
Acta Univ. Sapientiae, Informatica, 6, 2 (2014) 163–177

A new model for the linear 1-dimensional

online clustering problem

András LONDON
University of Szeged

Institute of Informatics
email: london@inf.u-szeged.hu

József NÉMETH
University of Szeged

Institute of Informatics
email: nemjozs@inf.u-szeged.hu

Tamás NÉMETH
University of Szeged

Institute of Informatics
email: tnemeth@inf.u-szeged.hu

Áron PELYHE
University of Szeged

Institute of Informatics
email: pelyhe@inf.u-szeged.hu

Abstract. In this study, a mathematical model is presented for an on-
line data clustering problem. Data clustering plays an important role in
many applications like handling the data acknowledgment problem and
data stream management in real-time locating systems. The inputs in
these problems are data sequences, each containing several data elements.
Each data element has an arrival time and a weight that reflects its im-
portance. The arrival times are not known in advance, and some data
elements never arrive. Hence the system should decide which moment
is optimal for forwarding the collected data for processing. This requires
finding a good trade-off between the amount of collected information and
the waiting time, which may be regarded as a minimization problem.
Here, we investigate several online algorithms and present their compet-
itive analysis and average case studies. Experimental results, based on
simulations using artificially generated data, are also presented and they
confirm the efficiency of our methods.

Computing Classification System 1998: F.1.2
Mathematics Subject Classification 2010: 68W27
Key words and phrases: data clustering, online algorithms, learning algorithms, real-time
locating systems

163

DOI: 10.1515/ausi-2015-0001

164 A. London, J. Németh, T. Németh, Á. Pelyhe

1 Introduction

Online optimization is concerned with the type of problems where decisions
should be made without knowing the whole input data. These class of problems
are usually called online problems (in contrary, the offline problems are those
problems where the whole input is available when the decision is made). In
several parts of computer science, economics and operational research many
problems can be solved only in an online manner. For some good discussions
of this see, for instance [2, 12, 14].
In online clustering problems the goal is the classification of points into sets

in an online fashion such that a given objective function, which depends on
the distance between any two points in the same cluster, is minimized. Points
that arrive consecutively have to be assigned to clusters at the time of arrival.
Previous results on the online data clustering problem for data sequences can
be found, for example, in [5, 11], with unit sized clusters and in [7, 8, 9] with
variable sized clusters.
The problem that is closely related to the data clustering problem examined

here first emerged during the study of a real-time locating system developed
by the Fraunhofer IIS and investigated and generalized by Németh et al. in
[17]. Below, we apply a different mathematical model for the problem, which
is a minimizing problem in contrast to the maximizing one defined in [17].
A real-time locating system (RTLS) serves to determine positions of objects

with high precision. It has various applications in transport and logistic, am-
bient assisted living, emergency mission support and also in sports, such as in
the so-called Chip-in-the-Ball technologies. As an example, the locating sys-
tem developed by the Fraunhofer IIS is a radio-based system operating with a
local positioning infrastructure using two measurements (the “angle of arrival”
and the “round trip time”) to detect the position of objects. For a detailed
description of RTLS systems see [3] and [4].
In such a system, an object (like the ball of a football game or the shin pad

of a player) is equipped with a tag which periodically broadcasts radio signals
to infrastructure nodes (such as receiver devices in the stadium). Besides the
positioning data, a radio signal also carries the user data and an ID. The
signals having the same ID belong to the same locating cycle, which we call a
burst. The measured parameters from a given burst data set are distributed
over the infrastructure nodes. After a measurement is made for the individual
parts of the burst data set, the data elements are forwarded to the central
positioning server (via a transport protocol). After receiving sufficient data
(ideally the total burst data set), the positioning server can determine the

