T AcTa UNIV. SAPIENTIAE, MATHEMATICA, 6, 1 (2014) 46-60

&

DOI: 10.2478/ausm-2014-0017
Some applications of differential
subordination to certain subclass of
p-valent meromorphic functions involving
convolution

Abstract. By using the principle of differential subordination, we in-
troduce subclass of p-valent meromorphic functions involving convolution
and investigate various properties for this subclass. We also indicate rele-
vant connections of the various results presented in this paper with those
obtained in earlier works.
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1 Introduction

For any integer m > —p, let L, ;,, denote the class of all meromorphic functions
f of the form

flz) =27+ ) az (peN={1,2,...}), (1)
k=m

which are analytic and p-valent in the punctured disc U* ={z € C:0 < |z| <
1} = U\{0}. For convenience, we write L, 41 = Z,. If f and g are analytic in
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U, we say that f is subordinate to g, written symbolically as, f < g or f(z) <
g(z), if there exists a Schwarz function w, which (by definition) is analytic in
U with w(0) = 0 and w(z)| < 1(z € U) such that f(z) = g(w(z)) (z € U).
In particular, if the function g is univalent in U, we have the equivalence (see
[10] and [11]):

f(z) < g(z) & f(0) = g(0) and f(U) C g(U).
For functions f € L, 1, given by (1), and g € L, 1y defined by
9(z) =z P+ Y bez* (m>—p;p eN), (2)
k=m
then the Hadamard product (or convolution) of f and g is given by
(fxg)=zP+) abz=(gxf(z) (m>—p;peN). (3)
k=m
For complex parameters
(X])"')O(qand BiyeeesBs (B) ¢ Za ={0,—-1,-2,...% j= 1,2,...,8),

we now define the generalized hypergeometric function Fs(oq, ..., &q; B1,.. .,
Bs;z) by (see, for example, [14, p. 19])

_ =y (e (@ 28
qu(Och..-)o‘q»Bh---)stZ)_é (B])k---(ﬁs)k.k! (4)

(g <s+1;q,s € No=NU{0}; z € U),

where (0)y is the Pochhammer symbol defined, in terms of the Gamma func-
tion I', by

(0) _Te+v) _ 1 (v=0;6 € C* = C\{0}), 5)
YUorme o 1 e0—1)...06+v—-1) (veN;0e€C).
Corresponding to the function hy (o, ..., 0tg; B1y. .., Bs; z), defined by
hp (o, .oy g5 B1y ooy Bs;2) =27 P gFs(ary ooy g Bryeeey Bssz)y  (6)

we consider a linear operator

Hp (oo g Bryeey Bsyz)  Zp — Ly,
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which is defined by the following Hadamard product (or convolution):

Hp(otry ooy g5 By v vy Bs)f(2) = hyplory ooy &g; Bry ooy Bsy 2) + f(2). (7)

We observe that, for a function f(z) of the form (1), we have

Hp (01,2 oy &qs Bry ooy B)F(2) =2 P ) Tq (1) @iz, (8)
k=m
where (o) (e
(0.6 cee (X
Mpas (o01) = LD g (9)

(Bl)k+p (Bs)k-&-p(k"f—]?)!'

If, for convenience, we write

Hp,q,s((xl) = Hp((xh"-)“q;ﬁh"') BS)a

then one can easily verify from the definition (7) that (see [8])
2(Hp,q,s(01)F(2)) = o Hp g5 (01 + 1)F(2) — (o1 + p)Hp g5 (1) F(z).  (10)
For m = —p + 1(p € N), the linear operator H, q (1) was investigated
recently by Liu and Srivastava [8] and Aouf [2].
In particular, for q = 2,s = 1,1 > 0,31 > 0 and «y = 1, we obtain the
linear operator

Hp (o, 1;B1) f(2) = €, (0, B1)f(2)  (f € Lp),

which was introduced and studied by Liu and Srivastava [7].
We note that, for any integer n > —p and f € X,

1

. _ pn+p—1 -
Hp21(n+p,1;1)f(z) =D f(z) = ZP (1 — z)ntP

*f(z),

where D™P~1 is the differential operator studied by Uralegaddi and Somanatha
[16] and Aouf [1].

