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Abstract. We study Monte Carlo simulation in some recent versions of
random coefficient logit models that contain large sums of expressions
involving multivariate integrals. Such large sums occur in the random
coefficient logit with demographic characteristics, the random coefficient
logit with limited consumer information and the design of choice experi-
ments for the panel mixed logit. We show that certain quasi-Monte Carlo
methods, that is, so-called (¢, m, s)-nets, provide improved performance
over pseudo-Monte Carlo methods in terms of bias, standard deviation
and root mean squared error.

1 Introduction

Random coefficient logit models have become the main tools in the study of
demand for differentiated products and related problems. Its popularity comes
from the flexible modelling of heterogeneous consumer preferences, which has
been shown to facilitate the estimation of realistic patterns of substitution
between different products (Berry et al. 1995, Nevo 2001).

The model that is at the basis of these studies can only be estimated with
a large data set, which requires a large computational effort in the estimation
algorithm. One of the sources of difficulty is the presence of the random co-
efficients, which compared to the logit model without random coefficients has
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fewer degrees of freedom due to the standard deviation parameters, while it
is estimated based on the same observations. In addition, the random coeffi-
cient logit has analytically intractable market share expressions in the form
of multivariate integrals. Since within an estimation algorithm these need to
be approximated at each iteration, this further increases the computational
burden of the estimation.

Due to their usefulness, random coefficient logit models have been extended
in several directions. A straightforward extension is the one that accommo-
dates demographic characteristics (Nevo 2001). Another extension is the model
with limited consumer information (Goeree 2008). Although these two models
are different, they are similar in that they imply market share expressions that
are sums of intractable multivariate integrals, and typically these sums have
a large number of terms.

Random coeflicient logit models are also used to analyze data from choice
experiments. These data are obtained from respondents who choose the best
from several sets of hypothetical products. Under the assumption that the
preferences of a given respondent do not change, the model yields the so-called
panel mixed logit. Bliemer and Rose (2010) consider the problem of designing
the hypothetical products into several choice sets for this model. In order to do
so, one needs to compute a scalar transformation of the information matrix,
which is a large sum of expressions that depend on intractable multivariate
integrals.

In this paper we study to what extent quasi-Monte Carlo sampling improves
the computational efficiency in these models. For this, first we merge the large
sum of multivariate integrals into one higher-dimensional integral of a func-
tion that is discontinuous is some variables and then apply quasi-Monte Carlo
sampling to estimate the integral. The implied integrand functions are still
square-integrable, so asymptotically quasi-Monte Carlo sampling is expected
to offer computational gains over pseudo-Monte Carlo. We also expect to get
finite sample computational improvement for integrals expressed as probabil-
ities, since intuitively quasi-random draws are designed to provide better cov-
erage than pseudo-random draws over the density for which the expectation
is defined. This improved coverage usually translates into smaller expected
approximation error. When the simulated probabilities are used within non-
linear expressions, the greater precision and reduced bias in the simulated
probabilities translates into greater precision and reduced bias in parameter
estimates.

From a computational point of view we contribute to the literature by study-
ing the performance of quasi-Monte Carlo sampling applied to the estimation
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of the expectation of some discrete random variables. In the literature there
seems to be an emphasis on results that show the gains from using quasi-Monte
Carlo in the case of sufficiently smooth integrand functions, but applications
to cases of discontinuous integrands are rare.

Recently, in the econometric literature some new approaches have appeared
for the estimation of random coefficient logit probabilities. One approach uses
Laplace approximations of the integrals (Harding and Hausman 2007). An-
other approach uses Gaussian quadrature based on sparse grids (Heiss and
Winschel 2008). These approaches produce improvements in terms of preci-
sion and/or computing time with respect to Monte Carlo estimation based
on some quasi-Monte Carlo samples (namely, Halton and modified Latin hy-
percube by Hess et al. 2006). However, on the one hand, these methods have
not yet been compared directly to the quasi-Monte Carlo we consider in this
paper, and on the other hand, it is not straightforward how to apply them to
estimate expectations of discrete random variables.

The next section presents the random coefficient logit with demographic
characteristics and the random coefficient logit with limited consumer informa-
tion. Section 3 presents the experimental design problem for the panel mixed
logit. Section 4 describes briefly the quasi-Monte Carlo methods used in the
paper. Section 5 presents the results, and Section 6 concludes.

2 Two demand models involving large sums

We discuss two models whose econometric analysis involves the computation
of large sums. Another common feature of these models is that they are used
with aggregate market-level data. In both models the market share expressions
involve large sums of analytically intractable multi-dimensional integrals. Ap-
proximating precisely the market shares is crucial for the estimation of the
model parameters. For both models we express the large sums as integrals
on the unit hypercube of discontinuous functions, and employ Monte Carlo
integration methods to estimate the market shares. Both models are com-
putationally difficult in that they require a very high number of simulation
draws, so we believe it is crucial to come up with methods that reduce the
computational burden and/or improve the precision of the involved estimates.

