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Abstract. We study the performance of some widely-used design construction 
algorithms like the coordinate exchange and swapping-cycling as well as 
some of their versions. We measure performance in two ways, namely, 
 rst, by measuring jointly both running time and the ef  ciency achieved, 

and, second, by  xing the running time of the algorithms and measuring 
the ef  ciency achieved while allowing the number of choice situations to 
vary. In addition, we also analyse the performance in terms of heterogeneous 
designs. A somewhat surprising outcome of our analyses is that a simpli  ed 
version of the joint swapping-cycling algorithm outperforms the coordinate-
exchange algorithm irrespective of the performance measure.
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1. Introduction

Choice experiments are widely used to study consumer preferences for various 
products in different areas like marketing, transportation, environmental and 
health economics. Their popularity stems from the fact that they can be used to 
elicit preferences for hypothetical products. An important question in designing 
a choice experiment is what hypothetical products to present to the respondents 
who participate in the experiment. One approach in the literature was to design 
choice experiments based on statistical ef  ciency.

Conjoint choice designs based on statistical ef  ciency are typically constructed 
by optimizing an objective function that is a scalar function of the information 
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matrix of the model considered (Huber & Zwerina, 1996; Sándor & Wedel, 2001). 
The variables in this optimization are the attributes of the hypothetical products, 
which are taken to be discrete. This implies a discrete optimization problem, 
whose complexity depends on the number of choice situations involved in the 
experiment and on the complexity of the underlying model.

The need for considering complex models stems from the need for modelling 
consumer preferences more realistically. Examples from this line of literature 
are Sándor and Wedel (2002) and Bliemer and Rose (2010), who use the random 
coef  cient logit to model consumer heterogeneity in preferences for attributes. 
While the design construction problem is already rather complex in the former, 
the latter paper considers the panel version of the random coef  cient logit, which 
allows for correlation between the choices made by a given consumer in different 
choice situations. The computational complexity of evaluating the objective 
function for this model is much more severe than in previously considered 
models. Moreover, if, for this model, we allow for a much larger number of choice 
situations, like in the heterogeneous design considered by Sándor and Wedel 
(2005), then the computational complexity becomes even more severe.

Therefore, we believe that the performance of the design construction algorithms 
in terms of speed is crucial. In the literature, several different algorithms have 
been proposed. Meyer and Nachtsheim (1995) proposed the coordinate-exchange 
algorithm, which has the appealing feature of being the simplest algorithm for 
the problem. Huber and Zwerina (1996) proposed the relabeling and swapping 
algorithms, while Sándor and Wedel (2001) proposed the cycling algorithm. The 
three latter algorithms have been used jointly or in pairs (relabeling-swapping or 
swapping-cycling) in order to attain higher ef  ciency.

In this paper, we study the performance of these algorithms and some of their 
versions. We measure performance in two ways, namely,  rst, by measuring 
jointly both running time and the ef  ciency achieved and, second, by  xing 
the running time of the algorithms and measuring the ef  ciency achieved while 
allowing the number of choice situations to vary. In addition, we also analyse 
the performance in terms of heterogeneous designs. A somewhat surprising 
outcome of our analyses is that a simpli  ed version of the joint swapping-
cycling algorithm outperforms the coordinate-exchange algorithm irrespective 
of the performance measure.

The remainder of the paper is organized as follows. In Section 2, we present 
the conjoint choice design problem in the context of the logit model. Section 
3 explains the algorithms used. Section 4 presents results from comparing the 
algorithms for homogeneous and heterogeneous designs. In the last section, we 
conclude and outline further directions of research.
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2. Conjoint Choice Designs for the Logit Model

In a choice experiment, a respondent is presented a conjoint choice design that 
consists of several choice sets of hypothetical products characterized by their 
attributes. The respondent is supposed to choose the best alternative in each 
choice set. The choice data collected in this way can be used to estimate the 
parameters of the underlying model. Pioneering work in conjoint choice design 
(e.g., Huber & Zwerina, 1996) assumed the logit model. In this paper, we use this 
model for two reasons. First, we provide a comparison of the different algorithms 
for the most commonly used model in the literature. Second, we provide a set 
of results that can be used as reference for studying the performance of different 
algorithms applied for more complicated models.

