptotic property is very inter-
esting to make statistical tests. The convergence in mean square wich study
the [Z-consistency of F(6,x,y) is one of the most useful /practical accuracy
measures in the nonparametric smoothing estimation.

Remark 1 The generalisation to multi-index model as mentioned by the re-
viewer, 1S an interesting subject, and a good prospect, to do that we consider
Op as a matriv D x D of vectors (0jp)j=1,p of H, where the direction D
can be chosen by cross wvalidation, and the inner product can be defined by
|< Op, x >|= Zj eijj.

Remark 2 Being independent refers to how the process of collectiong the sam-
ple was performed and it assures the representation fairness of the sampling.

Dependent samples introduce bias into the results. From computational point
of view independency significantly simplifies operation. If the random variables
are not independents, the complexity of the problem explodes and we can not be
able to use several results that need the random variables to be independent, in
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this case we can use mizing coeifficient to measure the dependency, this work
is one of our goals to prepare another paper for submission.
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4 Appendix

Proof of Theorem 1. We know the theorem is a consequence of a separate
computes two quantities (bias and variance) of F(6,y,x), we have

E /IE(G,y,x) — F(Q,g,x)}2 = [IE (f(G,y,x)) — F(Q,y,x)}2 + Var [?(Q,Q,x)}

By classical calculations, we obtain

F(0,y,x) — F(8,y,%) = (Fn(0,y,%) — (8,y,%)) — Fn(8,y,x) (Fp(0,%) — 1)
~ ElFn(0,y,x)] (Fo(0,) 1)
~ ~ ~ 2 o
—ElFn(8,y,%)] (Fo(0,0) = 1) + (Fo(0,%) — 1) F(0,y,x).
which implies that:

~

E [F(0,y,)| —F(0,y,%) = (EFn(0,y,%)] — F(8,y,%))
— Cov (fN(B,y,x),fD(e,xD
+ | (Fo(o.x) — EFo(0,x)) o,

Hence:

~ ~

E [F(0,y,%)] = F(0,y,%) = (EFn(0,y,%)] — F(0,y,%))
— Cov (FN(G,y,x),/IED(G,x))
+ Var [Fp(0,%)| O(h)).
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Now, by similar technics as those Sarda and Vieu [27] and by Bosq and
Lecoutre [9], the variance term is

Var F(G,%X)} = Var FN(G,y,x)} —Z]E[/IEN(G,y,x)]Cov (?N(G,U,X),?D(G,XO

+ (IE[FN(B,y,x)])ZVar (fD(O,x)) +o0 <T1d>el(hl<)> .

Proof of Lemma 1. We have:

E[FN(B)Q)X)] =K Z Wl] 6 X ](y_Yj))

1<i#<n

n(n—1)EW12 (0,x)]

1

= E[TME [W9,12E[H2|Xz]] .

We use an integration by part to show that:

E[Hy/X,] = by J HO (' (y — 2))F(6, 2, x)dz
R

Now the change of variable t = h;HZ allows to write:

IE[H2[X] —i—J HW (4)[F(0,y — thy, x)
R

By using a Taylor’s expansion and under assumption (H5), we have

h? 9%F(0,y, X
E[HalX:] = F(0,y,Xz) + = <J tzH“)(t)dt> (ayl-j” +o(hd).

Now, we can re-written as:

2
Bl = o y) + 3 ([ 2RO at) wala, ) +olh.

Thus, we obtain

F 1
E [FN(S,y,x)} = E[WGJZ]E[WW%(XZM)J
! 20401) )
* E[Ws 12] <Jt H (t)dt) E [Wo,12¥2(X2,y)] + o(hgy).
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Accordingly to Ferraty et al. [20], for 1 € {0, 2}, we show that

EWa 12U1(X2,y)] = Pi(x, y)E[Wg 12] + E[Wo,12(W1(X2,y) —i(x,y))]
= P1(x, y)E[Wp 12] + EWp 1B (X2,y) — i, y)IBe (X2, x)]]
= UP1(x, y)EWp,12] + E[Wp 12D1(Bo (X2, x))].