2.1 Random coefficient logit with demographic characteristics

We define this model by the utility function. Suppose that there are J products
available in the market. The utility of an individual ¢ who chooses j out of J
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products is
uij = o (B + Tds) + &5 + €4,

where x; is a K-vector of observed characteristics, which may also contain
endogenous characteristics like price; it also contains 1 for intercept, [; is a
random parameter whose distribution is assumed to be N(b, %) with ¥ =
diag(o?, ..., a%(), d; is a D-vector of demographic characteristics, I' is a K x D
matrix of parameters, §; is a product-specific error, also called the unobserved
characteristic of product j, €;; is assumed to beiid type I extreme value random
variable independent of the rest of the variables. The utility of consumer ¢ who
does not purchase any product is

U0 = €40,

where g9 is also assumed to be type I extreme value random variable inde-
pendent of the rest of the variables.

We assume that the econometrician observes the product characteristics
zj, j = 1,...,J, the market shares of all products and the distribution of the
demographic characteristics. We assume that the demographic characteristics
have a discrete distribution with Np = ny X ... x np support points. This class
of models was pioneered by Nevo (2001), who extended the seminal work by
Berry et al. (1995) by including demographic characteristics in the demand in
an application on measuring market power in the ready-to-eat cereals market.

The market share of product j predicted by the model, that is, the prob-
ability that j is chosen, conditional on z; and §;, j = 1,...,J, as well as the
unknown parameters, is

- / exp (x;. (ﬁ+rd)+5j) R
J )

L+ 35 exp (o (B +Td) + &)
where F' () denotes the cumulative distribution function of 5 ~ N(b,%) and
G (d) denotes the cumulative distribution function of the discrete random vari-
able d. The demographic characteristics need to be integrated out because we
assume that individual choices are not observed.

Writing out the expectation with respect to the discrete distribution of
demographic characteristics, we obtain

exp () (8 -+ Tdy) + ;)
L+ 577, exp (2 (B + Tdy) + &)

Np
s=>m [ F(8), (1)
k=1 P
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where dj, and p; are the values of d and their probabilities, respectively. In
order to evaluate the market share (1) we need to compute Np integrals for
each j. It is well known that these types of integrals are analytically intractable,
so they need to be approximated numerically. This implies a non-negligible
computational effort, which in the case of the market share (1) is multiplied
by the number of terms Np in the sum. Typically, one of the demographic
characteristics is income, and for this the number of support points is rather
large making the number of terms Np also large. In this case the computational
burden for obtaining a sufficiently precise approximation of the market share
becomes substantial.

As we outlined at the beginning of this section, we replace the sum by inte-
gral. At this point we assume that the components of the demographic charac-
teristic vector are independent.! Then the market share (1) can be rewritten
as

. / exp (2 (8 + T (w) +6; ) .

L exp (o (B+ T () + &)
RE x[0,1]

where ¢ (1) = (1 (u1),...,op (up)) with the components ¢y, (up,), h =
1,...,D, defined as follows. Let vy 1,...,Vn0, and pu1,...,Phn, be the possi-
ble values and the corresponding probabilities, respectively, of component A of
the demographic characteristic vector d; let g, ; = fo:l Dho fori=1,...,ny
and g0 = 0. Then define ¢y, (up) = vy, if and only if gn;1 < up < gp .
We note that each component ¢, of ¢ is a step function and hence the inte-
grand function in the above market share expression is square-integrable in u.?
Therefore, estimation of the integral by the Monte Carlo method is valid. We

! Although this assumption seems to be restrictive at first sight, there are at least two
reasons for which it is not unplausible. First, in many cases the econometrician is forced
to assume that the demographic characteristics are independent because from the data set
in many cases only the marginal distributions of the demographic characteristics can be
inferred. Second, if from the data set one can infer the joint distribution of demographic
characteristics, then this can be treated as a one-dimensional demographic characteristic
that can take Np values. Therefore, this situation appears as a special case of our treatment.
We devote one simulation study to this case.

2For an integral / g(u)du the integrand function ¢ is square-integrable if
0,17
g° (u) du < oo. This property allows the computation of the variance of the Monte

(0,1”
Carlo estimator 3.~ | g (u;) /N.
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form the (quasi-)Monte Carlo estimator by using joint draws Ay = (8;, u;)Y

1 N exp (33; (Bi + T (w;)) + fj)

5(6,0,A8) =
SO0 AN =N ST o G T 1)

where f3; is a draw from F' and u; is a draw from the uniform distribution on

[0,1]".

(3)

2.2 Random coefficient logit with limited consumer informa-
tion

In this subsection we discuss a discrete choice model in which a consumer can
potentially choose (at most one out) of J products, but she only observes a
subset of the J products. Let

Ps (i) =] ¢ () JT (0 = én (7))

keS h¢S

be the probability that consumer ¢ observes subset S of the products, where ;
is a consumer-specific L-vector of parameters affecting this probability; we will
refer to S as the the choice set of consumer i. The choice set probability Ps (7;)
also depends on product characteristics ¢; (suppressed in the notation) that
affect the observability of the products through the factor ¢; (v;), j =1,...,J.
The probability that product j is chosen, conditional on z;, §;, t;, j =1,...,J,
and the unknown parameters, is

exp (28 +¢;)
1+, esexp (2.8 + &)

s= [ Y o) aFB), @)

