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Abstract. Finding frequent sequential patterns has been defined as find-
ing ordered list of items that occur more times in a database than a user
defined threshold. For big and dense databases that contain really long
sequences and large itemset such as medical case histories, algorithm pro-
posed on this idea of counting the occurrences output enourmous number
of highly redundant frequent sequences, and are therefore simply imprac-
tical. Therefore, there is a need for algorithm that perform frequent pat-
tern search and prefiltering simultaneously. In this paper, we propose an
algorithm that reinterprets the term support on text mining basis. Exper-
iments show that our method not only eliminates redundancy among the
output sequences, but it scales much better with huge input data sizes.
We apply our algorithm for mining medical databases: what diagnoses
are likely to lead to a certain future health condition.

1 Introduction

The main goal of any data mining process is to find novel, interesting pat-
terns. In the last two decades, data gathering has been accelerated, which
brought the attention of data scientists from pattern or association oriented
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knowledge discovery to transition analysis or sequential data mining, which
is a generalization of the former task. Sequential data mining has become an
important task in many real-life applications, e.g. real-time recommendation
systems, health care service optimization, fraud detection.
In the known data mining publications, absolute and relative frequencies

(called support) have been used as the sole criterion in selecting patterns,
while significance or interestingness have been addressed by different solu-
tions. Published solutions suggest to calculate frequent and interesting pat-
terns independently first, and to combine solutions into a resulting set later.
This approach implicitly states that frequency is more important than signif-
icance, or more accurately: significance is taken into account if and only if an
interesting pattern is frequent enough.
Note that, the two properties strongly correlate:

• if minimum frequency (threshold for support) is set too high, then in-
teresting patterns might be omitted

• if minimum frequency is set too low, then the most of the found patterns
are trivial, particular cases of others, or they are uninteresting otherwise

• there is no known golden rule how to set frequencies properly.

So independent processing guarantees information loss. Moreover, consider
the following situation: there are known transactions (baskets with purchased
goods) in a supermarket. Well-known pattern mining algorithms reveals fre-
quent patterns about beers, cheese, and dumpers, however, the real profit is
made from high-end products like branded whiskeys or top smart phones. Since
there are a relatively few number of most profitable customers who purchase
expensive goods, data mining algorithms do not discover the most significant,
profitable customer needs, because they focus on frequent, mass products only.
From another point of view, if we consider that the baskets are textual

documents and items are words, then well-known pattern mining algorithms
would identify the most frequent words in all documents, and later on they
would deal with those too frequent in all documents. As it is expected it
would find tons of uninteresting patterns extremely slowly, while significant
ones are completely missed. Since there are very efficient document indexing
methods like TF-IDF [12] to handle this problem properly, our approach aims
at adapting fundamental ideas from information retrieval techniques to boost
sequence mining algorithms’ performance.
Significance, interestingness, or relevance are vague notions. The most com-

mon definition is as follows:
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Definition 1 (Absolute significance) A data mining pattern P is said to
be absolutely significant if P is previously unknown, and there exists a null
model Z for which Pr(P) is statistically relevant.

In this paper, we argue on that significance cannot be separated from the
item or itemset we are analyzing at the time, i.e. there is or at least there shall
be a fix point, a point of view to capture this notion properly.

Definition 2 (Relative significance) A data mining pattern P is said to be
relatively significant regarding an item I if I ∈ P, P is previously unknown, and
there exists a null model Z for which Pr(P|I) is statistically relevant.

While our approach is more restrictive, it is easy to prove that absolute
significance can be addressed by relative ones. In this paper, we introduce a
novel algorithm called REVIEW (RElevance from the items’ point of VIEW),
a point of view oriented sequence mining algorithm, which finds all frequent
and significant patterns in polynomial time. In addition, we also prove that
REVIEW finds the most likely anti-patterns in a hand, i.e. those items, which
tend to mutually exclude each other in itemsets. This property is beyond the
capabilities of state-of-the-art algorithms.
The paper is organized as follows. In Section 2, we review the most important

sequence mining algorithms and show an example of their scalability issues.
We also overview the alternative definitions of importance that exist in the
literature. Section 3 gives the elementary definitions of sequence mining: items,
itemsets, sequences, sequence databases, and gives illustrative examples for
the definitions. The algorithm we propose for finding frequent and important
patterns is defined in Section 4. Empirical comparison is given in Section 5,
our algorithm algorithm is tested on a real-life health care database against
PrefixSpan and SPADE, the two fastest algorithms in the literature. Finally
in Section 6 a brief summary is given.

