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Abstract. The aim of this paper is to establish the stability of fluid
queueing network models under priority service discipline. To this end,
we introduce a priority fluid multiclass queueing network model, com-
posed of N stations, N ≥ 3 and 2N classes (2 classes at each station);
where in the system, each station may serve more than one job class with
differentiated service priority, and each job may require service sequen-
tially by more than one service station. In this paper the fluid model
approach is employed in the study of the stability.

1 Introduction

Stochastic processing networks arise as models in manufacturing, telecommu-
nications, computer systems and service industry. Common characteristics of
these networks are that they have entities, such as jobs, customers or pack-
ets, that move along routes, wait in buffers, receive processing from various
resources, and are subject to the effects of stochastic variability through such
quantities as arrival times, processing times, and routing protocols. Networks
arising in modern applications are often highly complex and heterogeneous.
Typically, their analysis and control present challenging mathematical prob-
lems. One approach to these challenges is to consider approximate models.
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In the last 15 years, significant progress has been made on using approximate
models to understand the stability and performance of a class of stochastic pro-
cessing networks called open multiclass HL queueing networks. HL stands for
a non-idling service discipline that is head-of-the-line, i.e., jobs are drawn from
a buffer in the order in which they arrived. Examples of such disciplines are
FIFO and static priorities. First order (functional laws of large numbers) ap-
proximations called fluid models have been used to study the stability of these
networks, and second order (functional central limit theorem) approximations
which are diffusion models, have been used to analyze the performance of
heavily congested networks.

The development of the fluid approach was inspired by the studies of some
counter-examples in Kumar and Seidman [11], Rybko and Stolyar [14] and
Bramson [1], etc., where the multiclass queueing networks are not stable even
when the traffic intensity of each station in the network is less than one. An
elegant result of the fluid model approach was proposed first in Rybko and
Stolyar [14] and then generalized and refined by Dai [6], Chen [2], Dai and
Meyn [8], Stolyar [15] and Bramson [1]. It states that a queueing network is
stable if its corresponding fluid network model is stable. Partial converse to this
result is also given in Meyn [12], Dai [7] and Puhalskii and Rybko [13]. Heng
Quing Ye [10] used Kumar-Rybko-Seidman-Stolyar network for establishing
the stability of fluid queueing network.

In this paper, we concentrate with the capacity of some large classes of fluid
multiclass queueing networks under priority service discipline. Specifically, we
establish a stability condition of some heterogenous priority fluid networks
with N stations and 2N job classes, where in the system, each station may
serve more than one job class with differentiated service priority, and each
job may require service sequentially by more than one service station. So, in
our case, the network performance is improved even when more workloads are
admitted for service. To stabilize our networks a number of stations should
be added, these later act as regulators for the systems, adding these stations
is not random, it depends essentially on higher and lower priority job classes
(many-to-one mapping) and on the number of stations in the network. The
fluid model approach is employed to proof the stability.

The outline of the paper is as follows: At first (Section 2) we describe pri-
ority fluid multiclass queueing models, and present a powerful result on the
stability of such systems given by Chen and Zhang [5], after that (Section 3) we
introduce modified networks and present their stability conditions (Theorems
2 and 3), and finally we conclude this paper with a short conclusion.
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2 N-stations priority fluid multiclass network models

We describe N-stations priority fluid queueing network models as (J ,K, λ,m,
C, P, π). Specifically, the fluid network consists of J stations (buffers) (J = N)
indexed by j ∈ J = 1,N, serving K, K = 2N fluid (customer) classes indexed
by k ∈ K = 1, 2N. A fluid class is served exclusively at one station, but one
station may serve more than one fluid classes. σ(.) denotes a many-to-one
mapping from K to J , with σ(k) indicating the station at which a class k
fluid is served. A class k fluid may flow exogenously into the network at rates
λ1 and λN+1, (≥ 0), then it is served at station σ(k), with mean service time
mk = 1/µk, k = 1, 2N and after being served, a fraction pkl of fluid turns into
a class l fluid, l ∈ K, and the remaining fraction, 1−

∑K
l=1 pkl flows out of the

network. Let C(j) be the set of classes that reside in station j, alternatively,
we denote by a J × K matrix C = (cij)J×K, known as the constituent matrix,
where cjk = 1 if σ(k) = j, and cjk = 0 otherwise.

Let Qk(t) indicates the number of class k customers in the network at time
t, (Q(0) = Qk(0)) and λ = (λk) two K-dimensional nonnegative vectors. P =
(pkl)K×K a stochastic matrix with spectral radius strictly less that one, µ =
(µk) a K-dimensional positive vector.