RE+L SES;

where §; denotes the set of subsets of {1,2,...,J} containing j; z;, §, & are
as in the model from the previous subsection, and F'(,~) denotes the joint
cumulative distribution function of (5,v). It will be convenient to assume
that the random parameters can be parameterized so that 5 = §(61,v1) and
v = v (02,v9) where 0; and 5 are unknown parameter vectors and v; and vy
are standard normal random vectors of dimension K and L, respectively. In
what follows, instead of ¢y (v (02,v2)) we use ¢y (62, v2). With this notation
the market share of product j is

exp (xgﬁ (601,v1) + {j)

= Ps (6
Sj Z S( 2;7)2) 1+ ZTGS exp (l‘;‘ﬁ (0172}1) +£T‘)
RE+L S€ES;

d® (v), (5)
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where ® (v) denotes the standard normal cumulative distribution function of
vV = (’Ul, Ug).

A similar model is used by Goeree (2008), where the choice sets are determined
by the amount of advertising of the products. The number of terms in the above
sum is equal to 2771, which is the number of subsets of {1,2,...,J} containing
some product j. In many markets the number of products J is large, so the
sum in the market share expression (4) will have very many terms. This will
cause a substantial computational burden, if one wants to compute the market
shares directly.

We follow the literature (e.g., Goeree 2008) in that we approximate the
market shares by Monte Carlo integration. Let (vy;,v9;), i« = 1,..., N, be a
random sample from the standard normal distribution and

. N exp (1';/32 + gj)
N Z Z PS (92,“2’5) 1 + ZTGS exp (.’L‘;A,BZ + 57’)

=1 SGS]‘

the corresponding Monte Carlo estimator of (5), where 8; = (61, v1;). For
each 7 we can write the sum with respect to S € §; as the expected value of
a discrete random variable. In this regard, for given ¢, note that

exp (28 + & )
1+ ZT‘GS €xXp (~T;~/32 + gr)

Z Pg (62,v2;)

SGSj

exp (2 f; + &;
= ¢ (02,v) Z Ps (02, v2;) ( ! ]) (6
SEN; 1+ exp (m;ﬁz + £j) + ZTGS exp (x.6; + &)

where Nj is the set of subsets of {1,2,...,J} that do not contain j. Since
> se ~; Ps (02,v2;) = 1, the sum in (6) can be interpreted as the expected
value of a discrete random variable with values

exp (2.5 + &
Pyis (61, 011) = (%4 &) L SEN;
1+ exp (a:;ﬁz + fj) + > resexp (2.5 + &)

and probabilities Pg (02,v9;). This can be used to obtain the Monte Carlo
estimator of the sum. For this we need to draw a sample of size N from
this discrete distribution. This can be done by drawing N uniform random
vectors uy,...,uy € [0, 1]“7 and then, based on these, constructing the choice
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sets S1,..., Sy by S;i ={k e {1,.... J}\ {4} : wir < Pr (02,v9;)} fori=1,...,N,
where wu;; is the k-th component of u;. The obtained Monte Carlo estimator
of the sum in (6) is

Z is; (01, v15) -

(Note that we do not use the j-th component of the u;’s.)

However, this Monte Carlo estimator is not continuous in the unknown pa-
rameters in general, because, for a given sample uy, ..., uy € [0, 1]‘], the choice
sets S1,..., Sy may change when 6> changes, and this modifies the structure
of Pjg, (01,v1;). A solution to this problem is via importance sampling, as
suggested by Goeree (2008). Let 9y be a fixed value of the parameter #5 and
define the importance sampling probabilities Ps (620, v2;). Using these, we can
rewrite the sum in (6) as

Ps (05, v9;
> P (b0, v2:) S((9220 ;2)) ils (01, v10) -

SeN;
Now, this can be written as the integral
i (02,25, 1) eXP( B+ &) Ju
P (020, v2i,u ’
o OO L (w8 ) + z L (ur < @y (020, v20)) exp () 68i + &)
T#J

where for u = (uy,...,uy)

J
P; (02,v9,u) = H b (92,U2)l(uk§¢k(92,v2)) (1— ¢ (92’v2))1(uk>¢k(627’l}2))
k=1,
k#j

and 1 (A) is the indicator of the event A. Note that Pj (62,v2,u) = Ps (62,v2)
it S ={ke{l,..,Jr\{j}:ur < ¢ (02,v2)}. Consequently, we obtain that
the market share of product j is®

Pj (0277)27“)

Sj = / / ¢j (923'02) Pj (92071)2711) (7)
RE+L 0,1]7
) exp (x; B(61,01) + &) dud® (v).
1+ exp (28 (01,01) + &) + Z L(ur < r (620, v2)) exp (278 (61, v1) + &)
r#]

3In order to keep the notation simple we use the whole vector u in the integrand function
above, although it does not depend on u;. However, this does not change the results.
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The integrand function in this integral is square-integrable for the probabilities
¢r, that we consider (see Section 5.2), so we approximate the integral by (quasi-

) Monte Carlo estimation using joint draws Ay = (ui,vi)ij\i 1- The estimator
is

Dy (02,020, 0i)

Pj (020, v2:, u;)

exp (258 (61, v1:) + &)

1 N
55 (£,0,An) = N Z¢j (02, v2:)

X

(8)

1+ exp (28 (01, v1) + &) + ZJ: 1 (uir < ¢r (020,v2:)) exp (z,.8 (01, v1:) + &)
r=1

r#j

where € = (&, ...,&7) and 6 = (61,65); from the the arguments of 3; we omit
the rest of the variables.