2 Related work

In this section, we give an overview of the most important frequent sequential
pattern mining algorithms: GSP, PrefixSpan, SPADE and SPAM. In the liter-
ature several other algorithms exist as well, however, those can be considered
as the variants, extensions of the ones presented here. We also discuss the
performance problems that arises when the size of the input database grows.
In the literature, there are a lot of alternative definitions for importance, we
review these definitions.
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2.1 GSP

The GSP algorithm proposed by Srikant and Agrawal in [13] is built on the
pattern of the a priori algorithm. First, it scans the database and counts the
support of each item, detects all single item frequent sequences. Then in each
subsequent pass a candidate generation and candidate counting takes place.
Candidate generation uses the frequent sequential patterns of the previous
pass: if removing the first element of a frequent sequence and removing the
last element of another frequent sequence are the same, then the two sequences
are joined and a new sequence with one more item is created. The candidate
counting scans for each new sequence in the database counting the occurrences,
and the ones with support greater than the user defined minimum support
are retained as frequent sequences of the pass. The candidate generation and
candidate counting are repeated until no frequent sequences are found.

2.2 PrefixSpan

PrefixSpan proposed by Pei et al. [8] is also based on the frequent pattern
growth principle like GSP, however, it does not perform the search on the entire
database for each candidate sequence, but on smaller projected databases.
The sequence database is partitioned based on the itemsets of each frequent
sequence of previous passes such that all sequences that support the frequent
sequence are within the partition and the sequences not supporting are not.
If several frequent sequences share the same itemset, then those use the same
database partition. The hypothesis is that the support of a frequent sequence
that is one item longer can be calculated on that partition as outside of that
partition it is not supported. New candidate sequences are generated only
locally by combining sequences that use the same partition. This method is
a significant speed improvement over GSP as database partitions are smaller
and because of the shared itemsets candidate counting does not need to be
performed for each frequent sequence, but only for shared prefixes.

2.3 SPADE

SPADE (Sequential PAttern Discovery using Equivalence Classes) proposed
by Zaki [15] aims to reduce the number of database scans and minimize com-
putational costs. During the database scans frequent sequences of length one
and two are searched for and their support is counted. The algorithm main-
tains an id-list for each item where each element of the id-list is a pointer to a
sequence id and an itemset the item occurs in. Candidate sequences with one
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more item are generated with temporal joins or intersections on the id-lists of
frequent sequences of maximum length, the support is calculated in the mem-
ory, and the new sequence is frequent if the cardinality of the resulting id-list
is greater than the minimum support value. Frequent sequences are clustered
into smaller sub-lattices based on common prefixes that enables independent
processing.

2.4 SPAM

SPAM (Sequential PAttern Mining) proposed by Ayres et al. [3] assumes that
the entire sequential database can completely fit in the memory and no se-
quences are longer than 64. The hypothesis is that frequent sequences can be
found in the lexicographic tree with a simple depth-first search. Each sequence
is represented with a vertical bitmap, if an item appears in a sequence then
the corresponding element of the bitmap is set to one. Itemsets are generated
with a bitwise and operation on the vectors of the items. Candidate sequences
are generated with depth-first search from bitvectors of previous sequences
and the vector of a next item in the lexicographic tree such that a bitwise and
operation is performed on the two vectors, the candidate is frequent if it has
more ones in its bitvector than the minimum support. The algorithm is fast,
but very limited with regard to the input database.

2.5 Performance issues

In [7], Gouda and Hassaan argue that typical sequential pattern mining algo-
rithms tend to lose their efficiency when applied to a dense database. Their
experiments confirm that the execution time increases exponentially as the
number of frequent sequences increases even when the execution times in their
experiments remain in the order of a few hundred seconds.
We conducted similar experiments on a subset of a medical database cov-

ering 23856 out of 455514 that is about 5% of the patient data. The average
length of sequences related to a patient is 307 in that sample, the average
sequence size is 10.88 itemsets. The relative or absolute minimum support
thresholds were set so that the number of occurrences of a frequent sequence
were at least 30.
Figure 1 shows how PrefixSpan and SPADE that are the sequential pattern

mining algorithms considered to be the fastest in the literature scale as we
consider longer sequences from our sample set. In the experiments, we used the
reference implementations available in the SPMF library [4]. The horizontal
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(a) Sequence length vs. execution time (b) Sequence length vs. frequent se-
quences

Figure 1: The maximum length in a sequence database vs. the execution time
and the number of frequent sequences for the two fastest sequential pattern
mining algorithms, PrefixSpan and SPADE

axes show the maximum length of sequences used in the mining process. The
sequence lengths considered in the experiment were 5, 10, 20, 40, 60 and
80. Note that these values are still far away from 300 that is the average
length in our dataset. In Figure 1a, the vertical axis is the execution time of
the algorithm in milliseconds in logarithmic scale. In Figure 1b the vertical
axis is the number of frequent sequences detected in logarithmic scale by the
algorithms that are proportional to their memory and disc space usages.
The results not surprisingly show that the algorithms fail to produce usable

results. The algorithms do not scale with the average length. The time, memory
and disk space requirements are exponentially proportional to the length of
the input sequences.

2.6 Significance

A general idea to find interesting patterns is widely discussed in the literature.
A very detailed description on different aspects of significance is found in
[10, 6]. According to Geng et al. [6] definition interestingness can be broken
down into the following categories:

• Conciseness. A pattern is concise if it contains relatively few attribute-
value pairs, while a set of patterns is concise if it contains relatively few
patterns.
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• Generality/Coverage. A pattern is general if it covers a relatively large
subset of a dataset.