Since E[Bg,Wp,12] = 0 and @(0) =0, for 1 € 0,2, we obtain

1

EWo,12®1(Bo(X2, %)) = 5 @1 (0)EIBF (X2, x)W,12] + 0(E [Bo (X, X)We,12)).
Then,

~ h?, 9%F(6,y,x)
E [FN(G,y,x)} — F(0,y,x) + THT JtzH(”(t)dt
5 E[B3(X2,x)Wa,12] 1 2 mE [B3(X2,x)Wo,12]
to <hH E[WS,IZ] + 2 t (0) E[WGJZ]
o E [B3(X2,x)Wa,12]
E[W5 12] '

Therefore, it remains to determine the quantities E [Bé(Xz,x)Wer] and
E[Wp,12]. According to the definition of Wj 12, the behaviours of the two quan-
tities E [B%(XZ,X)WGJ z] and E[Wj 12] are based on the asymptotic evaluation
of E[K?B]]”]. To do that, we treat firstly, the case b = 1. For this case,we use
the assumptions (H3) and (H4) to get

hE[K{Bg 1] =0 (L( . )rsé(u,x)dP(u)> = o(hgdex(hk)).

So, we obtain that,

E[K{Be,1] = o(hkdex(hx)). (7)

Morever, for all b > 1, and after simplifications of the expressions, permits to
write that

E[K{Bg 1] = EK{d§(x, X)] + o(hgdo (hx)).
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Concerning the first term, we write
i "EIKS ) zjva“(v)dPhK‘de(X»X)(v)

— ,[11 [KG(U _J] ((sbKa(S))’) du] dphg‘de(x,x)(v)

v

1
_ (chbe,x(m _ L(sbK“(s))%e,x(shK,hK)ds)

+ dox(shk, hk) ds>

1
— Cbe,x(h-K) (K(]) - J] (SbKa(s)) (j)e (hK)

Finally, under assumptions (H1), we get

1
EIK$B ] = hido () (Km - j] (sbK“(u))’xG,x(s)ds> T o(hE o (h)).
®)

On other hand, by following the same steps in Ferraty and al. [20], we have

E[We,12] = O(hgdg , (hy)), 9)
and ‘
]E(KJSJ) = Mj(l)e,x(hK) forj=1,2 (10)
So,
E(B3 (X2, )Wayzl _ ., ((K(1) = J1,(s?K(s)) Xox(s)ds +o(h)
E[Wj 12] K K(1) — fll (K" (w)xox(s)ds “
Hence,

Proof of Lemma 2. We know

. 1
Var (Fn(0,y,%)) = (n(n— n(E[ws,u]))ZVGT( 2 We’”Hj>

I<i#<n
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1
= n(n— DEWZ ;,H3] + n(n — 1)E[We,1;We 21 HaHy

(n(n —1)(EWe,12))*
+n(n —1)(n — 2)E[Wp 1,We 13HoH3] +n(n — 1) (n — 2)E[Wp 1, W 23H, H3]
+n(n —1)(n — 2)E[Wp 12Wo 31 HaHy] + n(n — 1) (n — 2)E[Wj 1, We 32H3]

—n(n—1)(4n - 6)(EWe,2H,])?|
(11)

By direct calculations, we get

E[W, 912H2] O(hid3 (hk)), E[Wp12We21HaHi] = O(hd3  (hy)),
E[We1zWe13HzH3] ( (6,y,x))E[ B4eK (E[Keﬂ) +0(hﬁ¢ (i)

E[Wp 12Wa 23HaH3] = (F(6,y,x))*E[ f31eKe1] (B2 K3, IE Ke1]+0(h4K¢ (hk))
E[We,12We 31H2H3] = (F(6,y,X))*E[B] oK 1JE[B] eKe1 E[Ke,] + o(hy g, (hk))
E[We1zWe3sz]—F(9 y, x)E2[BKE [K2]+0( KCD (hk)).

E[We 12H1] = O(hg d§ . (hk))

By equation (7), equation (8), (9) and (10)

F(O, u,%) (1 — F(0,y,x)) | (K31 = J13(K2(s)) Xox(s)ds)
pox(inc (K(U - (K(S))'Xe,x(SJdS)2

1 M, 1
1— .
o (“d)e,x(hk)) M%nd)e,x(hK)F(e)y)X)( FO.yx) +o <n¢6,x(hk)>

Var (?N(G,y,x)>

Proof of Lemma 3. The proof of this Lemma it’s similar to Lemma 2 proof,
it permits to write (with I={(i,j): 1 <1#j <n})

1
(T‘L(Tl —1 )E[We)]z])z COV( Z We’ij H]’ Z We»]d)

Ljel k,lel
1

_ B X -
 (n(n—1EW; 1)) [n(n DEWgioHo] +nin — 1)E[We,12We 21 H)
+nn—1)(n— 2)E[W9’12W9,13H2] +nn—1)(n— Z)E[WQJZWG,BHz]
+n(n—1)(n —2)E[Wp 12Wp 31Ha] + n(n — 1) (n — 2)E[We 12We 30H,]

-—nmn-—1)(4n—6) (]E[We,lezJE[Wer]} .