The vectors Q(0) are referred to as initial fluid level vector, λ to the exoge-
nous inflow rate vector, µ to the processing rate vector, matrix P is referred
to as flow transfer matrix.

When station σ(k) devotes its full capacity to serving class k fluid (assuming
that it is available to be served), it generates an outflow of class k fluid at
rate µk > 0, k ∈ K. Among classes, fluid follows a priority service discipline,
which is again described by a one-to-one mapping π from {1, ..., K} onto itself.
Specifically, a class k has priority over a class l if π(k) < π(l) and σ(l) = σ(k),
then class k job can not be served at station σ(k) unless there is no class l
job.

So, our multiclass fluid network consists of N stations and 2N job classes.
Assume that the arrival process of class k, k = 1, 2N, customers arrive to the
system following a Poisson process with arrival rates λ1 ≥ 0 and λN+1 ≥ 0,
the service time for each class k customer is exponentially distributed with
mean service time mk > 0. We also assume that all the inter-arrival times and
service times are independent.

To describe the dynamics of the fluid network, we introduce the K-dimensional
fluid level process Q = {Q(t), t ≥ 0}, whose kth component Qk(t) denotes
the fluid level of class k at time t; the K-dimensional time allocation process
T = {T(t), t ≥ 0}, whose kth component Tk(t) denotes the total amount of
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time that station σ(k) has devoted to serving class k fluid during the time in-
terval [0, t], and the K-dimensional unused capacity process Y = {Y(t), t ≥ 0},
whose kth component Yk(t) denotes the (cumulative) unused capacity of sta-
tion σ(k) during the time interval [0, t] after serving all classes at station σ(k)
which have a priority no less than class k. We denote by D the K-dimensional
diagonal matrix whose kth element is µk, and e is a K-dimensional vector with
all components being one. Let

Hk = {l : σ(l) = σ(k), π(l) ≤ π(k)}

be the set of indices for all classes that are served at the same station as class k
and have a priority no less than that of class k. Note that k ∈ Hk by definition.
Then the dynamics of the fluid network model can be described as follows.

Q(t) = Q(0) + λt− (I− P ′)DT(t) ≥ 0, (1)

T(·) are nondecreasing with T(0) = 0, (2)

Yk(t) = t−
∑
l∈Hk

T l(t) are nondecreasing, k ∈ K, (3)

∫∞
0

Qk(t)dYk(t) = 0, k ∈ K. (4)

Let

Qk(t) = Qk(0) + λkt+

K∑
l=1

plkµlTl(t) − µkTk(t) ≥ 0, k = 1, . . . , K, (5)

be the kth coordinate of the flow balance relation (1).
The equation (1) is the equivalent relation between the time allocation pro-

cess T(·) and the unused capacity process Y(.). The relation (4) means that at
any time t, there could be some positive remaining capacity (rate) for serving
those classes at station σ(k) having a strictly lower priority than class k, only
when the fluid levels of all classes in Hk (having a priority no less than k) are
zero.

A pair (Q, T) (or equivalently (Q, Y)) is said to be a fluid solution if they
jointly satisfy (1)-(4). For convenience, we also call Q a fluid solution if
there is a T such that the pair (Q, T) is a fluid solution. The fluid network
(J ,K, λ,m,C, P, π) is said to be stable if there is a time τ ≥ 0 such that
Q(τ+ ·) ≡ 0 for any fluid solution Q with ‖Q(0)‖ = 1; and it is said to weakly
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stable if Q(·) = 0 for any fluid solution Q with Q(0) = 0. The processes Q, Y,
and T are Lipschitz continuous, and hence are differentiable almost everywhere
on [0,∞), this well-known property will be used in this paper.

It is well-known that the queue length process Q(t) is a continuous time
Markov chain under the Poisson arrival and exponential service assumptions.
We say that the network (J ,K, λ,m,C, P, π) is stable if the Markov chain Q(t)
is positive recurrent. It is well-know that the Markov chain Q(t) is positive
recurrent only if the traffic intensity for each station is less than one, i.e., ρj < 1
(ρj is the jth component of ρ; a traffic intensity for station j) for all j ∈ J , or
in short, ρ < e, where e is a J-dimensional vector with all components being
ones.

The expected stationary total queue length Q is defined as

Q = lim
t→∞E

[∑
k∈K

Qk(t)

]
.