On the linear 1-dimensional online clustering problem 165

positions of the objects by going through the following algorithmic steps in
the server: (1) data filtering, (2) data clustering (3) burst filtering (4) position
calculation (5) position filtering.
In this study, we focus on the second step. Our aim is to forward the data

as quickly as possible for burst filtering, and also minimize the number of un-
processed data elements to get more precise results in position calculations.
The nature of the problem requires that we work in an online manner. The
algorithm we designed also has to handle transmission errors and disturbances
like provisional coverage (screening) of an infrastructure node, network packet
losses and processing delays. Therefore, the data clustering algorithm can-
not simply wait for all elements of a burst; a more sophisticated approach is
needed! Evidently, the crucial point of the algorithm is to determine the time
when the collected data items have to be sent to the server for calculating the
positions. Two different objectives should be considered at the same time: (i)
the positioning server should receive as much available data from the infras-
tructure nodes as possible, and (ii) the system is not allowed to wait too long
for the incoming data, since the long delays decrease the relevance of the cal-
culated position. The usual principle in a real-time calculation of positions is
that a fairly-good position is better than a more accurate position determined
too late. We will define a minimization problem that takes into account both
goals. The second goal is considered directly, while the first goal appears in
the objective function in an indirect way.
Here, collecting the data and calculating the positions of several tags can be

done in parallel and independently of each other, hence we will assume that
there is only one tag in the system and the infrastructure nodes collect the data
only from this tag. We should also mention that this problem is similar to the
online data acknowledgment problem (see e.g. [15, 1, 10, 16, 18]). In a computer
network, from a communication aspect, data is sent by packets and in the data
acknowledgment problem, given a sequence X of packet arrival times, the goal
is to partition X into subsequences, where the end of a subsequence is defined
by an acknowledgment. One acknowledgment may acknowledge many packets,
but if an algorithm waits too long, the sender might resend the packets and this
would result in congestion of the packets in the network. Here, our methods
may also be applied to handle the data acknowledgment task.
Below, we present a mathematical model and describe the corresponding

objective function for the problem. In Section 3, we apply the method of
competitive analysis, which is often used to evaluate the quality of online
algorithms (see [14] for a nice summary on competitive analysis). We will prove
a result which states that there is no competitive algorithm for the problem.

166 A. London, J. Németh, T. Németh, Á. Pelyhe

The average case study is also presented for real-world situations, where arrival
times of the input elements follow a certain probability distribution. For some
discussions on the probabilistic analysis of algorithms see [6] and [13]. Lastly in
Section 4, we present experimental results got from using different algorithms
with artificially generated data which we used to verify the efficiency of our
algorithms.

2 The proposed mathematical model

The input of the data clustering problem is a sequence of cycles X=(X1, X2, . . .),
where each cycle Xk is a sequence of data elements (xk1, . . . , x

k
m) where m is the

number of all possible incoming data elements (and it is equal to the number
of infrastructure nodes) in a cycle. The reception time of data xki is denoted
by tki (i = 1, 2, . . . ,m; k = 1, 2, . . .). Since there is no guarantee that all data
elements will arrive in each cycle, let tki = ∞ if xki does not arrive. The bursts
will be denoted by B1, B2, . . . where Bk = {xki ∈ Xk : tki < ∞}. The difference
between the reception times of the last and first data elements of the same
burst is called the length of the burst.
The exact time when an algorithm decides to send the collected data in

burst Bk to the server will be denoted by pk (k = 1, 2, . . .) and it is called the
positioning time. Let B̂k(t) = {xki : tki < t}; thus, B̂k(pk) = B̂k is the subset of
data elements in burst Bk which is sent to the computer for positioning.
Usually, the infrastructure nodes (wireless smart items, goniometers) have

different technical properties (type, position, accuracy), hence the data col-
lected may not all have the same importance. In our model, we assign a weight
wi to data xki (k = 1, 2, . . .), which denotes the importance of the data with
respect to the infrastructure node that collected it. Without loss of generality,