For functions f, g € X} m, we define the linear operator D}\‘,p (fxg): Zpm —
Lom A>0; peN; neNg) by

D, (Frg)(z) = (fxg)(2), (11)
D), (fxg)(z) = Dry(fxg)(z)
= (l—?\)(f*g)( )+ AzP (2P (fx g)(z)) (12)

= 7P+Z Ak +p)] a bz (A>0; peN),
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D3, (fxg)(z) = D(D),(f*g))(z)
= (1=A)D,(fxg)(z) + Az P (2P'D} ,(f x g)(2))

= zP+ ) [ +Ak+p)Pabez® (A >0; p € N),

k=m
and (in general)
DR, (f+ g)(z) = D(DY (F+ g)(2))
— 13
=z P+ Z 0+ 7\(k+p)]“akbkzk (7\ > 0) ( )

k=m

From (13) it is easy to verify that:

2 xp(f*g)(z))’z%D;;‘(f*g)(z)—(p+%mxp(f*g)(z) (A>0). (14)

For m = 0 the linear operator D} (f x g) was introduced by Aouf et al. [4].

Making use of the principle of differential subordination as well as the linear
operator D;"p(f * g), we now introduce a subclass of the function class X, 1, as
follows:

For fixed parameters A and B (—1 < B < A < 1), we say that a function f €
2pm is in the class Z}tp’m(f* g; A, B), if it satisfies the following subordination
condition:

DR (Fxg)(2) 14+Az
P “ 178z
In view of the definition of subordination, (15) is equivalent to the following
condition:

(15)

(D}, [+ g) () +p
BzP (D} (f * )(2)) + pA

<1 (zelU).

For convenience, we write

20
?,p (f*9;1 _p)_1> :Z;\l,p (f*g;C) )

where Z?)p (f * g;C) denotes the class of functions f(z) € L, satisfying the
following inequality:

R {2 (D}, (Fg) (2)} > ¢ (0<C<pzel).



50 T. M. Seoudy, M. K. Aouf

We note that:

(i) For by = A =1 1in (15), the class Z}\"p’m(f * g; A, B) reduces to the class
I)m(A,B) introduced and studied by Srivastava and Patel [15];

(i1) For by = T} q,s (1), where T, g s (1) is given by (9), and n = 0 in (15),
we have Z}\"P(f*g;/\, B) = L7 s(ot1, A, B), where the class LT, (o1, A, B)
introduced and studied by Aouf [3].

(iii) For q = 2, s = 1,01 = a > 0,31 = ¢ > 0 and a; = 1, we have
Zg}q’s(oq,A,B) = Yqc(p;m, A, B), where the class Zyc(p;m,A,B) was
studied by Patel and Cho [13].

2 Preliminary lemmas

In order to establish our main results, we need the following lemmas.

Lemma 1 [6]. Let the function h be analytic and convex (univalent) in U with
h(0) = 1. Suppose also that the function @ given by

e(z) =1+ Cp+mzp+m + Cp+m+1zp+m+] +oe (16)

i analytic in W. If

<h(z) (Rly) >0y #0), (17)

then

z
0(z) <P(z) = zim Jtpl/m—m(t)dt < h(z),
and \p is the best dominant.

For real or complex numbers a,b and ¢ (c ¢ Z; ), the Gaussian hypergeo-
metric function is defined by

ab z ala+Nbb+1) 22
2hila,bigz) =1+ AT cle+1) " (18)
We note that the above series converges absolutely for z € U and hence rep-
resents an analytic function in U (see, for details [17, Chapter 14]).

Each of the identities (asserted by Lemma 2 below) is well-known (cf., e.g.,

[17, Chapter 14]).
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Lemma 2 [17, Chapter 14]. For real or complex parameters a,b and c (c ¢
Zy)
0/

1

b—1(1 _ y\c=b—-1(7 —a g4 r(b)r P
lt (1—1) (1—zt) %dt = o) 2Fi(a, b;c;z) (19)
(%(c) > R(b) > 0),
Fi(a,bieiz) = (1-2)° JFi(a,e = bye; ——), (20)

JFi(a,biciz) = oFi(a,b—Ticiz) + %2F1(a+ LbctTz). (21

3 Main results

Unless otherwise mentioned, we assume throughout this paper that A,u >
O,m>—p, pe NyneNjand g is given by (2).