The queue length Q(t) is a finite if and only if the queue length process Q is
positive recurrent.

Chen and Zhang [5] gave a very important result on the stability of pri-
ority fluid queueing systems, authors established the sufficient condition for
the stability based on the existence of a linear Lyapunov function, this later
(sufficient condition) gave the the necessary and sufficient condition for the
stability. Their result is presented in the Theorem 1, in order to state it we
need some additional assumptions:

Let

h(k) =

{
arg max{π(l) : l ∈ H+

k } if H+
k 6= ∅,

0 otherwise,
(6)

with H+
k = Hk\{k}, in words; if k is not the highest priority class at station

σ(k), then h(k) is the index for the class which has the next higher priority
than class k at station σ(k), otherwise h(k) = 0.

θ = λ− (I− P ′)µ0H, (7)

where µ0H = De0H, (e0H = (e01, ..., e
0
K)
′) is a K-dimensional vector with e0k = 1 if

H+
k = ∅ and e0k = 0 otherwise.

R = (I− P ′)D(I− B), (8)
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where B = (blk) is the K × K matrix with blk = 1 if k = h(l), and blk = 0

otherwise, (l, k = 1, ...K).
And let

ρ = CD−1(I− P ′)−1λ (9)

be the traffic intensity of the queueing network.

Theorem 1 [5] Consider a fluid network (λ, µ, P, C) under priority service
discipline π. Let vector θ and matrix R be as defined in (7),(8) respectively. As-
sume that ρ < e. Then the fluid network is stable if there exist a K-dimensional
vector h ≥ 0 such that for any given partition a and b of K satisfying if class
l ∈ a, then each class k with

σ(k) = σ(l) and π(k) > π(l) is also in a, (10)

we have

h ′a(θa + Rabxb) < 0 (11)

for xb ∈ Sb := {u ≥ 0 : θb + Rbu = 0 and u ≤ e} when b 6= ∅, and xb = 0

when b = ∅. The inequality (11) is omitted to hold by default when Sb = ∅.

Set a includes all classes which have zero unused capacity rate and set b
includes all classes which have a positive unused capacity rate at time t.

3 Main result

In this paper, we present two theorems, we provide the proof of the first
theorem, while the proof of the second one is omitted since it is similar to the
former one.

3.1 Stabilizing N-stations priority fluid queueing network with
some additional stations

Our multiclass queueing network consists of N stations and 2N job classes.
Assume that the arrival process of class k; k = 1, 2N customers arrive to the
system following a Poisson process with arrival rates λ1 and λN+1 (≥ 0) to
station 1 and N + 1 respectively, the service time for each class k customer
is exponentially distributed with mean service time mk > 0. We also assume
that all the inter-arrival times and service times are independent.

Suppose that each even class at station i = 1,N has higher priority.
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We modify our network such that if it is composed of an even number of
stations we add N additional ones otherwise we add (N− 1), the explanation
of this choice will be given in the rest of the paper, the modified network
is illustrated in Figures 1 and 2; the additional stations are named station
N+1,...,station 2N, (N: even) (resp. station N+1,...,station 2N−1 (N: odd)).

Figure 1: 2N-stations priority fluid queueing network

Figure 2: 2N-1-stations priority fluid queueing network

Theorem 2 Suppose ρ < e, equation (11) not satisfied.
If

λk1 > (1−mk ′
1
/mk ′′

1
)/mk1 (12)

then the queue length process Q(·) is positive recurrent.
λk1 (resp. mk1) is the exogenous arrival rate (resp. the mean service time)

of higher priority fluid class of additional stations i = N+ 1, 2N, (N: even)
(resp. i = N+ 1, 2N− 1, (N: odd)), such that k1 = 3N+ 1, 4N, (N : even)
(resp. k1 = 3N, 4N− 2, (N : odd)). mk ′

1
is the mean service time of lower



Stabilizing priority fluid queueing network model 153

priority fluid class of additional stations i = N+ 1, 2N, (N: even) (resp. i =
N+ 1, 2N− 1, (N: odd)). mk ′′

1
is the mean service time of higher priority fluid

class of the original network.
With

mk ′
1
=

{
mk1−N, k1 = 3N+ 1, 4N, (N: even),

mk1−(N−1), k1 = 3N, 4N− 2, (N: odd).

mk ′′
1
=



mk ′
1−(2N−j1), k ′1 = 2N+ 1, 5N2 , j1 = 1,

N
2

(N: even),

m(k1−k
′
1)+j1

, k ′1 =
5N+2
2 , k1 −N, j1 = 2,N

mk ′
1−(2N−j1), k ′1 = 2N+ 1, 5N−1

2 , j1 = 1,
N−1
2

(N: odd).

m(k1−k
′
1)+j1

, k ′1 =
5N+1
2 , k1 − (N− 1), j1 = 4,N+ 1

Where for each k ′1 it corresponds k1 and j1, (j1 is an even number).