Figure 1: An example for the clustering of the input data signals

On the linear 1-dimensional online clustering problem 167

we may assume that
∑m

i=1 wi = 1. Figure 1 shows an example of the input and
the notations. We should add that other attributes (i.e. more information) are
available in real-time locating systems like the type of the measurements (see
the AoA value and RTT value in [4]), which are essential for calculating the
positions, but are not needed in calculations using data clustering algorithms.
To evaluate the performance of the algorithms that we are going to devise,

first we have to define an objective function which measures their efficiency.
In our definition, we simultaneously take into account two objectives of the
algorithm, namely (i) the waiting time for the first input data element (which
is the time elapsed between the starting time of the burst and the positioning
time) should not be too long, and (ii) the amount of data that could be lost
(that is, |{xki ∈ Bk \ B̂k : i = 1, 2, . . . ,m}| for burst Bk) should be small. In
addition, the second objective is integrated over the time-dependency, meaning
that a data element arriving later carries less weight in the cost function. Let
rk = mini{t

k
i : xki ∈ Bk} be the reception time of the first incoming data in

burst Bk. For a given k, we will define the objective function fk for burst Bk,
which has to be minimized, as

fk(t) = λ(t− rk) + (1− λ)
∑

i:xki ∈Bk\B̂k(t)

1

1+ tki
wi, (1)

where λ ∈ [0, 1] is a constant parameter which measures the unit latency. Since
the functions f1, f2, . . . are independent (because each data element belongs
to exactly one burst), by summing them up, we can get the overall cost; that
is,

F(p1, p2, . . .) =
∑
k

fk(pk), (2)

where pk is the positioning time of burst Bk. Since minimizing F is equivalent
to minimizing all its terms, it is sufficient to consider a single term and solve
the problem for it, i.e. just consider burst B. Let us assume that the reception
time of the first input data element x1is t1 = 0 and denote the positioning
time in burst B by p. What we would like to do is to minimize the function f

with the form

f(p) = λp+ (1− λ)
∑

i:xi∈B\B̂(p)

1

1+ ti
wi. (3)

Here, the first term is viewed as the loss of latency of the first data element
to arrive (where λ ∈ [0, 1] is the cost of the unit latency), while the second
term is the sum of the weights of all data arriving after positioning. We shall
assume that the longer we have to wait for a data, the less important it is.

168 A. London, J. Németh, T. Németh, Á. Pelyhe

3 Analysis of the model

3.1 Competitive analysis

An online algorithm for a minimization problem is said to be c-competitive,
if the value of the cost function calculated by using this online algorithm is
not more than c times the optimum value of the cost function (obtained by
using the offline algorithm) and this holds for all possible input data streams.
Formally, for an arbitrary algorithm A and an input sequence X the value of
the cost function in the solution obtained by using A is A(X). Let OPT(X)
denote the optimal value of the cost function (offline optimum) for the input
X. The online algorithm A is c-competitive if A(X) ≤ c ·OPT(X).

3.1.1 Analysis without constraints

First, we will assume that there is no any restriction on the input data sequence
X. We will show that there exists no constant competitive algorithm for the
problem, as the following theorem states.

Theorem 1 There is no competitive online algorithm for the online data clus-
tering problem that uses the objective function defined by (3). More precisely,
for every constant K there exists an input sequence X such that the competitive
ratio is larger than K.

Proof. Let us consider the following input sequence. Let x1 be the first data
element of burst B, which arrives at the infrastructure node 1 at time t1 = 0.
If the online algorithm chooses p > 0 as the positioning time and if there are
no more data elements, the value of the cost function expressed in terms of p
is positive, while the offline optima is 0; thus the algorithm is not competitive.
If the online algorithm sends the first data element of the burst for positioning
immediately after it arrives (i.e. x1 in t1; we will call it No Waiting Time
Algorithm (NWT)), then in worst case, each other element arrives at time
δ > 0 and hence the competitive ratio of the NWT is

(1− λ)
∑

i:xi∈B\B̂(0)
1

1+δ
wi

λδ
=

1

δ(1+ δ)

1− λ

λ

∑
i:xi∈B\B̂(0)

wi ≈ (1− λ)