Theorem 1 Let the function f defined by (1) satisfying the following subor-
dination condition:

(1 —Wz2P (DR (Fx 9)(2)) + uP TN (DR (2 9)(2)) 1+ Az

- D “ 138z
Then . )
zPTH(DR, (f+ g)(2)) 1+ Az
— ! — 22
, <6(2) < 7, (22)
where the function G given by
— . 1 . B
oo L BHO= D08 R0 Tt + 100 (B2£0)
is the best dominant of (22). Furthermore,
P DR (F % g)(2)
N {— )"pp J >& (zel), (23)

where

a—{ g+ =30 =B 2F(L g + hesr) (B#0)
1

= A B
T Aulprm)+1 (B=0).

The estimate in (23) is the best possible.
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Proof. Consider the function ¢ defined by

+1(Pn * !
¢(z) — (Dx’p: 9)(z)) (zel). (24)

Then ¢ is of the form (16) and is analytic in U. Differentiating (24) with
respect to z and using (14), we obtain

(1= WzP (DR (F % g)(2)) + uzP (DR (F + g) (2))

P
’ 1 + Az
= )\ .
¢(z) + Az (z) < 1782
Now, by using Lemma 1 for = 5-, we obtain
P+l (DN (f !
2P(DR, (Fx g)(2)) L G(e) — ;Z_mgm ! < —|—At>
p Au(p +m)

T (
by change of variables followed by the use of the identities (19), (20) and
1 . .
(21) (witha=1,c=b+1,b = ﬂ) This proves the assertion (22) of
Theorem 1.
Next, in order to prove the assertion (23) of Theorem 1, it suffices to show
that

_{ §+(1—Am+Bz)f1zF1(1,1;M(;+m)+1;1Eg1) (B #0)
B=0

inf {R(G(2))} = G(-1). (25)

|z|<1

Indeed we have, for |z] <1 <1,

f)f{<1+/\z> - 1—Ar'

1+Bz) ~ 1—Br
Upon setting

1+ACZ and dv(() = — ' ¢mmEag (0 < ¢ < 1),

9(62) = 75, A(p + m)

which is a positive measure on the closed interval [0, 1], we get

1
Glz) = Jg(c, 2)av(Q),
0
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so that
1—-AQlr

1
0

) dv(¢) =g(—r) (zZl=r<1).

Letting r — 17 in the above inequality, we obtain the assertion (23) of Theo-
rem 1.

Finally, the estimate in (23) is the best possible as the function G is the best
dominant of (22). O

Taking u = 1in Theorem 1, we obtain the following corollary.

Corollary 1 The following inclusion property holds for the function class
p(fxg A B):

Sl (Fx g A B) C IR, (Fx g B) C IR, n(f % Gi A, B),

where
s [ BTO—DO-B R0 g+ i) (B0

The result is the best possible.

Taking u=1, A =1— %‘T (0 <0< p)and B=—1 in Theorem 1, we obtain
the following corollary.

Corollary 2 The following inclusion property holds for the function class

pm(frgo):
i (fxg0) C X, L (FxgiB)) C IRy m(f* g;0),
where

1 1
B:G‘F(P_U){ZFI(])];M+]§2)—]}'

The result is the best possible.

Theorem 2 Iff € Z}\‘)p’m(f* g;0) (0 <0 < p), then

R {2 (1= W)(DR, (F + 9)(2)) + u(DL (T 9)(2)) | } > 0 (12 <R), (26)

where 1

p+m

R= {\/1 —i—?\zuz(p—i—m)z—?\u(p—l—m)}

The result is the best possible.
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Proof. Since f € Z}\‘)p(f * g;0), we write

— 2P (DY (fxg)(z)) =0+ (p—0)ulz) (zeU). (27)

Then, clearly, u is of the form (16), is analytic in U, and has a positive real
part in U. Differentiating (27) with respect to z and using (14), we obtain

PEL (1 — W) (DL (f = T (DM (f 1+0
(- WD, (5 )(=)) + (DR (Fx 9)(2)] o) (e

p—906
(28)

Now, by applying the well-known estimate [5]

’zu/ (z)
R{u(z)

(p+m)rP™

T 2 (JzZl =r<T1)

2
=
in (28), we obtain

2P |(1— W) (DR, (F 9)(2)) + w(DYS (F+ 9)(2))'| + 6

R
poe (29)
2Au(p + m)rptm
(1 —r2(ptm))

> R{u(z)}. (1

It is easily seen that the right-hand side of (29) is positive provided that r < R,
where R is given as in Theorem 2. This proves the assertion (26) of Theorem
2.

In order to show that the bound R is the best possible, we consider the
function f € L, 1y defined by

—PH DR (Fxg)(2) =0+ (p— 03— (0<B8<ppeNzell).