• Reliability. A pattern is reliable if the relationship described by the pat-
tern occurs in a high percentage of applicable cases.

• Peculiarity. A pattern is peculiar if it is far away from other discovered
patterns according to some distance measure.

• Diversity. A pattern is diverse if its elements differ significantly from
each other, while a set of pattern is diverse if the patterns in the set
differ significantly from each other.

• Novelty. A pattern is novel to a person if he did not know it before and
are not able to infer it from other known patterns.

• Surprisingness. A pattern is surprising (or unexpected) if it contradicts
a person’s existing knowledge or expectations.

• Utility. A pattern is of utility if its use by a person contributes to reaching
a goal.

• Actionability or Applicability. A pattern is actionable (or applicable) in
some domain if it enables decision making about the future actions in
this domain.

Some of these notions correlate, some are subjective, some are objective, and
some depends on the semantics, but they share a common feature: all of them
use some kind of statistical relevance metrics to describe a particular meaning
of interestingness. That is why we used the notion significance in Definition 1
as a union of these possible meanings where Pr(P) corresponds to the proper
relevance metrics depending on the use case. Note that, Pr(P) is a statistical
function but how to calculate is undetermined in general; it can be adapted to
the problem specific needs. Later on this paper, we use the term significance
measure for Pr(P). Table 1 summarizes the most common significance measure
in sequential pattern mining [6].

3 Preliminaries

In this section, we give preliminary definitions necessary for the formalization
of the problem statement: the definition of the frequent sequential pattern
discovery and the definition of relevant pattern discovery.
Throughout this paper, we use the following conventions:

• sets and elements of sets are denoted by capital letters and lower case
letters, respectively,
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Measure Formula

Support Pr(AB)

Lift/Interest
Pr(B|A)

Pr(B)
or

Pr(AB)

Pr(A)Pr(B)

Interestingness Weighted Dependency

((
Pr(AB)

Pr(A)Pr(B)

)k

− 1

)
Pr(AB)m

Added value Pr(B|A) − Pr(B)

Relative risk
Pr(B|A)

Pr(B|¬A)

Mutual information
∑

i

∑
j Pr(AiBj) log2

Pr(AiBj)

Pr(Ai)Pr(Bj)

−
∑

i Pr(Ai) log2 Pr(Ai)

Certainty factor
Pr(B|A) − Pr(B)

1− Pr(B)

Conviction
Pr(A)Pr(¬B)

Pr(A¬B)

Odds ratio
Pr(AB)Pr(¬A¬B)

Pr(A¬B)Pr(¬AB)

Yule’s Q
Pr(AB)Pr(¬A¬B) − Pr(A¬B)Pr(¬AB)

Pr(AB)Pr(¬A¬B) + Pr(A¬B)Pr(¬AB)

Cosine
Pr(AB)√

Pr(A)Pr(B)

Table 1: Some probability based objective measures for data mining[6]

• itemset and items are taken from the beginning of the latin alphabet,

• |X| denotes the size of X where X is a set of attributes or itemsets,

• we use R, S symbols for database relations defined as subsets of a Carte-
sian products, and r, s . . . for tuples, records or elements of a relation. If
r ∈ R and R ⊆ A × B then r(a, b) is short form to say a ∈ A, b ∈ B,
and r[A] = a, r[B] = b where r[X] stands for the attribute values of r on
attribute set X (projection in relational database theory),

• identifiers are denoted by letters near I,

• � and ⊥ stand for logical values true and false, respectively,

• T, t are used for time related sets and variables, respectively,
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patient 1 patient 2 patient 3 patient 4

I T A I T A I T A I T A

1 234 a 2 57 f 3 186 h 4 33 a
1 234 b 2 63 g 3 186 i 4 93 k
1 234 c 2 74 g 3 186 a
1 234 d 2 78 e 3 186 j
1 237 e 2 78 g 3 186 e

3 199 a
3 199 e

Table 2: A small anonymized piece of the database

• we also introduce the symbol DR(X), which denotes the domain of an
attribute set X in a relation R, i.e. DR(X) = {r[X]|r ∈ R}.

Let the input database be defined as follows, the definition is analogous to
the one in [15].

Definition 3 (Sequence database) Let A = {a1, a2, . . . , an} be a finite set
of items, where n ≥ 1, T is a non-empty set of timestamps, and I is a non-
empty set of unique identifiers. Let a relation R be defined over I × T × A,
i.e. R ⊆ I × T × A, then R is a sequence database. For simplicity and better
understanding, we use the notion R(ITA) to express R is determined by sets I,
T , and A, i.e. R ⊆ I × T × A in that order. If |I| = 1 in a sequence database
R(ITA), then R is called a sequence database.