λδ2
,

which can be an arbitrary large constant if δ is set close to 0. �

On the linear 1-dimensional online clustering problem 169

3.2 Average case study

We have just found a negative result which states that there is no competitive
algorithm, meaning that any algorithm can be easily fooled by a “malicious”’
input data sequence. Although in general the input data sequences of real-time
positioning systems (or of a data acknowledgment problem) are not like the
worst case examples applied in the proof of Theorem 1, they can be modeled
by a series of reception times that follow a certain probability distribution.
Here, we will assume that the reception time ti of xi ∈ X is a random variable
with a given probability distribution F and we also assume that {ti : xi ∈ B},
i = 1, . . . ,m are independent. Furthermore we will assume that ti and wi are
independent of each other. Since the sum of the weights (of all data that may
ideally arrive) is 1, the expected value of wi is 1/m (i = 1, 2, . . . ,m) by using
the linearity property of the expected value.

3.2.1 Constant waiting time algorithm

Our goal is to minimize the expected cost of the online algorithm if the distri-
bution of ti’s is given in advance. As before, let p be the positioning time in
burst B. Let Ki = wi/(1 + ti) if ti > p and xi ∈ B, and let Ki = 0 otherwise.
Using this notation, we get the objective function f with the form

f(p) = λp+ (1− λ)

m∑
i=1

Ki. (4)

The expected value of Ki is

E[Ki] = E
[1

1+ ti
wi

]
Pr(ti > p) = (5)

= E[wi]E
[1

1+ ti

]
Pr(ti > p) =

1

m
E
[1

1+ ti

]
Pr(ti > p),

obtained by using the independency property of ti and wi. By using the lin-
earity property of the expected value and (5), we get that

E[f(p)] = λp+ (1− λ)E
[m∑

i=1

Ki

]
= (6)

= λp+ (1− λ)mE[K] =

= λp+ (1− λ)

∞∫
p

gF (t)dt
∞∫
0

1

1+ t
gF (t)dt.

170 A. London, J. Németh, T. Németh, Á. Pelyhe

Here, gF is the probability density function of the distribution F and t is a
random variable with distribution F . If F is given, then this formula can be
calculated numerically and then it can be optimized with respect to p in a
minimization problem.

3.2.2 Constant waiting time algorithm for data streams from nor-
mal distribution

Usually, the reception times of a data stream of a real-time positioning sys-
tem are considered to follow (or at least can be approximated by) a normal
distribution, since in such systems, the probability of having large differences
between the arrival times among the data elements is small in general. Now,
let t be a random variable with a normal distribution (t ∼ N (μ, σ2)) having
mean μ and variance σ2. Then the expected cost of f can be calculated as

E[f(p), t ∼ N (μ, σ2)] =

= λp+ (1− λ)
1

2πσ2
·

·
∞∫
p

exp
[
−

(t− μ)2

2σ2

]
dt

∞∫
0

1

1+ t
exp

[
−

(t− μ)2

2σ2

]
dt =

= λp+ c(1− λ)
1

2πσ

√
π

2
Erf

[μ− p√
2σ

]
, (7)

where

c =

∞∫
p

1

1+ t
exp

[
−

(t− μ)2

2σ2

]
dt ∈ [0, 1]

is a numerically computable constant and

Erf[x] =
2√
π

x∫
0

exp[−x]dx = 1−
2√
π

∞∫
x

exp[−x]dx.

By differentiating wrt p we find that the expression (7) achieves its maximum
value if the positioning time p is

p = μ+

√
2 log

[λ2πσ2

c(1− λ)

]
σ. (8)

On the linear 1-dimensional online clustering problem 171

In the case where we know (or we can estimate) the parameters of the normal
distribution (for each burst) of the arrival times, we get a constant waiting
time method (CWT), where the positioning time of a burst is given by (8).