2.3 Estimation of the model parameters

In this subsection we discuss the essentials on estimation of the model pa-
rameters needed for understanding the simulation results from Section 5. In
both models the market share of a product j can be expressed as a func-
tion of the model ingredients (see equations (1) and (4)). In both models the
system of market shares can be inverted, as shown by Berry (1994), to ob-
tain the variables &1, ...,&; as a function of the market shares and the other
ingredients of the models. In practice we need to solve in &1, ...,&; the non-
linear systems made up of (3) and (8) for j = 1,...,J. In order to get the
solution we appeal to Berry et al. (1995), who have introduced the operator
T (-, 0.0, AN) :R7 — R’ such that its component j is defined by

Tj (£7SO>9>AN) :gj +1n8?_1n§j (gagaAN)a

and whose fixed point is the solution of our nonlinear system, where s° is the
vector of observed market shares. These authors have established that in the
random coefficient logit model T’ (~, s?.60, A N) is a contraction for any feasible
(SO, 0,A N). Goeree (2008) has extended this result to the random coefficient
logit with limited consumer information.

Let the solution be denoted by & (SO, 0, AN). The identification of the un-
known parameters is based on the moment condition that

E [5 (SO,H,AN)] = 0 implies 0 = 6°,

where 0 is the true value of the parameter vector. The method for estimating
f is nonlinear least squares by

ming (s°,0, Ay)'¢ (s”.6, Ax) -

)
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Clearly, the obtained estimator depends on the simulation draws Ap used
for estimating the market shares.* In the simulation study (Section 5) we
evaluate the performance of different samples Ay by comparing the mean
squared error of the estimator of the objective function evaluated at the
true parameter value and normalized by the number of observations, that
is, € (s°,6°, An) € (s2,6°, An) /J.

3 Experimental design for the panel mixed logit

Suppose that each consumer ¢ = 1, ..., n chooses one alternative from the same
S choice sets. Each choice sets has J alternatives. Let yé-s € {0,1} denote the
choice of consumer ¢ in choice set s in the sense that y; s = 1 iff alternative j
is chosen. Suppose that the utility of i corresponding to alternative j in s is

Uijs = Tjs (B + Vio) + €ijs,

where xj, is the vector of attributes of alternative j in choice set s, 8 + Vo
is the random coefficient with V; being a diagonal matrix having standard
normal random variables v; on its main diagonal, and ¢;;, is an extreme value
distributed error term.

Next we derive the likelihood for this model. For a consumer ¢ the likelihood
that a given 3’ = y;- s) i1, is chosen, given v;, is proportional to

s=1,...,

|9 vl Hpr“ (0]v;),

s=1j=1
where § = (8',0')" and
exp (s (B + Vio))
Soi—1 exp (zhs (B + Vio))

is the probability that alternative j is chosen in choice set s, given v;. The
unconditional likelihood for consumer ¢ is (proportional to)

L (4'10) / HHpi’f (6]0) % (v), (10)

s=1j=1

Pjs (Blvi) = (9)

4We use this framework in our simulation study, but we note that in these classes of
models in the literature typically one product characteristic considered is price, which is
treated as endogenous. Due to this, the estimation method followed in the literature is the
method of instrumental variables, which we wanted to avoid due to its potentially poor small
sample properties.
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where ® is the cumulative distribution function of the standard normal random
vector v. This yields the log-likelihood for all the n consumers

L(ylo) = Zln /HHpJ (6]v) d® (v)

s=1j=1

In order to make the expressions more similar to the cross-sectional mixed
logit, let

s J
L; (y'16,v:) = In Hprf: 00) | =3y Inpjs (Olv) = (v) Tnp (Blvy),
s=1j=1 s=1 j=1
where
y' = (yiuyéh.-.7yf}17y§z,...,yf}27...,y§s,...7yf}s)/
pOv) = (p11(0v),p21 (v), .. pa1 (B]0) , pr2 (0]0) , .., p2 (B]0) , ., p1s (B]v) , .. pys (1)
So

L(y|0) = Zln </eXpLi (y'10,v) d® (v)) .

For deriving the design criterion below we use this formula.

3.1 Design criterion
The design criterion is typically based on local D-optimality and defined as
D (X,0) = [det I (X,0)]"/*, (12)

where d denotes the dimension of the information matrix I (X,#). This crite-
rion is called local because it depends on the true parameter value # and ”D”
comes from determinant. Other criteria can also be considered; see Kessels et
al. (2006).