Example Table 2 shows a small set of records from the anonymized health
care database we use in this paper. The columns of the table reflect relation
R. The twelve columns of the table are organized into four groups of three
columns. Each column group represents a patient. The first column in a group
is a patient identifier, the real identifier is replaced with an integer number.
The second column in a group is a timestamp, the real date is replaced with
an integer number. The third column in a group contains the items, the real
treatment codes are transformed to letters of the alphabet.

Definition 4 (Ordering of items) Let a binary relationship ≤: R × R →
{�,⊥} be defined on sequence databases such that the ordering of elements of
R is determined by the natural ordering over T . ≤ is an ordering, i.e. it is
transitive, antisymmetric, reflexive, and total. For simplicity, we also use ≤
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on relations such that if S1, S2 ⊆ R and S1, S2 �= ∅, then S1 ≤ S2 if and only if
∀s1 ∈ S1∀s2 ∈ S2 : s1 ≤ s2.

In other words, ordering of items in sequence databases are based on time
related attributes. If time representation in sequence database does allow a
clear distinction between when two events have happened, then we assume
they are simultaneous events.

Definition 5 (Sequence) Let R(ITA) be a sequence database, and S =
< S1, S2, . . . Sn > be defined as an ordered set of relations where ∀i :
1 ≤ i ≤ n =⇒ Si ⊆ R such that

Si, Sj ∈ S : 1 ≤ i < j ≤ n =⇒ Si ≤ Sj,¬Sj ≤ Si.

We say S is a sequence if and only if

∀r, s : r ∈ Si, s ∈ Sj =⇒ r[I] = s[I]

∀r, s :
(
r ∈ Si, s ∈ Sj =⇒ r[T ] = s[T ]

) ⇐⇒ i = j

for all Si, Sj ∈ S. Since the identifiers are the same in the sequence, and
there are itemsets that share the same timestamps, we use the representation
S =< Atk , . . . , Atl > for better readability where ti ∈ T , where Ati ⊆ A is
a set of elements indexed by their shared timestamps. We also introduce the
following notions:

• |S | = n denotes the length (number of relations) of the sequence,

• U(S) stands for the shared identifier in S,
• and τ(Si) (or τ(Ai)) for the shared timestamp in Si where 1 ≤ i ≤ n.

This means that in sequence S all elements share the same identifier, and
within an Ati itemset the elements are unordered as they are considered to
have occurred simultaneously. If an itemset Ati precedes Atj in S (Ai ≤ Aj),
then all items in Ati precede any item in Atj . We also introduce operators on
sequences to deal with more complex problems.

Definition 6 (Operators on sequences) Let S1 =< Atk , . . . , Atl > and
S2 =< Atm , . . . , Atn > be two sequences defined on R(ITA). We say

• S1 is a proper subsequence of S2 denoted by S1 � S2 if and only if
U(S1) = U(S2) and ∀At1∃At2 : At1 ∈ S1, At2 ∈ S2 =⇒ At1 ⊆
At2, τ(At1) = τ(At2),
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• S1 is a subsequence of S2 denoted by S1 
 S2 if and only if for all a1,
a2, and t1, t2 ∈ T there exist t3, t4 ∈ T such that

a1 ∈ At1, a2 ∈ At2, t1 ≤ t2 =⇒ a1 ∈ At3, a2 ∈ At4, t3 ≤ t4

where At1,At2 ∈ S1, and At3,At4 ∈ S2,

• the union of sequences for which U(S1) = U(S2) denoted by S1 ∪ S2

is defined as an ≤-ordering preserving merge of these sets such that if
At1 ∈ S1, At2 ∈ S2 and τ(At1) = τ(At2) then the resulting At = At1∪At2,

• the intersection of sequences for which U(S1) = U(S2) denoted by S1∩S2

is defined as the largest possible subsequence S in number of items for
which S � S1 and S � S2,

• the difference of the sequences for which U(S1) = U(S2) denoted by S1\S2

is defined as the largest possible subsequence S in number of items for
which S � S1 and there is no S ′ such that S ′ � S and S ′ � S2 if
and only if S1 is not a subsequence of S2. The difference does not exist
otherwise.

• S2 is the prefix cut of S1 by an item a ∈ A denoted by ϕ(S1, a) if and
only if S2 � S1 and if there exists At ∈ S1 such that At is a set for which
a ∈ At then maxAi∈S2

(τ(Ai)) ≤ τ(At). In this paper, we call maximum
cut of S1 by a ∈ A (Φ(S1, a)) the union of all possible prefix cuts of S1

by a ∈ A.

Notice that, there can be many different sequences with the same identifier
according to Definition 5, and there is no sequence with the length of 0. It
is easy to prove that the maximal number of closed sequences in a sequence
database R(ITA) equals to DR(I), hence every closed sequence has a natural
identifier: the elements of set I in our database.