4 Experimental evaluation

We saw above that in the worst case there is no efficient algorithm for posi-
tioning. Then we showed that in the average case (considering an arbitrary
probability distribution F of the reception times) a simple constant waiting
time algorithm can achieve the best possible (minimal) expected cost, but it
strongly depends on the expected value and variance of F , which is usually
not known. Below, we will define a more sophisticated algorithm that tries to
learn a fairly good value of the positioning time p (which is close to the online
optimum) by using the optimal values of the previous bursts. We should men-
tion here that similar parameter learning algorithms have also been designed
for the data acknowledgment problem and they are described in [16] and [18].

4.1 Variable waiting time algorithm

Now we will describe a variable waiting time algorithm for the data clustering
problem. In this algorithm, each burst Bk has a starting time rk, which is
the reception time of the first data element having burst ID k. As in the
description of the model, B̂k(p) ∈ Bk is the set of those data elements in Bk

that is sent to the computer for positioning. The set of data elements that
have arrived before the time t̂ in burst Bk, is denoted by B̂k(t̂). The algorithm
uses a variable t that denotes the waiting time for the data in each burst and
it tries to learn the best possible value of t. Let opt(k) be the online optimal
value of the cost function f for burst Bk calculated as follows: whenever a data
in burst k arrives at time tk, we calculate

fonline(tki) = λ(tki − rk) + (1− λ)
[∑
i:xki ∈Bk(tk)

1

1+ tki
wi +

1

1+ tk

∑
i:xki ∈X\Bk(tk)

wi

]
,

(9)
for all tki ≤ tk by considering the worst case that can happen; that is, if all other
possible data elements arrive just after tk. Then, opt(k) = min{fonline(tk) :
tki ≤ tk}, which is the online optimum calculated by using the data elements
that had already arrived. Thus, pk = argmin{opt(k)} is the optimal positioning
time for the online algorithm. After, let p̂k = pk − rk. We note here that the
online optimum becomes equal to the offline optima when a burst is ended. The

172 A. London, J. Németh, T. Németh, Á. Pelyhe

Algorithm 1: Variable waiting time algorithm (VWT)

Data: sequence of burst B1, B2 . . .

Result: positioning time pk for each burst Bk (j = 1, 2, . . .)
Initialize pk = 0 (k = 1, 2, . . .);
foreach data element x with arrival time t do

if x ∈ Bk then
opt(k) = opt(Bk(t));

end
if t− rk ≥ (p̂j−1 + · · ·+ p̂j−�)/k && pk �= 0 then

pk = rk + (p̂k−1 + · · ·+ p̂j−�)/� ;
end

end

simple idea behind the construction of the algorithm is to use the average of
the previously (and simultaneously) calculated positioning times for the actual
burst that we are optimizing. Algorithm 1 shows the details of the learning
process.

4.2 Empirical results

To analyze the performance of our algorithms, we generated the following in-
put data stream. The number of bursts is 1000, the arriving times in each
burst coming from a normal distribution with an expected value between
5 and 20 and a variance between 2 and 8. The input data can be found
in http://www.inf.u-szeged.hu/~london/1000burst_input.txt. Figure 2
shows a simple example of the construction of the input. The bursts follow each
other consecutively, such that the overlap between two bursts varies between
0 and 30 percent of the latter one. The average burst length is 20. In a burst,
optimally the number of data elements is 40 (which is the number of infras-
tructure nodes), but we randomly delete each data element with probability
0.1 (in reality it may happen that data does not arrive at an infrastructure
node). If a data item is deleted in a burst, the probability that it appears in the
next one is 0.3. The weights of the data elements (related to the importance
of the infrastructure nodes) lie between 0 and 50, assigned to each one with a
uniform probability at the beginning.
We also devised three constant waiting time algorithms (CWT) to handle

the data stream management task. CWT1 uses the time rk+ 5 for positioning
(in the jth burst), which is generally less than the middle of the burst (i.e.