The design criterion depends on the information matrix, so next we derive
this. The information matrix is

{aL (y/6) DL <y|0>} . [aﬁ (v']0) O£ W)]
00 o6’ 00 o6’

I1(X,0)=E

because y*, i = 1,...,n, are assumed to be iid, where

L (y'0) =In </ exp L; (y'|0,v) d® (v))
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is the log-likelihood corresponding to i. Therefore,

(X.8)=n. ZPr Oﬁ(y 16) OL (v \9)]’

00 o0’
where the summation is according to all possible J° values of 3*; Pr (yl) is the
probability that the choice vector y* occurs, that is,

/HHpj;S (6]v) d® (v).

s=1j=1

Note that this is identical to I; (y|¢) from (10).
In order to derive the information matrix we need the first order derivative
of the log-likelihood corresponding to i:

O ([ exp L; (y'|0,v) d® (v)) / 9 (exp L; (y']0,v)) % (v)

oL (y'|6) _ 90 _ 00
a0 [ exp L; (y?]0, v) d® (v) [ exp L; (v]0,v) d® (v)
where recall L; (y'|0,v;) = (yi)/lnp(H\vi). Of this,
‘ ‘ oL; (y'0,v ;
0 (exp L; (yl|9,v)) 0L, (yl|9, v) L (410 0) — % exp L; (y'|0, U)
06 A 2 VAl WY (y'16, ) .
—pe P L; (y'16,v)

The first order derivatives

OL; (yﬂ&,v)_ OL; (yi|9,v) /_ Olnp (0)v;) /Z
a0 - By - By y

Split the probability vector p (f|v;) into the probability vectors corresponding
to the choice sets, so

Inpey (0lvs)
Inp (Olv;) = : ,
Inpg (0]v;)

where p(5) (0[vi), s = 1,...,S, are the probability vectors corresponding to

choice set S, SO
Olnp(y)(0]v;)
Olnp (0lv;) o
o0’ N :
alnp(s)(9|’l)i)
00’
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and

00 00 00’

L) _( (D@ (O O )

By Sandor (2001, p.9)

dlnp (Ovi) pl p(s)
06’ ) g
where P, is the diagonal matrix of p(,) and for simplicity we omitted the
argument (0|v;). Let us particularize to . Then we obtain,

Ip(s)
B = (P(S) _p(s)p,(s)> X(s),
SO
Olnpy (Olvi)
——@r——ZQQ@@—Mmﬁ)&wZOQ—%Mﬁ)&w
hence 5 Ol )
lnp(s) 0 V;
< o5’ ) =Xy (T =2(s)
and
oL; (yi|9, v) .
oB - (‘WD<QU_p®%D> X@)O@)‘Ma%a))y
Iy = Pyt 0
_ ( X(y o X ) J
0 I(s) = p(s)4s)
= X/ (I - Bl) yl7
where
POy 0
0 P(s)l(s)

In a similar way, we can derive

OL; (yi|9,v)

=VX'(I - By
do
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Consequently,
0 (exp L; (yi\ﬁ,v)) B X' (I — B;)y'exp L; (yi\ﬁ,v)
00 B VX' (I - B;)y'exp L; (y'|0,v)
I i i
= (V) xa-Bemyer (o).
and

I / i i
Y (yl|9) ) /( “// >X (I —B(0)v))y"exp L; (y |9,v) d® (v)
00 [ exp L; (y']0, v) d® (v) ’

(13)

Since this expression is in vector-matrix form, it is easier to program (in Gauss
or Matlab) than the one provided by Bliemer and Rose (2010), which uses
sums.

3.2 Estimation of the design criterion

The design criterion cannot be computed exactly, so it needs to be esti-
mated/approximated. Recall that the design criterion is D (X, 0) = [det I (X, 9)]1/ d

where
1(X,0)=n- ZPr [ac 'lo) oc (v ‘9)] . (14)

00 00’

Estimation of I (X, ) involves estimation of the integrals in BLE%| ) and the
sum over all possible realizations of y?. The number of these possible realiza-
tions is J°, which in typical practical examples has the magnitude of several
thousands (e.g., 2! = 32768 in the case of 15 choice sets with 2 alternatives
or 319 = 59049 in the case of 10 choice sets with 3 alternatives).

The integrals involved in BL%‘G) can be estimated by one of the commonly
used methods (Monte Carlo, quasi-Monte Carlo or Gaussian quadrature using
sparse grids). The sum over y* typically contains excessively many terms, and
therefore, we also estimate it by Monte Carlo simulations. To do this, we draw
from the discrete distribution of the y*’s. In order to accomplish this, first for
each consumer ¢ we draw v;, the standard normally distributed random vector
that determines the random coefficient of respondent i. Once we know v;, the
choices of ¢ across the choice sets become independent; in choice set s the
choice (i.e., yj»s, j =1,..,J) can be obtained as one multinomial draw with
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probabilities pjs (8|v;), j = 1,...,J defined in (9). If we denote these draws

by ﬂ;s and let 7' = <§§S>j:1 Nt and obtain a sample ( ”)Tzl _ p of such

s=1,...,

replicated draws, then a Monte Carlo estimate of I (X, ) is

RZ

zr‘e aﬁ( zr‘e)
o6’

4 Quasi-Monte Carlo sampling

We use two different types of quasi-Monte Carlo samples. The first type is
a randomized (¢, m, s)-net and the second type is a randomly shifted lattice.
They are both samples from [0,1)® and they are meant to replace in the
Monte Carlo estimator pseudo-random draws from the uniform distribution
on [0,1)® in order to estimate integrals on [0,1)®. These samples are random-
ized versions of deterministic sequences. There are several quasi-Monte Carlo
samples available in the literature; the reason for using exactly these is that
they perform relatively well in the estimation of multivariate normal proba-
bilities (Sédndor and Andrés 2004). We mention below only the most essential
features of these; for more details we refer to Sandor and Andras (2004) and
the references therein.