Via this theorem, we show that when the arrival rates of some job classes is
reduced, the performance of the queue will worse.
Proof. In Chen and Yao [3] and Dai [7], it was shown that to prove the stability
of a queueing model, it is sufficient to study the stability of its corresponding
fluid queueing model, our prove is based on this result. To understand better
the phenomenon, let us examine the dynamics of the original network with
no initial job. When the higher priority job classes are being served, the lower
priority ones are in standby, waiting for service, (class 1 jobs can not move
to class 2 and 2 cannot move to 3,... for further services, and vice versa). So,
these classes will never be served at the same time and in effect form virtual
stations (Dai and Vande Vate [9]). Therefore, the total nominal traffic intensity
for these classes together, i.e., the virtual stations, should not exceed one for
the network to be stable. The similar argument also yields that the network is
unstable when the nominal traffic intensity for the virtual stations exceed one,
i.e., the condition (11) is not satisfied. Now consider the modified network. The
additional classes act as regulators that regulate the traffics in the network so
as to stabilize the network. When the workloads of classes k1 (k1; defined in
the theorem) are light, much service capacity of the additional stations are
left to classes k ′1 (k ′1; defined in the theorem) and hence these later do not
hold back the traffics to avoid building up of job queues at priority classes of
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the original network. Thus, the virtual stations effect prevails and the network
is still unstable when the condition (11) is not satisfied. However, when the
workloads of classes k1 are heavy enough such that the condition (12) holds,
the service for lower priority classes at additional stations is in effect slowed
down and the traffics in the original network are held back (these classes will
not mutually block their services). Finally, the virtual station effect is avoided
and the modified network is thus stabilized.

The dynamics of the our modified fluid network model can be described as
follows.

Qk1(t) = Qk1(0) + λk1t− µk1Tk1(t) ≥ 0, (13)

k1 = 1,N+ 1, 3N+ 1, 4N, (N : even), (resp. k1 = 1,N+ 1, 3N, 4N− 2)
(N : odd),

Qk(t) = Qk(0) + µlT l(t) − µkTk(t) ≥ 0, (14)

(k, l) = two successive job classes, such that the kth class is the arriving lth

class

Tk(·) are nondecreasing with Tk(0) = 0, (15)

k = 1, 4N, (N : even)(resp. k = 1, 4N− 2, (N : odd))
Yk1(t) = t− Tk1(t),

are nondecreasing,

Yk ′′
1
(t) = t− Tk ′′

1
(t),

(16)

Yk(t) = t− T l(t) − Tk(t) are nondecreasing, (17)

(k, l) = (lower priority job class, higher priority job class ) at station i, i =
1, 2N, (N : even) (resp. i = 1, 2N− 2, (N : odd)),∫∞

0

Qk(t)dYk(t) = 0, k = 1, 4N(N : even) (resp. k = 1, 4N− 2(N : odd)).

(18)
The stability study of the modified fluid network will be done in three steps.

1. First step. We prove that there exists a time τ1 ≥ 0 such that

Qk1(t) = 0, for any t ≥ τ1, (19)

with k1 = 3N+ 1, 4N, (N: even), (resp. k1 = 3N, 4N− 2, (N: odd)).
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If Q̇k1(t) > 0, then we have by equation (18)

Ẏk1(t) = 0, (20)

then by conditions (16) and (20)

Ṫk1(t) = 1, (21)

then by (13) and (21), we get

Q̇k1(t) = λk1 − µk1 . (22)

Note that the condition ρ < e implies λk1 < µk1 . Let τ
(l)
1 = Q̇k1(0)/(µk1 −

λk1), l = 1,
N
2 , (N: even) (resp. l = 1, N−1

2 , (N: odd)). Then, we have

Qk1(t) = 0 for any t ≥ τ(l)1 . (23)

Letting τ1 = max(1/µk1 − λk1), we have that τ1 ≥ max(τ
(l)
1 ), (each l cor-

responds to k1) under the assumption ‖Q(0)‖ = 1. Now, the conclusion (23)
leads to the claim (19).