On the linear 1-dimensional online clustering problem 173

Figure 2: The structure of the input data sequence generated from a normal
distribution

the starting time plus the expected value of the distribution that generates
the arrival times of elements in the burst). CWT2 uses rk + 10 which is close
to the middle of the burst in most cases and CWT3 uses rk + 15, which is
generally close the the end of the burst. The learning (VWT) algorithm uses
the positioning times of the last 50 bursts to calculate the waiting time for
the current one. Figure 3 shows the aggregated cost of the different algorithms
after a given number of cycles. As can be seen, the calculated cost using the
learning algorithm approaches the offline optima after just a few cycles and
remains close to it, in contrast to the constant waiting time algorithms where
the aggregated costs progressively diverge farther from the offline optima.
Table 1 shows the performances values of the different algorithms, obtained

by dividing the value of the total cost function of the different algorithms
by the optimum value of the total cost function. The test results tell us that
the learning algorithm performs well in general and remains very close to
the offline optima regardless of the choice of λ (see Table 1 and Figure 4).
In contrast, the efficiency of the CWT algorithms strongly depends on the
choice of λ and the average length of the burst. It is not surprising that the
higher the value of λ, the better the constant time algorithm will be, which
chooses an earlier time for positioning, since if λ is bigger, the cost resulting
from latency is also higher. This observation also holds in the reverse case.
The NWT algorithm (which sends the first element that arrives in a burst for
positioning), in practice, performs poorly on data streams which are like those
that in real-world cases just as expected. Similar to CWT1, it only gives an
acceptable result when λ is high.

174 A. London, J. Németh, T. Németh, Á. Pelyhe

Figure 3: The aggregated cost of the different algorithms after 10 (left) and
200 (right) cycles

λ = 0.1 λ = 0.3 λ = 0.5 λ = 0.7 λ = 0.9

NWT 31.693 8.715 4.225 2.398 1.377

CWT1 11.482 3.346 1.787 1.232 1.333

CWT2 6.127 2.042 1.301 1.151 1.844

CWT3 3.233 1.425 1.159 1.277 2.512

VWT 1.007 1.005 1.016 1.091 1.317

Table 1: The test results

It may be concluded that the VWT algorithm is useful in general and the
output values of it are close to the optimal values, even when the burst length
and the parameters of the distribution of the arriving times are unknown.
However, the efficiency of a constant time algorithm strongly depends on the
λ and time parameters of the objective function, the average burst length and
also on the distribution of the arrival times.

5 Summary

In this paper we defined an online optimization model for the data stream
management problem, which arises in real-time locating systems and in a
similar form in the data acknowledgment problems. We constructed different
algorithms to solve the problem and analyzed them with the tool of competi-

On the linear 1-dimensional online clustering problem 175

Figure 4: Total cost of the different algorithms after 1000 cycles for different
λ values

tive analysis and with expected value analysis. Although we showed, by using
the worst case study, that there is no competitive algorithm for this model,
the average case study confirmed the validity and applicability of our model
and algorithms for more realistic data streams. A more sophisticated variable
waiting time algorithm that uses the average of the optimal positional times
of some of the previous bursts was also created for position calculations of the
subsequent bursts. We showed empirically that this learning method is useful
and close to the global optimum, even when we have no a priori information
about the input data stream. Some outstanding questions remain that deserve
further examination. For instance if we use a more general objective function
like f(p) = λg(p) + (1 − λ)

∑
i:ti>p h(ti)wi with any g and h, such that g is

non-decreasing and h is non-increasing, will we get better results? The analyt-
ical study that we have already done applies for the general case, but it would
be interesting to see more applications (besides the data stream management

176 A. London, J. Németh, T. Németh, Á. Pelyhe

and data acknowledgment problems) where we can apply this model with dif-
ferent suitable g and h functions. It is also an open question (mentioned by
the authors of [17]) of how should go about solving the problem when we do
not receive burst ID information. Lastly, it would be also interesting to use
and analyze this objective function in the data acknowledgment problem by
considering various probability distributions of the arrival times and find out
whether it will lead to good performance values.