Definition 7 (Closed sequences) Let a sequence S =< S1, S2, . . . , Sn > be
defined on a sequence database R(ITA). We say S is a closed sequence and it
is denoted by S if and only if

∀r∃Si r ∈ R, Si ∈ S, r[I] = U(S) =⇒ r ∈ Si

for some 1 ≤ i ≤ n. The largest possible set of closed sequences in R(ITA) is
called macseq and it is denoted with Σ.
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Example 8 Table 3 shows the records of Table 2 transformed into the form
used for representing sequence databases in the literature. The first column is
the sequence identifier, which comes from the patient identifying I attribute of
Table 2. The second column contains the sequences, where each sequence is a
comma separated list of itemsets shown in braces. The ordering of the itemsets
is determined by attribute T . If the T value is identical for two A items, then
those appear in the same itemset.

I Σ

1 <(a, b, c, d), (e)>

2 <(f), (g), (g), (e, g)>

3 <(h, i, a), (j, e)>

4 <(a), (k)>

Table 3: Relation R transformed to a sequence database

Sequence <(a), (e)> is a subsequence of both the sequence identified by I = 1

and I = 3. In both sequences itemset (a) is a subset of the first itemset, and
(e) is a subset of the second itemset.

The following terms are the foundations for capturing the proper concept
of frequent sequences:

Definition 9 (Support of sequences) We introduce the following support
metrics for a sequence S =< S1, S2, . . . , Sn > defined on R(ITA):

• the support of S denoted by supp : S → [0, 1]:

supp(S) = ||{Si | Si ∈ Σ,S 
 Si}||

||Σ||
,

where ||S|| stands for the number of elements in set S,

• the conditional support of S assuming there is a Si ∈ Σ, which has an
element containing a ∈ A is

supp(S |a) = ||{Si | Si ∈ Σ,S 
 Φ(Si, a)}||

||{Si | Si ∈ Σ,∃At ∈ Si, a ∈ At}||
.

If there is no sequence in Σ that contains a, then let supp(S |a) = 0,
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• the conditional unsupport of S assuming there is a Si ∈ Σ that contains
an item a ∈ A is

supp(S |¬a) = ||{Si | Si ∈ Σ,S 
 Si,∀At ∈ Si : a /∈ At}||

||{Si | Si ∈ Σ,∀At ∈ Si, a /∈ At}||
.

If each sequence in Σ contains a, then let supp(S |¬a) = 0.

Example 10 Table 4 show the support of sequences with length of one based
on Table 3. Items a and e occur in three different sequences. Though g has
three occurrences as well, those are limited to a single sequence.

Σ supp(S)
a 3
b 1
c 1
d 1
e 3
f 1
g 1
h 1
i 1
j 1
k 1

Table 4: Support of items

Theorem 11 Let S1 =< At1 , . . . , Atn >, and S2 =< At1 , . . . , Atn−1
> be two

sequences defined on R(ITA), then

∀a ∈ Atn : supp(S1) ≤ supp(S2|a).

Proof. According to Definition 9, supp(S) equals to number closed sequences
that contain S as a pattern divided by the number of all closed sets. Firstly,
let assume that Atn consists of a single item a. In that case, the numerator
of supp(S1) and supp(S2|a) is the same since S1 equals to S2 followed by
an a. The denominator is different: for supp(S2|a) it is the number of closed
sequences containing a in one of its elements, which must be less or equal than
the number of all closed sequences. As a consequence, supp(S1) ≤ supp(S2|a).
If Atn contains more than one element, then supp(S1) is determined by

the least frequent item in Atn . That is, the numerator of supp(S2|a) must be
greater or equal to one of supp(S1) also leads to supp(S1) ≤ supp(S2|a). �
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4 Relevance base candidate selection

The problem of frequent sequential pattern discovery has been defined in [1]:
Given a set of sequences, where each sequence consists of a list of elements and
each element consists of a set of items, and given a user-specified min support
threshold, sequential pattern mining is to find all frequent subsequences, i.e.,
the subsequences whose occurrence frequency in the set of sequences is no less
than min support. This definition originally targeted the mining of database
transactions, however this very same definition can be applied to a much wider
range of problems. In our case, the set of sequences are identified by attribute
I in the elements of relation R. The elements of sequences are ordered by
attribute T , and hence form a list. As it is possible for elements of R to have
the same t ∈ T value, the elements of that list are not individual items, but a
set of items.
Frequent sequence construction is based on the hypothesis that all subse-

quences of a frequent sequence are frequent sequences themselves, formally if
μ ≤ supp(S), then ∀S ′ 
 S =⇒ μ ≤ supp(S ′) where μ ∈ [0, 1] stands for
min support. This assumption makes it possible to build a lattice of subse-
quences. The lattice can be constructed bottom-up with increasing length on
the pattern of the a priori algorithm or by combining frequent subsequences
already detected based on their prefixes.