In the logit model, the utility of respondent  i = 1,...,N  for hypothetical product 
j = 1,...,J in choice set s = 1,...S is speci  ed as:

(1) U xijs ijs ijsb f= +l ,

xijs is a k x1-vector of attributes of alternative j, b  is a k x1-vector of parameters 
weighting these attributes, and ijsf

 
is an error term having an i.i.d. type I extreme 

value distribution. The probability that pro  le j is chosen from the choice set s 
has the closed form

(2) 

The information matrix can be computed as the variance of the  rst-order 
derivatives of the log-likelihood function, and it is equal to the sum of the choice-
set speci  c information matrices:

(3) 

where , ...,X x xis i s iJs1= l6 @  is the matrix of the attributes in choice set s,  
, ...,p p p1is i s iJs= l6 @ and , ...,P diag p p1is i s iJs= ^ h. In order to study the algorithms 

with different objective functions, we consider two scalar transformations of 
the information matrix, namely the detD error I 1/kb- =

-^ h6 @ , which uses the 
determinant, and the ,A error tr I X1 b- = - ^^ hh, which uses the trace of the 
inverse of the information matrix (Kessels et al., 2006). Both design criteria should 
be minimized with respect to the elements of Xis for all consumers i and choice 
sets s. This approach corresponds to the so-called heterogeneous design approach; 
when the designs presented to respondents are the same, that is Xis=Xs for all i and 
s, and then we talk about the homogeneous design approach. We note that the 
design criteria depend on the parameters that need to be estimated; in order to 
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deal with this issue, we follow the locally optimal design approach by assuming a 
certain value for these parameters when constructing the design.

In this paper, we consider designs with 15 choice sets with 2 alternatives in 
each. The alternatives are assumed to be hypothetical products having 4 attributes 
with 3 levels denoted by 1, 2 and 3. The attributes are qualitative variables 
coded as [1 0], [0 1] and [-1 -1]. The assumed value of the parameter-vector is the 
transposed of [-1, 0, -1, 0, -1, 0, -1, 0].

3. Algorithms Used

First, we present the core algorithms, and then we specify the versions and 
combinations that we use. We illustrate each algorithm by means of the choice 
set example from Table 1. 

Table 1. Example of a choice set
Attribute 1 Attribute 2 Attribute 3 Attribute 4

Alternative 1 3 2 3 2
Alternative 2 2 1 2 1

Swapping (Huber & Zwerina, 1996) changes the level values between the two 
alternatives for the same attribute. In the example (see Table 2) values, 3 from the 
 rst alternative is changed with value 2 from the second alternative. It starts with 

the  rst attribute of the  rst choice set and continues with the second, third and 
fourth attributes, and then it proceeds in a similar way with the second choice 
set until the last choice set.

Table 2. Swapping the 1st attribute
Attribute 1 Attribute 2 Attribute 3 Attribute 4

Alternative 1 2 2 3 2
Alternative 2 3 1 2 1

Cycling (Sándor & Wedel, 2001) changes both levels of the two alternatives 
corresponding to the same attribute in the following manner: 1 2, 2 3 and 3 1. 
In the example (Table 3), cycling is applied to the levels of the  rst attribute; so, 3 
becomes 1 and 2 becomes 3. It starts with the  rst attribute of the  rst choice set 
and continues with the second, third and fourth attributes, and then it continues 
with the second, third etc. choice sets in a similar fashion.
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Table 3. Cycling the original levels for the 1st attribute
Attribute 1 Attribute 2 Attribute 3 Attribute 4

Alternative 1 1 2 3 2
Alternative 2 3 1 2 1

The coordinate-exchange algorithm (Meyer & Nachtsheim, 1995) changes one 
attribute level at a time to the other values. In the example (Table 4), the level of 
the  rst attribute of the  rst alternative is changed from 3 to 1 and then to 2. It 
starts with the  rst attribute of the  rst alternative in the  rst choice set; then, it 
continues with the levels of the second, third and fourth attributes, and then it 
proceeds in a similar way with the attributes of the second alternative and the 
other choice sets.