Acknowledgement

This work was supported by the European Union and the European Social
Fund through project Telemedicina (Grant no.: TÁMOP-4.2.2.A-11/1/KONV-
2012-0073).
András London was supported by the European Union and the State of Hun-

gary, co-financed by the European Social Fund in the framework of TÁMOP-
4.2.4.A/2-11-1-2012-0001 ’National Excellence Program’.
The authors would like to thank Csanád Imreh for providing helpful com-

ments.

References

[1] S. Albers, H. Bals, Dynamic TCP acknowledgment: Penalizing long delays, SIAM
J. Discrete Math. 19, 4 (2005) 938–951. ⇒165

[2] A. Borodin, R. El-Yaniv, Online Computation and Competitive Analysis, Cam-
bridge University Press, 1998. ⇒164

[3] M. Brugger, T. Christ, F. Kemeth, S. Nagy, M. Schaefer, M. M.Pietrzyk, The
FMCW technology-based indoor localization system, in: Ubiquitous Positioning
Indoor Navigation and Location Based Services, 2010, pp. 1–6. ⇒164

[4] M. Brugger, F. Kemeth, Locating rate adaptation by evaluating movement spe-
cific parameters, in: Adaptive Hardware and Systems, 2010, pp. 127–131. ⇒164,
167

[5] T. M. Chan, H. Zarrabi-Zadeh, A randomized algorithm for online unit cluster-
ing, in: Approximation and Online Algorithms 2007, pp. 121–131. ⇒164

[6] E. G. Coffman, G. S. Lueker, Probabilistic Analysis of Packing and Partitioning
Algorithms, Wiley, New York, 1991. ⇒166

[7] J. Csirik, L. Epstein, C. Imreh, A. Levin, Online clustering with variable sized
clusters Algoritmica 65, 2 (2013) 251–274. ⇒164

[8] G. Divéki, Online clustering on the line with square cost variable sized clusters
Acta Cybernetica 21, 1 (2013) 75–88. ⇒164

On the linear 1-dimensional online clustering problem 177

[9] G. Divéki, C. Imreh, Online facility location with facility movements, CEJOR
Cent. Eur. J. Oper. Res. 19, 2 (2011) 191–200. ⇒164

[10] D. R. Dooley, S. A. Goldman, S. D. Scott, On-line analysis of the TCP ac-
knowledgment delay problem, Journal of the ACM 48, 2 (2001) 243–273. ⇒
165

[11] L. Epstein, R. Van Stee, On the online unit clustering problem, in: Approxima-
tion and Online Algorithms, 2008, pp. 193–206. ⇒164

[12] A. Fiat, G. Woeginger, Online Algorithms: The State of the Art, Springer, Hei-
delberg, 1998. ⇒164

[13] M. Hofri, Probabilistic Analysis of Algorithms: On Computing Methodologies for
Computer Algorithms Performance Evaluation, Springer-Verlag New York, 1987.⇒166

[14] C. Imreh, Competitive analysis, in: Algorithms of Informatics, Vol. 1. Founda-
tions (ed. A. Iványi), mondAt Kiadó, Budapest, 2007, pp. 395–428. ⇒ 164,
165

[15] C. Imreh, T. Németh, On time lookahead algorithms for the online data ac-
knowledgement problem, in: Mathematical Foundations of Computer Science,
2007, pp. 288–297. ⇒165

[16] C. Imreh, T. Németh, Parameter learning algorithm for the online data acknowl-
edgment problem, Optimization Methods and Software 26, 3 (2011) 397–404. ⇒
165, 171

[17] T. Németh, S. Nagy, C. Imreh, Online data clustering algorithms in an RTLS
system, Acta Univ. Sapientiae Informatica, 5, 1 (2013) 5–15. ⇒164, 176

[18] T. Németh, B. Gyekiczki, C. Imreh, Parameter learning in lookahead online
algorithms for data acknowledgment, Proc. 3th IEEE Symposium on Logistics
and Industrial Informatics, 2011, pp. 195–198. ⇒165, 171

Received: September 20, 2014 • Revised: October 26, 2014

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