Cov (?N(G,y,x),fg(e,x)) =
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By direct calculations, we get

E[W, 912Hz] O(hgd3 . (hk)), [We1zWe,21Hz] O(hg 3 (hk)),
E[szWewHﬂ (F(8,y,x))El 4eK 1(E[Kg,11)? +0(hﬁ¢ex( x))
E[Wp,12Wp 23H,l = (F (6 Y, x))E[ B]eKeﬂ “319 91]E[Keﬂ+0( K¢ (hk))
E[Wa,12Ws 31H,] = (F(6,y,x))El ﬁneKeﬂ (B2 eKm E[Keg,1] +o(h4ch (k)
E[Wpg,12Wp 32H,] = F(6,y,x) 2[591](1] (K 91]+0(hﬁ¢ «(hi)).

E[We12H1] = O(hg d§  (hk))

By equation (7), equation (8), (9) and (10), we obtain

Cov (?N(G,y,x),/ﬁD(e,x)) =0 <T1d>e](h|<)) .

Proof of Lemma 4. We have that

1
Var(fp(6,x)) = (n(n —1)E[Wj2])2 ( Z WM)-

1<i#4<n

That is

~ _ 1 > B
Var (FD(G,X]) = 1 EWora) )2 [n(n — 1NE[Wjp 12] + n(n — 1)E[Wa,12Wo,21]
+nn—1)(n—2)E[Ws 12Wp,13] + n(n — 1)(n — 2)E[We 12 Wp 23]
+nn—1)(n—2)E[Ws 12Wp 31] + n(n — 1)(n — 2)E[We 12 Wp 32]
—nn-—1)4n — 6)(E[W9,12D2} .
(12)
and similarly to the previous cases

E[WéJz] = O(h4]((b ( ))) E[WGJZWG,Z]] = O(h4Kd)é’x(hK)))
E[Wp,12Wg,13] = [[31 0Kg, 2 1(E[Koq])? + O(hid) (hk))
]E[WGJZWG,B] [31 eKO 1JE[ B] eKe1 1E[ KG 1+ 0(h4K¢ ( x))
E[Wp,12We 31] = [[31 eKe 1E[B] oK o, 1]E[Ke 1]+ O(th) «(hg))
E[We,12We 32) = E2[B3, KiJE[KZ ] + o(hk &}, (hx)).
E[Wjg,12] = O( Kq)ex(hK))

By the same arguments used in the previous lemmas, we can write:

- _ Madex(hi) 1
Var (FD(G,X)> = n(M1¢e,x(hK))2 +o (Tld)e,x(hk))

1
- O(“d)e,x(hK)).
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Proof of Lemma 5. By applying the Bienaym’e-Tchebychev’s inequality, as
n — 4o00,, we obtain, for all ¢ > 0,

var(/F\D (0,x))

P(Fp(6,x)) —E(Fp(6,x)) > &) < ——5

1 1
< 2% (gantng)

Proof of Lemma 6. We have,
—Y ~Y1\\*
E(Cvar (H{ ) ) ) = (e (H({Z=)) X
h h
—Y
—a e (7 )

By an integration par parts, followed by a change of variable, we get

2(Y—Yi . 2 B
B (V) X = - [ HEaRe,y — i X
ZZJHWHHMH&y—imﬁM)—H&ymDM
—i-ZJH“)H(t)F(G,y,x)dt

Since

ZJH(”H(’L)F(G,y,x)dt =F(6,y,x) as n — +oo,

we deduce that, as n — +o00, we have
-Y
06,1 (L) 1x0) - BOG, P03,

and

—-Y

ik (Y ) X~ Fe, ) -0

SO Y
MK@E%HzCﬂ:‘

- )Rﬂ%%EW@F%&%M
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finally, we obtain:

B (var (H (Y57 ) ) ) = BIGIF@, 3,001~ F8,y.x)

Proof of Lemma 7.
We have

Vo (RIQn (8, x,y) = YIPox) ZQK F(6,y,%))

TLE Q]K]

- Tld?ex hK i j )y) ))

TLE Q]K]

then, combined with (4) implies that

Z B2K \/Tld)ex hk)E(B2Ky)

E(Q1K;)

V n(be,x(h]() Qn(e) Xy y)

x Y Kj(H; —F(8,y,x))

- (ROE(B1Ky)
_nE(B1K1);f31Ki nop, QTK1 GILS) Zﬁ) 0,y,x))

\/Tl(be hx)E(B3K1) ZKJ( ,~F(6,y,x))>

E(Q1K;y)

E(Q;Ky)

( E(B1K) Zf% lmm: P ZB)KJ(HjF(e,y,x)))

Denote by

_ 1 S /Ny (h)E(BIKy)
S1_nE(B%K]);BiK1 , Sp= 0K ZK (H;—F(6,1,x))

=1

_ 1 = . _ V/ndex(he)E(B1K)
S3_TlE(B]]<])i_Z][31KI and S4 = E(QKy) ZB) (H;—F(0,y,x))

It remains to show that,
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Ve (hk)Qn(0,%,y) = $1S2 —S354 —E(S1S2 — S3S4) (13)
= (S1S2 —E(S1S2)) — (5354 —E(S3S4))

Hence by the Slutsky’s theorem, to show (13), it suffices to prove the following
two claims: o
$1S2 —E(S1S2) = N(0, ik (0, %,Y)) (14)
384 —E(S354) 5 0, (15)
Proof of (14) We can write that

S1S2 —E(S51S2) = S —E(S2) + (S1—1)S2 —E((S1—1)S2).

by the Slutsky’s theorem, we get the following intermediate results,

(S1 =Sy —E((S1—1)S2) > 0 (16)

and
S2—E(S2) 2 N(0, Vi (8,%,y)) (17)

Concerning the proof of (16), by applying the Bienaymé-Tchebychv’s inequal-
ity, we obtain for all € > 0

E(|(S1—=1)S; —E(S1 — 1)52)|)-
€

P((S1 —=1)S2: —E((S1 = 1)S2) > €) <
Then, the Cauchy-Schwarz inequality implies that

E(I(S1—1)S2—E((S1—1)S2)l) < 2E(1(S1—1)52)1) < 2\/E((S1 — 112)/E((52)?)

On one side, by using equations (7) and (8), we obtain

E((S7 — ])2) = var($y) = WT‘VGT(B%KH 1
4102y _
nO(h“Kd)é’x(hK))E(B]K]) =0 (Tld)e,x(hk)) .
and on the other side, we obtain
2
5 nbox(h)EX( BzKl
E((52)7) = TP ZK (0,y,%))
n

_ . 2
- (n_])zo(d)e)x(hk))(nomne,x(hk)) n(n—1)o(¢8 ()

= 0O(1) + o(ndex(hk)).
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Thus

E((S1 — 1)S2 — E((S1 — 1)$2)]) < 2y/E((S1 — 112)/E((52)2)

which implies that (S1—1)S; —E(S71 —1)S;) = 0p(1). Then, as n — oo, we get

E(I(S1 —1)S2 —E(S1 —1)S2)|)
€

P(I(S1 —1)S; —E(S1 —1)S2)|) > €) < — 0.

Concerning the proof of (17), we denote

Pn = SZ - E(SZ)

Vo« (he)E(B2Ky)

(
)
2 n
n¢e,x(hK>E)(B1'<” > umiloy),

=1

where
tnj (%, y) = Kj(Hj — F(6,y,x)) — E(K;(Hj — F(6,y,x)))
By the fact that pn;(x,y) are i.i.d., it follows that
E2(O1Ky) e

n?dox (i) E?(BIK1)
E2(0Q4K;)

var(Pu(x,y)) =

E(ui (%, 1))

Thus

n? e (hi)E* (K1)
E2(QKy)

—F(6,y,x))%) — (E(K; (H; — F(6,y,x)))%).

var(Pn(x,y)) = (E(K(H;

(18)

Concerning the second term on the right hand side of (18), we have

(E(Ky(Hy — F(8,y,x)))? (E(E(K; (Hy — F(8,y,%x))IX1))?