Table 4. Coordinate exchange for the 1st alternative in the 1st attribute
Attribute 1 Attribute 2 Attribute 3 Attribute 4

Alternative 1 1 2 3 2
Alternative 2 2 1 2 1

Alternative 1 2 2 3 2
Alternative 2 2 1 2 1

For each algorithm, those changes that improve on the design criterion are 
preserved and those that do not improve are discarded. The original swapping 
(henceforth sw) and cycling (henceforth cy) algorithms restart from the beginning 
after each improving change. We have found that this feature slows down the 
algorithms considerably; so, we have introduced versions of these algorithms that 
do not restart after improving changes, but only after reaching the last attribute 
of the last choice set. We refer to these versions as the no restart versions, and we 
denote it by nr. The original coordinate-exchange algorithm does not restart from 
the beginning after improving changes; so, it is of nr-type by default; we now 
consider a version that restarts from the beginning after each improving change. 
We denote the latter algorithm by kx and the former by kxnj. Our proposed 
algorithms for evaluation are presented in Table 5.

Table 5. The algorithms
1 2 3 4 5 6 7 8

sw_cy swnj_cynj swnj_cy sw_c.nr cynj swnj kxnj kx
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The  rst algorithm (sw_cy) is the one used by Sándor and Wedel (2001) without 
the relabeling algorithm. Swapping is applied  rst and, when this does not give 
any improvement, then the algorithm proceeds further by cycling. The second 
algorithm uses swapping  rst without restart, and then cycling without restart. 
The third algorithm uses swapping without restart and the original cycling. The 
fourth algorithm  rst runs the original swapping, and then the no restart cycling. 
The 5th and 6th algorithms are pure cycling and swapping with no restart, while 
the 7th is the original coordinate exchange and the 8th is the coordinate exchange 
with restart. The original coordinate-exchange algorithm is remarkable in that it 
can be regarded as the simplest algorithm conceptually.

4. Results

We present two sets of results: one for homogeneous and one for heterogeneous 
designs. 

Homogeneous designs

For each algorithm mentioned in Table 5, we construct 20 designs using the same 
20 (level-balanced) starting designs. We measure the average running time of 
each algorithm and we represent the results in scatter plots of points, where the 
vertical axis shows the average running time in seconds for each algorithm. In 
one set of results, we analyse the average of the design criterion values, while 
in another set of results we look at the minimum of the design criterion values. 
The latter results aim at capturing the performance of the algorithms for  nding 
a design that is closer to the globally optimal design.

Figure 1 presents the scatter plot in the case of the D-error criterion. We can 
observe that sw_cy and swnj_cy are the best algorithms on average in terms of the 
D-error, while swnj and kxnj are the best on average in terms of running time. 
By considering both measures jointly, we can notice that both kx and sw_cynj 
are worse than swnj_cy with respect to both measures, that is they produce less 
ef  cient designs and run longer on average.

Figure 2, which presents the scatter plot in the case of the A-error criterion, 
leads to qualitatively similar  ndings. Again, sw_cy and swnj_cy are the best 
algorithms on average in terms of the design criterion, while swnj and kxnj are the 
best on average in terms of running time. By considering both measures jointly, 
kx is worse again than swnj_cynj with respect to both measures. Similarly, cynj is 
worse than swnj_cynj with respect to both measures.
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Figure 1. Average running time and average D-error for homogeneous design

Figure 2. Average running time and average A-error for homogeneous design

Figures 3 and 4 present the scatter plots when instead of the average D-errors 
the minima of these are plotted on the horizontal axis. Qualitatively, Figure 3 is 
very similar to Figure 1 and Figure 2 is very similar to Figure 4, and in fact similar 
conclusions can be drawn regarding the relative performance of the algorithms.
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Figure 3. Average running time and min of D-error for homogeneous design

Figure 4. Average running time and min of A-error for homogeneous design

We intend to determine the algorithm(s) that has (have) the best performance 
taking into account  gures 1–4. First, we note that since kx, sw_cynj and cynj 
are dominated in terms of both measures either in the case of the D-error or in 
the case of the A-error, they cannot have the best performance, so they can be 
discarded. Further,  gures 1 and 3 suggest that sw_cy, swnj_cy and swnj_cynj 
are similar in terms of the D-error because the percentage difference between 
the worst and the best is less than about 2.2%, and it is known that this means 
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that a percentage increase of at most 2.2 % in the number of consumers used for 
the worst design is suf  cient to match the performance of the best design. Out 
of these three algorithms, swnj_cynj needs the least running time; so, we discard 
the other two algorithms. Therefore, the best algorithm is one of the following: 
swnj_cynj, kxnj and swnj.