2. Second step. We prove that there exists a time τ2 ≥ τ1 such that

Qk ′′
1
(t) = 0, for any t ≥ τ2, (24)

where k ′′1 is the higher priority job class at station i, i = 1,N.

k ′′1 =



k ′1 − (2N− j1), k ′1 = 2N+ 1, 5N2 , j1 = 1,
N
2

(N: even),

(k1 − k
′
1) + j1, k ′1 =

5N+2
2 , k1 −N, j1 = 2,N

k ′1 − (2N− j1), k ′1 = 2N+ 1, 5N−1
2 , j1 = 1,

N−1
2

(N: odd).

(k1 − k
′
1) + j1, k ′1 =

5N+1
2 , k1 − (N− 1), j1 = 4,N+ 1

Under the condition (19), we have Q̇k1(t) = 0, and then Ṫk1(t) = λk1mk1 , k1 =

3N+ 1, 4N, (N: even) (resp.k1 = 3N, 4N− 2, (N: odd)), for all time t ≥ τ1.
Combined with (17), this gives rise to

Ẏk ′
1
(t) = t− Ṫk ′

1
(t) − Ṫk1(t) ≥ 0,
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k ′1 are classes of lower priority at additional stations,

k ′1 =

{
k1 −N, k1 = 3N+ 1, 4N, (N: even),

k1 − (N− 1), k1 = 3N, 4N− 2, (N: odd).

and
Ṫk ′

1
(t) ≤ 1− Ṫk1(t) = 1− λk1mk1 , for any t ≥ τ1. (25)

Then,

Q̇k ′′
1
(t) = µk ′

1
Ṫk ′

1
(t) − µk ′′

1
Ṫk ′′

1
(t) ≤ µk ′

1
(1− λk1mk1) − µk ′′

1
< 0, where for

each k ′1 it corresponds k ′′1 for any t ≥ τ2, where the last inequality is implied
by the assumption that

λk1 > (1−mk ′
1
/mk ′′

1
)/mk1 .

Let τ
(l)
2 =

Q̇k ′′
1
(τ1)

µk ′′
1
−µk ′

1
(1−λk1mk1

) , l = 1,N (N: even), (resp. l = 1,N− 1 (N:

odd)). Then, we have

Qk ′′
1
(t) = 0 for any t ≥ τ(l)2 . (26)

Let

τ2 = max

(
1+Θτ1

µk ′′
1
− µk ′

1
(1− λk1mk1)

)
with Θ being the Lipschitz constant for the fluid level process Q(t). Then we

have that τ2 ≥ max(τ
(l)
2 ). Now, the conclusion (26) implies the claim (24).

Before to pass to the last step, we prove separately that QN+1(t) = 0 for
any t ≥ τ2, “the case of network with even number of stations”.

If Q̇N+1(t) = 0, this implies ẎN+1(t) = 0, which in turn implies that ṪN+1(t) =

1, then we have Q̇N+1(t) = λN+1 − µN+1, with λN+1 < µN+1 (since ρ < e). So

there exists τ ′2 = Q̇N+1(0)/µN+1−λN+1, such that Q̇N+1(t) = 0 for any t ≥ τ2.

Third step. We prove that there exists a time τ ≥ τ2 (≥ 0) such that

Ql(t) = 0, for t ≥ τ, (27)

l represents job classes of lower priority at station i = 1, 2N (N: even) (resp.
i = 1, 2N− 1 (N: odd), which together with equations (19) and (24) implies

Q(t) = 0 for t ≥ τ.
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Let
Wi(t) = (λ1ml1 + λN+1ml2)t−

∑
k:σ(k)=i

Tk(t), i = 1,N,

with l1 = 1,N and l2 = N = 1, 2N job classes at the same station in the orig-
inal network.

Wi ′(t)=
λ1mk ′

1
t− Tk ′

1
(t), k

′
1 = 2N+ 1, 5N2 , N: even,

(resp. k
′
1 = 2N+ 1, 2N+ 5N−1

2 , N: odd)

λN+1mk ′
1
t− Tk ′

1
(t), k

′
1 =

5N+2
2 , 3N,N: even,

(resp. k
′
1 =

5N+1
2 , 3N− 1,N: odd)

for τ ≥ τ2. Here W(t) can be explained as the immediate workload in the
system at time t. Define

fi(t) = k
′
1Wi(t), with k ′1 a lower priority job class in the additional stations.

fi ′(t) = k
′′
1Wi ′(t), with k ′′1 a higher priority job class in the original network.