(E(KyE((Hi1X7) — F(8,y,%))))?
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where :
—E((H11X7) = F(8,y,x)) 20 as n— o0 (19)
hy
Now let us return to the first term of the right hand of (18). We have
o (hi)EX(BTK1) o o2 2
Sy, P o)
_ n“dox(hi)E(BTKy) 2 2
=) (BE( —FOy 0K
n“dox (hx)E*(B7K1)
- 2 9E2(511]2<1)z] Rl
"o x (i) E*(B7K1) 22
e (BE((H X)) = F(0, ,x))2)K]

By using (19), that allows to have, as n — oo

n? o (hi)E*(B3K7)
E2(OQ1Ky)

(E(E((H11X1) — F(0,y,x))})K$) — 0

Combining equations (7), (8) and (10), with lemma 6, we obtain as n — oo

E(var(Hi1X1)K$) — E(K§)F(6,y,x)(1 — F(8,y,x))
= MF(8,y,x)(1 — F(8,y,x)) o (h)-

Therefore, by using equations (7), (8) and (10) , equation (18) becomes

n?dg (M) (N(1, 2)hg do (i ))?
(n—=1N(1,2)Mhg dox(hk))?
MF(0,y,x)(1 —F(0,y,x))dex(hk)
TLZMz

= mF(G,y,X)U —F(6,y,x))

var(Pn(x,y)) =

M
= v PO (1 =F(0,y,%)) = Vi(0,5,y) as n— oo
1
Now, in order to end the proof of (17), we focus on the central limit theorem.
So, the proof of (14) is completed if the Lindberg’s condition is verified. In
fact, the Lindberg’s condition holds since, for any n > 0

n

D Bl iom) = NE(G L 5m) = BV ) T 5 i)
=1
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as

(vt ) = nE(1d) = *ZF(0,y, 3)(1 — F(8,,x)).
1

Proofs of (15). To use the same arguments as those invoked to prove (14), let
us write

S3S4 —E(S3S4) =S4 —E(S4) 4 (S3 —1)S4 — E(S3 — 1)S4)).

By applying the Bienaymé-Tchebychv’s inequality, we obtain for all € > 0

B(1S35s — E(S354)) > €) < 135 —eE(S3S4)I).

and the Cauchy-Schwarz inequality implies that

E(I(S3—=1)S4—E((S3—=1)S4)|) < 2E(|(S3—1)S4)I) < 2\/E((S3 - 1)2)\/]]“3((34)2)

Taking into account the equations (9) and (10), we get

n
n?E?(B1K;)

A4y,2\ 1
B{piki) =0 <n¢e,x(hK))'

E((S3—1)* = var(S3) = var(B1Ky)

= 442
n0(h 3 (k)
On the other hand

2
2 n
E((S4)%) = n¢e'§282€K5?]K1)E (Z BK; (H; — F(O,y,x)))
j=1

o (hk)O(hgdg, (hk)) 2
= (n—1)20(hLe?  (he)) (nE(B1Ks(Hy —F(6,y,x))))
+n(n—1)E*(B1K; (H — F(8,y,%)))

=o(1) + o(ndex(hk))

It remains to show

E((S3— 1)Ss —E((S3 — 1)S9)]) < 2¢/E((S3 — 112)/E((S4)2) = o(1)

which implies that

I(S3—1)S4 —E((S3 —1)S4)| = 0p(1)
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Therefore,

(1S3S4 —E(S3S4)I)
€

—0 as n— oo.

B(S354 — E(S350)]) > ) < =

So, to prove (15), it suffices to show S; —E(S4) = o(1), while

2o (h)E?(B1Ky)

E(Ss—E(S4))* = var(Ss) = oK) Ver(Biki(H —F(0,y,x)

We arrive finally at
var(B1K;(Hy — F(6,y,x))) = F(6,y,x)(1 — F(6,y,x)E(BTK])
This last result together equation (7), (8) and (10), lead directly to
n?dox (hi)E?(B1K1) 202
' F —F E
EZ(Q1K]) (e)y>x)(1 (e)yyx)) (B1K1)
= (F(8,y,x)(1 —F(0,y,x)))o(1),

which allows to finish the proof of Theorem.

E(Sq —E(S4))?
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