Since the running times of these algorithms are slightly different and they 
yield designs with different D-errors and A-errors, we compare them by  xing 
the running time to 120 seconds and running the algorithms in this time with 
different starting designs as many times as possible. The minima of the design 
criteria obtained are presented in Table 6. For example, for the fastest algorithm in 
the case of the D-error (swnj), we obtained 5,792 designs and the minimum of their 
D-errors is 0.24978. Also, the slowest algorithm (sw_cy), which is not presented 
in Table 6, in this case, produced 228 designs. For both design criteria, the best 
algorithm turns out to be swnj_cynj: its lowest value in the D-error case is 0.23063 
and in the A-error case is 2.862. This is followed by swnj and kxnj in the case of 
the D-error criterion, while in the case of the A-error criterion by kxnj and swnj.

Table 6. Minimum D- and A-errors for three selected algorithms with a running 
time of 120 seconds

swnj kxnj swnj_cynj

D1design 0.24978 0.25944 0.23063

D10des 0.02242 0.02262 0.02217

A1design 3.44375 3.30272 2.86219

A10des 0.27879 0.27320 0.26043

It is important to mention that the percentage difference in D-error between 
the designs obtained by the kxnj and swnj_cynj algorithms is 11.1%. On the one 
hand, this means that one needs by 11.1% more respondents when using the 
kxnj algorithm than when using the swnj_cynj algorithm. On the other hand, 
this difference means that the kxnj algorithm is more likely to get stuck at local 
optima than the swnj_cynj algorithm.

Heterogeneous Designs

A heterogeneous design is a design in which different respondents are given 
different designs. So, the main distinction with respect to homogeneous design 
is that in the latter respondents get the same design. The main motivation for 
using heterogeneous design, as shown by Sándor and Wedel (2005), is that it 
offers higher statistical ef  ciency with the same number of respondents since 
the design is optimized with fewer constraints. These authors also show that it 
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is not necessary that every respondent get a design different from the others; it is 
suf  cient to use six different designs for all respondents.

First, we present an analysis of heterogeneous designs that is analogous to that 
presented in  gures 1 and 2. Figure 5 shows that sw_cy and swnj_cy are again the 
best algorithms on average in terms of the D-error and swnj and kxnj are the best 
on average in terms of running time. By considering both measures jointly, we 
can again notice that both kx and sw_cynj are worse than swnj_cy with respect to 
both measures.

Figure 5. Average running time and D-error for heterogeneous design

Figure 6. Average running time and A-error for heterogeneous design
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Figure 6 shows that sw_cy, swnj_cy and swnj_cy are the best algorithms on 
average in terms of the A-error criterion, while swnj and kxnj, as in Figure 2, are 
again the best on average in terms of running time. By considering both measures 
jointly, kx is worse again than swnj_cynj with respect to both measures. 

Figures 5 and 6 yield a conclusion that is qualitatively similar to the homogeneous 
design case. We intend to determine the algorithm(s) that has (have) the best 
performance taking into account  gures 5-6. First we note that since kx and sw_
cynj are dominated in terms of both measures either in the case of the D-error or 
in the case of the A-error, they cannot have the best performance, so we discard 
them. Further,  gures 5 and 6 suggest that sw_cy, swnj_cy and swnj_cynj are rather 
similar in terms of both the D- and A-error. Out of these three algorithms, swnj_cynj 
needs the least running time; so, we discard the other two algorithms. Therefore, 
the best algorithm is one of the following: swnj_cynj, cynj, kxnj and swnj.