4.1 Problem statement

Average Apriori like algorithms are quasi linear whenever the size of frequent
itemsets are small; polynomial in the sum of the size of the input (transactions)
plus output (frequent patterns) [11]. That is, if every shopper buys every item,
the algorithm must output each subset of A items. The basic characteristics
do not change for sequence mining using distributed Apriori-like algorithms
[2], however, the size of the input is multiplied by the length of sequences. In
other words, sequence mining algorithms are exponential for long sequences
or large inputs.
As Figure 1 indicates for the case of sequential databases that contain very

long sequences, an improvement is necessary in the candidate generation for
sequential pattern mining algorithms. Counting the number of occurrences
may be simply infeasible for mining some real life datasets, like in health care
database.
Moreover, interesting patterns are not necessarily frequent ones. If some

items are frequent enough among sequences by themselves independently from
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others, then frequent pattern mining algorithms always include those in almost
all elements of the output, which increases the size of the output, and decreases
significantly the interestingness of such patterns. As a consequence, the prob-
lem is how to improve the computational performance with or by increasing
the interestingness of patterns, or to be more precise: how to improve the
overall performance by pruning non-relevant or independent consumptions.
Consider a database of medical diagnoses; anamneses can easily be con-

structed by building sequences joining diagnoses/treatment by patient iden-
tifiers. Almost all frequent sequences contain diagnoses frequent in the popu-
lation such as flu or hypertension that are not necessarily relevant in general
for the course of the main case. Such items should not be considered when
building frequent sequences and provide a basis for prefiltering. We call the
prefiltered set of frequent sequences frequent-and-relevant sequences.
In this section, we propose a new method for calculating importance metrics,

which combine relevance and support of a sequence when generating candidate
sequences. The basic idea is that candidate generation and prefiltering of the
sequences should take place at the same time to reduce the search space and
hence the computational complexity.
The idea for prefiltering in our support calculation method comes from text

mining where the TF-IDF [12] metric has been successfully used to connect
different documents based on their contents. The sequence metric is similar to
the SIF-IDF metric defined in [9] for protecting sensitive data in databases.
Importance metric of a pattern is derived from two values associated with

two sequences generated by the pattern. For a pattern we maintain two sets of
key-value pairs: one in which support values are calculated on closed sequences
of identifiers that appear in the pattern, and another one set of those that do
not. The former one is called frequent set, the latter is called inverse set. The
normalized rate of relative occurrences of an item in the frequent and inverse
sets is a suitable parameter for that item for filtering when generating a new
candidate sequence.
In the next section, we give the definitions necessary for formalizing this

idea.

4.2 Definitions

Definition 12 (Frequent set of a pattern) Let S be a pattern over a re-
lation R(ITA), and F be a function which maps sequences to a set of a set of
item-number pairs such that

F(S) = {(a, supp(S |a))| a ∈ A}.
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Definition 13 (Inverse set of a pattern) Let S be a pattern over a rela-
tion R(ITA), and F be a function which maps sequences to a set of a set of
item-number pairs such that

F(S) = {(a, supp(S |¬a)) | a ∈ A}.

F(S) and F(S) contain information on each item, e.g. (a, n) ∈ F(S), and
(a,m) ∈ F(S). Notice that, a correlation between values n, m might indicate
relevance. If m � 0 and n ≥ μ then S → a (i.e. S is followed by a) show high
correlation, which means that the presence of S as a series of events highly
suggests a to be happening. If m ≥ μ and n � 0, then S and a show high
inverse correlation, i.e. the pattern of S almost always inhibits the event a to
happen.
Let F(S)[a] = n be a shorthand for the fact that (a, n) ∈ F(S). Let E(F(S)),

Var(F(S)), and Sum(F(S)) be the mean, deviation, and the sum of F(S)[a]
values, respectively, for all a ∈ A.

Definition 14 (Relevance measure) Let Imp be defined as an importance
measure on a sequence S, and a ∈ A item of a relation R(ITA) such that

Imp(S, a) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 if Sum(F(S))Sum(F(S)) = 0∣∣∣∣ F(S)[a]
Sum(F(S)) −

F(S)[a]
Sum(F(S))

∣∣∣∣
max

(
F(S)[a]

Sum(F(S)) ;
F(S)[a]

Sum(F(S)]

) otherwise
,

where |n| stands for the absolute value of a number n. We say S is a relevant
antecedent of a if Imp(S, a) is greater or equal to a certain threshold.

Relevance measure indicates that there is a connection between the fre-
quency and rareness of an item, that is, if an item occurs in every sequence
or that item occurs in no sequences, then relevance is equally 0 according to
Definition 14. Nevertheless, if there is an item a which always appears be-
fore or together with an item b then relevance is 1 because F(S, b) = 1 and
F(S, b) = 0, where S consists of a single itemset that has a single value a

(S =< {a} > for short). By symmetry, if a never occurs together or before
b in any sequences then relevance is still 1 indicating some kind of rejection
or inhibition. For example, those who buy lactose free products will not buy
milk or cheese. Also notice that, relevance both measures frequencies and in-
frequences, which leads to a re-formulation how important an item a regarding
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a preliminary series of events S. That is, it is a potential relative significance
measure (see Definition 2).