4.1 Randomized (¢, m, s)-nets

A (t,m,s)-net in base b is a set of ™ points from [0, 1)® that satisfy certain
equidistribution property, namely that all subintervals of [0,1)® of a certain
type contain a given number of points of the sequence. This equidistribu-
tion property ensures that the sequence approximates closely the continuous
uniform distribution on [0,1)%. (¢,m, s)-nets are deterministic, so we need to
randomize them. We use a method that randomizes these numbers from the s-
dimensional unit hypercube by permuting their digits in base b representation
such that the permutation depends on the coordinate j € {1,...,s} and the
order of the digits in base b representation. By this randomization one obtains
vectors whose elements are from the set {O, bim, blm, o b 1 } In order to make
these coordinates uniform random on [0, 1), we add to them Zﬁi, where u;; is
uniform random on [0, 1). This way we obtain randomized (¢, m, s)-nets that
inherit the equidistribution property of the original nets and contain points
that are uniformly distributed.
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4.2 Randomized good lattice points

The simplest type of lattice points s-dimensional vectors

o (L ) i otn 1 a9

where n is the number of lattice points, ¢ is a positive integer relative prime
with n, and the symbol {x} means the fractional part of the number z. Lattice
points are easy to generate, provided that we know ¢. Procedures for obtaining
appropriate ¢ values are based on minimizing the worst-case integral error.
This criterion is based on the Fourier series representation of the integrand.
Fourier series are helpful in expressing the integration error of lattice points
because lattice points are especially suited for integrating periodic functions,
or, more precisely, functions that admit a continuous periodic extension.

Randomization of lattice points is typically done by random shifting. A
randomly shifted lattice has the points

. . . 871
2; = <{1+u1},{ﬂ+u1},...,{zq —i—u}) for i =0,1,...,n—1, (16)
n n n

where uy,...,us are independent random uniform numbers on [0,1). These
randomly shifted lattice points can be regarded as having been drawn from
the uniform distribution if we replace i by 7 (7) in (16), where 7 is a random
uniform permutation of 0,1,...,n — 1.

The lattice points perform better if they are transformed by the so-called
baker’s transformation ¢ (z) = |2z — 1| (that is, each coordinate of each point
is transformed). This in fact transforms the integrand function into a function
that has a continuous periodic extension, so it is expected to improve the
performance of the lattice points.®

5 Simulation studies

The motivation of the simulation studies, as mentioned in Section 4, is to find
out if quasi-Monte Carlo sampling can improve the precision of the objective
function simulator, and if so, what the gains are in terms of precision and
computing time. In the simulation design we intend to come as close as possible
to reality.

®Gauss-codes for generating the samples are available from the author.
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5.1 Random coefficient logit with demographic characteristics

There are some common ingredients in the data generating processes (DGP’s)
that we use for the two models. In both models K = 5, which is the number of
random coefficients, the characteristics are generated as xj1 = 1, xj2, ..., xj5 ~
U 0,1}, & ~ N (0,0.25). The true parameters are b = (-6, —1,1,1, D', o=
... = 05 = 1. The true market shares are computed by MC with 10,000 pseudo-
random draws.

In all cases considered we generate randomly 11 data sets and across all
the different simulation studies these are constructed by the same random
number generating seeds. We compare the performance of four samples: two
pseudo-random samples of size N and r x N (denoted MC and MCr), a digital
(0,m, s)-net (denoted Net) and lattice points with the bakers’s transformation
(found to be the best in estimating normal probabilities by Séndor and Andrés
2004, denoted Lat in the tables) of size (approximately) N. In order to mea-
sure the performance we estimate the bias, standard deviation (SD) and root
mean squared error (RMSE) of the objective function estimates by using 100
replications of the objective function estimates. Across all the different simula-
tion studies we construct the samples based on the same 100 random number
generating seeds. Out of the 11 cases we only present three cases for each
simulation study. These correspond to the minimum, median and maximum
of the ratios of RMSEpNe/RMSEycy. In all cases when we use lattice points
we chose the parameter value ¢ = 1571 from those given by Hickernell et al.
(2000). We use this value for all sample sizes and dimension values.

For this model we consider two different data generating processes (DGP’s)
that differ in the dimension L and number of support points ny, h=1,..., L,
of the demographic characteristics. In both DGP’s we use J = 100, we assume
that d;, has support of nj values generated from N (0,4), where ny will be
specified below. For the sample size we take N = 512.