Similar to the homogeneous case, since the running times of these algorithms 
are slightly different and they yield designs with different D-errors and A-errors, 
we compare them by  xing the running time to 120 seconds and running the 
algorithms in this time with different starting designs as many times as possible. 
The minima of the design criteria obtained are presented in Table 6. For both 
design criteria, the best algorithm turns out to be again swnj_cynj: its lowest value 
in the D-error case is 0.02217 and in the A-error case is 0.26043. 

The percentage difference in D-error between the designs obtained by the kxnj 
and swnj_cynj algorithms is 2%, which is clearly lower than in the homogeneous 
design case. This means that the difference between the kxnj and the swnj_cynj 
algorithms in terms of local versus global optimality is less pronounced in the 
heterogeneous design case.

Figure 7. D-errors relative to the number of different designs
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In order to present further insights regarding the algorithms in the heterogeneous 
design case, we present their performance based on 1, 2,… 10 different designs 
(  gures 7 and 8). We refer to the design criteria as relative D- and A-error because 
we multiply these by the number of different designs used. This way, the relative 
design errors measure the marginal effect of using an additional different design.

The  rst impression from Figure 7 is that for all the algorithms the marginal 
improvement in relative D-error diminishes as the number of designs increases. 
Further, for the algorithms sw_cy, swnj_cy, sw_cynj and swnj_cynj, the relative 
D-error becomes constant for 4-5 designs or more (a similar  nding is reported in 
Sándor and Wedel, 2005). The algorithms kx and cynj come close to this constant, 
but only for 9-10 designs. The algorithms swnj and kxnj reach constant relative 
D-error values that are higher. This kind of behaviour of swnj is not surprising 
because swapping preserves the level balance property; so, this algorithm searches 
in a design space that is smaller than that searched by the other algorithms. 
The fact that kxnj reaches an even higher relative D-error constant is somewhat 
unexpected. We believe that it is related to the  nding mentioned above that 
the coordinate-exchange algorithm seems to be more likely to get stuck in local 
optima than the other algorithms.

Figure 8 is in essence similar to Figure 7. We can, however, notice that the two 
coordinate-exchange algorithms and, to a lesser extent, the swnj algorithm do not 
display a monotonically decreasing trend. Again, we believe that this is related 
to the fact that the coordinate-exchange algorithm seems to be more likely to get 
stuck in local optima than the other algorithms.

Figure 8. A-errors relative to the number of different designs

Finally, we mention that we implemented all the algorithms for heterogeneous 
designs as so-called greedy algorithms. That is, instead of optimizing all the designs 
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jointly, we have  rst optimized one design, then the second design only while 
keeping the  rst one  xed, then the third design while keeping the  rst and second 
designs  xed, and so on. For more details, we refer to Sándor and Wedel (2005).

5. Conclusions

This paper compares the swapping-cycling (Huber & Zwerina, 1996; Sándor & 
Wedel, 2001) and the coordinate-exchange (Meyer & Nachtsheim, 1995) algorithms 
regarding their speed and relative optimality. The comparisons include versions 
of the swapping and cycling algorithms that do not restart from the beginning 
of the design after each successful modi  cation as well as a version of the 
coordinate-exchange algorithm that restarts after each successful modi  cation. 
The comparisons are done for both homogeneous and heterogeneous designs.

The main outcome of our results is that the joint swapping-cycling algorithm 
without restart outperforms the other algorithms – thus, the coordinate-exchange 
algorithm as well – both in the homogeneous and heterogeneous design cases. 
An interesting implication of this  nding is that the simplicity of the coordinate-
exchange algorithm that is viewed as an appealing feature does not necessarily 
imply that the algorithm performs well with respect to speed and optimality. Our 
 nal conclusion is that researchers should use the joint swapping-cycling algorithm 

without restart when they adopt the logit for modelling consumer choice.
It would be interesting to know if the same conclusion can be reached in the 

case of more realistic models like random coef  cient logit. Besides locally optimal 
design, Bayesian design, which – instead of assuming some values for the model 
parameters – assumes that their distribution is known, is another important 
design problem that may not lead to the same conclusion. The performance of 
some global optimization procedures (e.g. Genetic Algorithms, Tabu Search, 
Simulated Annealing) in conjunction with the design algorithms discussed in 
this paper may also change the conclusion of this paper. We intend to study these 
problems in the future.
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