For each i (resp. i ′) it corresponds to k ′1 (resp. k ′′1 ).
Then, it is direct to verify that, for t ≥ τ2,

ḟi(t) < 0 if Q̇i(t) > 0, for i = 1, 4N, (N: even, (resp. i = 1, 4N− 2, (N: odd))

And

f1(t) ≤ fN(t) if Q1(t) = 0,

fi(t) ≤ fi−1(t) if Qi(t) = 0, i = 2, 3N, (N: even)

(resp. i = 2, 3N− 1, (N: odd))

fj(t) ≤ fi(t) if
∑
j6=i
Qj(t) = 0, j = 1, 3N, (N: even)

(resp. j = 1, 3N− 1, (N: odd))

fN(t) ≤ fN(t) if Q3N(t) = 0, (N: even) (resp. Q3N−1(t) = 0, (N: odd))

Now applying the piecewise linear Lyapunov function approach for the mul-
ticlass fluid network model described in Theorem 3.1 of Chen and Ye [4], we
obtain the conclusion (27). �
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3.2 Stabilizing N-stations priority fluid queueing networks with
N additional stations

Our N-stations multiclass queueing network is the same is above. Suppose in
this case that the higher priority is devoted to classes N,N+ 2, 2N.

Figure 3: 2N-stations priority fluid queueing network

We modify our network by adding N stations, (see Figure 3), compared
to the original network, there are N additional stations, namely the station
N+ 1, . . . , station 2N, such that, 3N+ 1 job class has high priority at station
N+ 1, and 3N+ 2, 4N job classes have higher priority at stations N+ 2, 2N.
Now, let us introduce the second main result.

Theorem 3 Suppose ρ < e holds, equation (11) not satisfied.
If

λ3N+1 > (1−m2N+1/mN)/m3N+1, λk2 > (1−mk ′
2
/mk ′′

2
)/mk2 , (28)

k ′′2 = N, 2N, k ′2 = 2N+ 1, 3N, k2 = 3N+ 1, 4N, where for each k2 it corre-
sponds to k ′2 and k ′′2 .

Then the queue length process Q(·) is positive recurrent.

In this case, when the higher priority classes are being served, the lower
priority ones cannot be served, (class 1 cannot move to class 2 and 2 cannot
move to 3,..., for further service, and vice versa. So, these later form a virtual
stations. Therefore, these later, should not exceed one for the network to be
stable. Now, let us consider the modified network. The additional classes 2N+1
and 3N+ 1, 4N act as regulators that regulate the traffics. When the workloads
of classes 3N + 1 and 3N+ 2, 4N are light, much service capacity of stations
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N+ 1, . . . , 2N are left to classes 2N+ 1, 3N respectively and hence these later
do not hold back the traffics to avoid building up of job queues at higher
priority classes of the original network. Thus, the virtual stations effect prevails
and the network is still unstable. However, when the workloads of classes
3N+ 1, 4N are heavy enough such that the condition (28) holds, the service
for lower priority classes 2N+ 1, 3N is in effect slowed down and the traffics to
the higher priority classes N and N+ 2, 2N are held back. Finally, the virtual
stations effect is avoided and the modified network is thus stabilized.

Then, following the same steps given in theorem 2, it is not difficult to prove
that there exists a time τ1 ≥ 0 such that

Qk2(t) = 0, k2 = 3N+ 1, 4N, for any t ≥ τ1. (29)

after that, we prove that there exists a time τ2 ≥ τ1 such that

QN(t) = Qk ′′
2
(t) = 0, k ′′2 = N+ 2, 2N for any t ≥ τ2. (30)

and finally, we prove that there exists a time τ ≥ τ2(≥ 0) such that

Qk ′
4
(t) = 0 k ′4=lower priority job class at stations i = 1, 2N, for t ≥ τ.

(31)

4 Conclusion

Multiclass queueing networks are effective tools for modelling many indus-
trial settings. One setting for which the model is particularly attractive is the
production flow within semiconductor manufacturing facilities.

In this paper we have studied the stabilization of N-stations queueing net-
works using its corresponding fluid network. The resulting model, fluid queue-
ing networks with additional stations depending on the service priority and
on the number of stations in the network are formally presented in Section 3.
Beyond the presentation of our modified network models “fluid networks with
additional stations”, the primary concern of the paper is the stability of such
networks. Nevertheless, stability of the artificial fluid model implies stability
of the original network (see Theorems 2 and 3).
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