In the first DGP we take L = 5, ny = 30 and ny = ... = ns = 3. For the
coefficients of the demographic characteristics we take I' = diag(1,1,2,2,2).
The results are summarized in Table 1. In this case the sample sizes differ
slightly due to the fact that there is no (0,m, s)-net of size exactly 512 and
dimension 10. Instead we use a (0,2,10)-net in base 23, which is of size 529.
From the results we can see that the estimates of the objective functions
obtained by the samples Lat, Net and MC6 appear to be fairly precise. In
general, the estimates of the objective functions tend to be upward biased. We
can also see that a smaller SD corresponds to smaller bias.
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Table 1. Random coefficient logit with multiple demographic characteristic

Sample Size Min{ M } Median{ M } Max{ % }
RMSEncs RMSEpcs RMSFEnce
True value=0.2587 True value=0.3040 True value=0.2835
Bias SD RMSE Bias SD RMSE Bias SD RMSE
MC 529  0.3234 0.4705 0.5709  0.0509 0.0619 0.0801 0.0478 0.0511 0.0700
Lat 512 0.0152 0.0167 0.0226  0.0124 0.0121 0.0173 0.0223 0.0207 0.0304
Net 529  0.0187 0.0180 0.0260  0.0093 0.0114 0.0147 0.0261 0.0190 0.0323
MC6 3072 0.0377 0.0501 0.0627  0.0095 0.0134 0.0164 0.0186 0.0173 0.0254
Notes. (i) The minimum, median and maximum of the RMSE ratios are computed from

11 randomly generated realizations.

(ii) The RMSENet/RMSE N ce values are 0.41, 0.53, 0.84, 0.86, 0.87, 0.90, 0.98,
1.21, 1.22, 1.23, 1.27.

(iii) The RMSEq1/RMSEce values are 0.36, 0.75, 0.78, 0.81, 0.90, 1.06, 1.07,
1.20, 1.26, 1.42, 1.45.

Regarding the performance of the samples, Net has a better performance
in the median case than the other samples by having both SD and RMSE
the smallest. When the ratio RMSEne/RMSEpce is minimal, Lat is the
best, while when it is maximal, MC6 is the best. In all cases presented, the
other three samples clearly outperform MC. The overall relative performances
can be assessed from the values of the ratios RMSENe/RMSEpNcs and
RMSErq/RMSEce in the Notes at the bottom of the table. According to
these, Net outperforms MC6 seven times, so we can say that Net performs at
least as good as MC6 in this example. This implies that by using a (0, 2, 10)-
net in base 23 instead of a pseudo-random sample of size 3072, in order to
achieve the same precision of the objective function estimate, we can reduce
the computing time by about 83%. According to the values of the ratios, we
can also conclude that the lattice sample has a performance comparable to
MC6.

In the second DGP we take L = 1, n; = 2000 and I' = 1. Such a case, in
which there is one demographic characteristic with very many possible values,
covers the situation when the demographic characteristics are dependent and
the researcher has information about their joint discrete distribution (as we
mention in a footnote on page 89).

The results are summarized in Table 2. In this example we use a (0, 3, 6)-net
in base 8, which is of size 512. We note that a sample of this type was found to
be the best by Sandor and Train (2004) among several different samples. The
larger pseudo-random sample has size 1536. The estimates of the objective
functions appear to be more precise than in the previous example.
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Table 2. Random coefficient logit with one demographic characteristic

Sample Size Min{ M } Median{ % } Max{ M }
RMSEnc3 RMSEnc3 RMSEnc3
True value=0.2616 True value=0.2009 True value=0.3362
Bias SD RMSE  Bias SD RMSE Bias SD RMSE
MC 512 0.0065 0.0074 0.0098  0.0073 0.0110 0.0132 0.0068 0.0113 0.0131
Lat 512 0.0024 0.0041 0.0047  0.0028 0.0061 0.0067 0.0081 0.0144 0.0165
Net 512 0.0016 0.0020 0.0026  0.0015 0.0046 0.0049 0.0023 0.0077 0.0080

MC3 1536  0.0025 0.0038 0.0045  0.0023 0.0043 0.0048 0.0026 0.0056 0.0062

Notes. (i) The minimum, median and maximum of the RMSE ratios are computed from
11 randomly generated DGP realizations.
(ii) The RMSENet/RMSE N cs values are 0.57, 0.73, 0.79, 0.85, 0.89, 1.01, 1.02, 1.06,
1.15, 1.21, 1.30.
(iii) The RMSELqt/RMSEcs values are 0.46, 0.78, 0.84, 0.84, 1.04, 1.13, 1.21, 1.29,
1.38, 2.68, 3.09.

The results in Table 2 imply that Net has a performance much better than
MC. In the median case its performance is very similar to that of M(C3 and
better than Lat. Based on the RM SEnci/RMSEjpcs ratios, the two samples
have rather similar performances. This implies a computing time reduction of
about 66% by using a (0, 3, 6)-net in base 8 instead of a pseudo-random sample
of size 1536. According to the values of the ratios RMSFEr./RMSEcs, we
can conclude that the lattice sample has a performance just slightly poorer
than MCS.

5.2 Random coefficient logit with limited consumer informa-
tion

For this model, besides the variables specified at the beginning of this section,
we take J = 20, K =5, L = 1. The probability that affects whether consumer
1 observes product j is specified as

oy - exp(ity)
¢ (i) = 1+ exp (yit;)’

where v; ~ N (—1.5,1), so 8 = (—1.5,1) and t; are generated as U [0,1], j =
1,...,J. We take 039 = (—1,1.5) for the fixed value of the parameter used
for the importance sampling probabilities. We use a (0,2,26)-net in base 32,
which has size 1024, while the larger pseudo-random sample has size 2024.
The results are presented in Table 3.