Definition 15 (Importance measure) Let Ind be defined as a measure on
S sequences, and a ∈ A items of a relation R(ITA) such that

Ind(S, a) = Imp(S, a) − Ea∈A(Imp(S, a))
Vara∈A(Imp(S, a))

We say S is an import antecedent of a if |Ind(S, a)| is greater or equal to a
certain threshold.

Importance is a normalized value of relevance to measure how much S → a

is unusual. In most of the cases, mean value of relevance shall be about 0,
i.e. occurrences of items are independent in general. Statistically, if absolute
value of the Ind(S, a) ≥ 3 (the triple of the variance), then it is an outlier value
that is usually a strong indicator for a deep connection between variables.
We propose Algorithm 1 for identifying important sequences in the sequence

database R. The inputs of the algorithm are the database R itself, a μminimum
support threshold, and a ν importance threshold. The output is the set of
frequent-and-relevant (important) sequences Σf. In the body of the algorithm,
a loop variable k, the frequent set F(S), the inverse set F(S), and the set of
new sequences Σc are used locally.
The algorithm works as follows. In the initialization phase (line 1), we add

items as sequences of length 1 to the Σf set, if their support is over the min-
imum threshold μ. The main loop iterates over the sequences of maximum
length. First, it removes all elements from the Σf new important sequence set
(line 8). It computes the frequent F(S) and the inverse F(S) sets for the current
S sequence (line 10). If there are candidate postfix items, then we iterate over
it, and filter the sequences with the formula of Definition 15. As threshold, we
utilize ν an importance threshold input parameter (line 11). If the importance
is over that threshold, then that item c is appended to the end of S (line 12),
and the new sequence is added to the important set of sequences (line 13).
The main loop is repeated until the Σc set generated is not an empty set. If
no further candidate sequences can be generated, the algorithm returns the
Σf set (line 17), otherwise the elements if Σc are added to Σf (line 18). If all
sequences are processed, the k maximum length loop variable is increased (line
20), and the main loop is restarted.

Lemma 16 Algorithm 1 identifies all frequent patterns, which have a support
greater or equal to a min support according to Definition 9, but the important
ones are returned.
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input : R(ITA) database, μ minimum support threshold, ν
importance threshold

output: Σf set of important sequences
data : k cycle variable, Σc set of new sequences, F(S) frequent next

item set, F(S)
1 /* Initialization */

2 k := 1;
3 Σf = {S |a ∈ A,S =< {a}−∞ >, supp(S) ≥ μ };
4 /* Main loop */

5 while true :
6 do
7 foreach S ∈ Σf where len(S) = k do
8 Σc := ∅;
9 foreach a ∈ A do

10 Compute the sets F(S, a) and F(S, a);
11 if |Ind(R,S, c)| ≥ ν then
12 S ′ := concat(S, c);
13 Σc := Σc ∪ {S ′};
14 end

15 end
16 if Σc = ∅ then return Σf;
17 ;
18 Σf := Σf ∪ Σc;

19 end
20 k := k+ 1;

21 end

Algorithm 1: Importance based frequent sequential pattern genera-
tion

According to Theorem 11, conditional support supp(S |a) is greater or equal
to the supp(S → a). It means, that by generating F(S) Algorithm 1 finds
all candidates for which support is greater or equal to a certain threshold.
However, if either a or S is independent, or too frequent in general, it entails
F(S, a) � F(S, a) and as such is omitted from the output. As a consequence,
Algorithm 1 is a one-step method to find frequent and relevant patterns.
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Lemma 17 (Infrequent important candidate) Algorithm 1 can identify
important sequences with regard to the ν importance threshold that are not
frequent regarding a μ threshold.

Definition 15 is independent from the minimum support threshold μ, so
it is possible to construct an example, where the statement of Lemma 17
holds. If Σ = {< {a}, {b}, {c} >,< {c}, {d} >}, and μ = 60%, then subsequence
< {a}, {b} > can not be frequent as it occurs only in the first closed sequence.
However, it is important because |Ind(< {a}, b >)| ≥ ν for an appropriate ν

because b is always preceded by a.
Algorithm 1 builds important sequences on the pattern of GSP. The number

of database scans is two times the number of important sequences identified:
the computation of sets F(S) and F(S) requires a scan each. With regard to
candidate generation and data structure efficiency, there is a lot of room for
improvements.

Lemma 18 (Candidate generation) All subsequences of important sequences
generated by Algorithm 1 are important sequences.

Lemma 18 gives a property similar to that exists in case of sequential pattern
generation algorithms, and this way patterns can not only be grown, but joined
as well.

5 Empirical analysis

5.1 Application to medical data

In this section, we present the experiments we conducted on real-life clinical
data. The clinical database was anonymized [5] before use.
We defined one sequence for each unique patient identifier, i.e. the I set

comprises patient identifiers. Treatments and diagnoses have unique medical
codes that define the A itemset. Treatment and diagnosis timestamps are
aggregated on daily level, that is, two treatments that happened on the same
day are considered to be simultaneous and have the same t ∈ T element
associated with them.
The properties of the data set are shown in Table 5. The total number of

patient records is about 67 million, which is the size of the relation in the
context of this paper. The patient cases, which is equal to the number of
natural identifiers, is in the order of 105. The average number of examinations
of a patient is in the order of 102, this value is the average number of items in
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a sequence. The average number of days when examinations are performed or
diagnoses are given on a patient is around 6, this value is the average number
of itemsets in the maximum sequences. The number of treatments, i.e. the
number of items is around 104.

Number of records in the database 66870306

Number of natural identifiers 455514

Average length of maximum sequences 146.8

Average size of maximum sequences 6.18

Number of items 9291

Table 5: Properties of the data set

5.2 Experimental results

The experiments we conducted on an Oracle Sun Server X3-2 with 256GB
RAM and 32 cores of 4 Intel Xeon E5-2660 CPUs. The mining processes were
allowed to use up to 48GB of RAM and 200GB of disk space.
As the experiments shown in Section 2.5 use the API of [4], where the

algorithms are implemented in Java, we used the Java implementation of our
method. We experimented with the implementation of PrefixSpan provided by
[14], however that run out of the 200GB disk space limit before finishing. The
minimum support threshold was set to the absolute value of 10 occurrences
in all cases. In REVIEW, we used a 3 as the importance threshold to provide
output sets of similar size as the other two algorithms for short sequences. User
time usage and memory usage were both measured with the UNIX command
time.
Since the preliminary experiments with PrefixSpan and SPADE have shown

that these algorithms are not able to process this amount of data within rea-
sonable time, once again we have used a random sample and limited the maxi-
mum length of sequences to 5, 10, 20, 40, 60, 80, 100, 120 and 140. The highest
value used is still below the average length of sequences in the whole database.
Table 6 shows the properties of these samples.
Figure 2 compares REVIEW with PrefixSpan and SPADE over the same

dataset with the same minimum support threshold settings. The figures show
how the execution time requirements and the disk space usage scale as the
maximum length of input sequences grows. The number shown is the average
of three runs. The algorithms are deterministic, so the number of frequent
sequences does not vary. We represent the output sequences in the same form
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Max. length Sequences Length Itemsets

5 2150 5048 3441
10 4082 18064 28255
20 6416 50781 17379
40 8979 124289 36448
60 10499 197817 53894
80 11571 271818 71685
100 12263 333065 86099
120 12789 390307 100058
140 13186 441514 112012

Table 6: Properties of the sample data sets

on the disk, so we consider that the number of output sequences is proportional
to the disk usage.
REVIEW has been found to scale better as the length and number of input

sequences grow than Preview and PrefixSpan. The chart on the left shows
that though REVIEW has a high initial time requirement, however it does
have a much lower gradient on the log scale than the other two. Around the
sequence length of 60 REVIEW becomes quicker than PrefixSpan, and around
the sequence length of 120 it surpasses SPADE in speed. Though REVIEW
works over the same search space as shown in Theorem 11, it is more effective
in filtering frequent sequence candidates than the other algorithms, and yet it
keeps the relevant information.
There is no correlation between the memory consumption and the efficiency

of the algorithms in case of REVIEW and SPADE. The PrefixSpan implemen-
tation used up all of the available memory, while the other two remained well
below the limit. In the latter cases, memory consumption seems to depend
rather on the Java virtual machine, than the complexity of the algorithm.

6 Conclusions

Many studies have elaborated sequential pattern mining methods to improve
the overall performance because of the time complexity issues. However, a
problem arises when the length of the frequent sequences increases or the
number of apriori frequent items is high enough. The previously developed
sequential pattern mining algorithms address the performance issue only re-
gardless of whether a pattern with two or more items correlate somehow or
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(a) Sequence length vs. execution time (b) Sequence length vs. frequent se-
quences

(c) Sequence length vs. memory con-
sumption

Figure 2: Performance of REVIEW against PrefixSpan and SPADE. The max-
imum length in a sequence database vs. the execution time, the number of
frequent sequences and memory consumption

they co-occurrence is frequent because their apriori frequencies are indepen-
dently high among customers. On the other hand, sequential pattern mining
algorithms often ignore niche segments’ patterns due to their relative infre-
quencies.
In this paper, we proposed REVIEW, a new approach how to deal with

frequent closed sequences. It iteratively calculates the conditional frequencies
of patterns and their possible follow-ups for those closed sequences in which a
follow-up appears, and those in which it does not. If measures show statistically
significant differences then pattern is extended by the follow-up item, and it
is found to be important, and a new cycle with the extended sequence begins.
The algorithm stops when there can be made no extensions.
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We proved that this method finds all relevant and frequent sequential pat-
terns in linear time regarding the number of closed sequences. We demon-
strated by experiments that our method significantly improves performance of
those known from literature on a health care database where both indepen-
dent, apriori frequent items, and long sequences are both present at the same
time. Moreover, REVIEW also pointed out that not so frequent diagnoses
show strong correlation with others which would be missed by other methods.
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