Table 3. Random coefficient logit with limited information
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MSE MSE MSE
Sample Size Min{ M } Median{ m } Max{ M }
RMSEpnc2 RMSEnc2 RMSEpnc2
True value=0.1594 True value=0.3209 True value=0.2240

Bias SD RMSE Bias SD RMSE Bias SD RMSE
MC 1024  0.0280 0.0337 0.0438  0.0252 0.0487 0.0549 0.0116 0.0263 0.0287
Lat 1024 0.0275 0.0884 0.0926  0.0144 0.0419 0.0443 0.0203 0.1028 0.1048
Net 1024  0.0190 0.0208 0.0282  0.0164 0.0339 0.0377 0.0065 0.0248 0.0256
MC2 2048 0.0258 0.0381 0.0460  0.0222 0.0379 0.0440 0.0069 0.0105 0.0125

Notes. (i) The minimum, median and maximum of the RMSE ratios are computed from
11 randomly generated DGP realizations.
(ii) The RMSENet/RMSE ¢4 values are 0.61, 0.63, 0.72, 0.73, 0.83, 0.86, 0.97, 1.20,
1.21, 1.35, 2.04.
(ili) The RMSEL4t/RMSEp ¢4 values are 1.01, 1.50, 1.97, 2.01, 2.02, 2.16, 2.43, 2.57,
3.02, 5.26, 8.36.

The results in Table 3 imply that Net has a performance clearly better than
MC. In the median case its performance is very similar to that of M(C2 and
better than Lat, which has a surprisingly poor performance. In fact, according
to the values of the ratios RM SEpq:/RMSFEyco, the lattice sample has a per-
formance poorer than MC3 in all cases. Based on the RMSEne/RMSEnco
ratios, Net outperforms MC2 in 7 out of the the 11 cases considered. This
implies a computing time reduction of at least 50% by using a (0,2, 26)-net in
base 32 instead of a pseudo-random sample of size 2024.

5.3 Design for the panel mixed logit

We consider a design of type 3*/2/15, that is, with S = 15 choice sets,
J = 2 alternatives in each set with four attributes, each attribute having
three levels: 1, 2, 3. We use effect coding that assigns [1 0], [0 1], [-1 -1]
to the levels 1, 2, 3, respectively. We assume that the true parameters are
B=[10-10-10-10,6=[101010 1 0]'.We construct nine
such designs by the swapping (Huber and Zwerina 1996) and cycling (Sandor
and Wedel 2001) algorithms using randomly generated starting designs. For
each design we evaluate the design criterion (12) in the way described in Sec-
tion 3.2. For the integrals (13) involved in the design criterion we use a (0, 3, s)-
net in base 4. We estimate the sum from (14) by a (0, 2, s)-net in base 19, which
has size 361, and pseudo-random samples of size 361 and 650. For computing
the true values we used a sample of size 100,000. The results are reported in
Table 4.
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Table 4. Design criterion estimation for the panel mixed logit

RMSE RMSE RMSE
Sample Size Min{ Lo Net } Median{ Lo Net } Max{ O Net }

RMSEnN 2 RMSEnN 2 RMSEnN 2
True value=1.497 True value=1.559 True value=1.580
Bias SD RMSE Bias SD RMSE Bias SD RMSE
MC 361 -0.033 0.066 0.074 -0.035 0.064 0.073 -0.039 0.060 0.072
Net 361 -0.019 0.045 0.049 -0.022 0.047 0.052 -0.028 0.047 0.055
MC2 650 -0.013 0.050 0.052 -0.019 0.049 0.053 -0.022 0.047 0.052

Notes. (i) The minimum, median and maximum of the RMSE ratios are computed from
9 randomly generated DGP realizations.
(ii) The RMSENet/RMSE N2 values are 0.95, 0.96, 0.97, 0.99, 0.99, 1.02, 1.02,
1.02, 1.06.

The first impression from the results is that all estimates are rather precise
and have rather small downward bias. Net improves on the performance of
MC only slightly; its performance is close to that of the pseudo-random sample
MC?2 of size slightly less than double. The RM SEn¢;/RM S Ejyco ratios in the
Notes below the table show the similarity of Net and MC2. We can conclude
that the reduction in computing time is about 45%.

6 Conclusions

This paper presents results on how quasi-Monte Carlo methods ((¢,m, s)-nets
and lattice points) perform for estimating large sums. The terms of these large
sums typically contain analytically intractable integrals so that computing the
sums exactly is computationally unfeasible. The paper concludes that quasi-
Monte Carlo methods offer significant advantages in terms of computation.
Specifically, (0,m,s)-nets used in this paper yield reductions in computing
time relative to pseudo-random draws that range between 45-83%.

When the terms of the large sums are integrals, then it is possible to express
the sum as one integral having dimension higher than the original integrals.
In such cases the performance of the quasi-Monte Carlo methods compared to
pseudo-Monte Carlo is better due to the joint treatment of the variables of the
obtained integral (see the results reported in Sections 5.1 and 5.2. The design
criterion for the panel mixed logit model is a large sum of expressions that are
nonlinear in several integrals, so its estimation makes only limited use of the
advantages offered by quasi-Monte Carlo samples.
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