Noting that

2P| (1= (DR, (F+ 9)(2)) + (DL (£ 9)(z))'| +0

p—906
1 — 2P L 2Apu(p + m)zPt™ B

o (1 — zptm)2

in
p+m

1
for z = Rr+m exp ( >, we complete the proof of Theorem 2. ]

Putting 1 =1 in Theorem 2, we obtain the following result.
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Corollary 3 If f € prm(f* g;0) (0 <0 < p;p € N), then f satisfies the

condition of Z;\‘Jrr)]m(f x g;0) for|z| < R*, where

1

R* :{ 1+)\2(p+m)2—?\(p+m)}p+m.

The result is the best possible.

Theorem 3 Let f € Z)\pm(f* g;A,B) and let
6 z
_ S+p—1 .
Fsp(f)(z) = Zé—‘ert PPt dt (6>0;ze U). (30)
0
Then B )
P (DR, (Fsp (f) x g)(2)) 1+Az
_ ) ’ < d I — 31
» (2) < 5 (31)
where the function ® given by
O(z) = FH0—=5)0+B2) 2R (L, 20 + T g2%) (B#0)
1+ éerer/\z (B =0),
is the best dominant of (31). Furthermore,
22D (Fso(f) % g)(2)
sﬁ{_ (D} 5;, REICI SRR )
where
£ = %+(16—*)(1 —B) LR, 5pn + 1 55) (B#0)
1= s (B=0).
The result is the best possible.
Proof. Defining the function ¢ by
PN DR (Fsp(f) + 9)(2))
olz) = PO TIED (2 c ), (33)

P

we note that ¢ is of the form (16) and is analytic in U. Using the following
operator identity:

2(DR (Fsp(f) * g)(2))" = 8DR, (F 5 g)(2) — (54 P)DRy (Fop(f) % 9)(z)  (34)
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in (33) and differentiating the resulting equation with respect to z, we find
that

DY (Fr9)(2) () 20 1+Az

P ¢ 5 1+Bz
Now the remaining part of Theorem 3 follows by employing the techniques
that we used in proving Theorem 1 above. O

Remark 1 By observing that

DR, (Fop(f) % 9)(2) = ijtf’*v(m (f%g)(t) dt (f € Epmiz € W),
0

(35)
the following statement holds. If >0 and f € X}, m(fxg; A B), then

z
5 /
R — 3 th’ﬂ’(D“ (fxg)(t) dt p > &" (ze U),
P 0
&* is given as in Theorem 3.

In view of (35), Theorem 3 for A =1 — %e (0<O0<ppeN)and B=-1
yields.

Corollary 4 If 6 > 0 and if f € Ly satisfies the following inequality
m{—zP“ (DR, (F + g)(z))’} >0 (0<0<ppeNzel),
then
—d

%y j(%(f*g)( 1) dt
0

5 1
—0) |,F (1,1; =) —1 u).
>0+ (p 6){21<,,p+m+,) }(ze)

2

The result is the best possible.

Theorem 4 Let f € L, . Suppose also that h € L, i satisfies the following
nequality:

R{ZP(Dy,(hxg)(z))} >0 (zel).
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If
DY (fxg)(z
Q’P( I G a1 zew,
Dy (h+g)(z)
then
2(D} (= g)(2))
R — P 0 R
where
1
R Vop +m)2 +4p2p+m)—3(p+m)| "™
0 22p+m)
Proof. Letting
DY (f*g)(z
W(Z) %) 9) ) 1= tp+mz‘p+m +tp+m+]z‘p+m+1 e (36)

- Dy (hxg)(z)

we note that w is analytic in U, with w(0) = 0 and [w(z)| < [z]P"™ (z € U).
Then, by applying the familiar Schwarz’s lemma [12], we obtain

w(z) = 2P T™Y(z),

where the functions ¥ is analytic in U and [W(z)| < 1(z € U). Therefore, (36)
leads us to

ap(f*9)(z) =Dy, (hxg)(z) (1+ ZPTMY(z)) (zeU). (37)

Differentiating (37) logarithmically with respect to z, we obtain

2D}, (Fg)(z) DY (heg)z) 2 {(p+m¥(E) +2¥ () N
D;\"p(f*g)(z) N D}\‘)p(h*g)(z) * 14 zPtmY(z) - (38)

Putting @(z) = ZPD}\"p(h % g)(z), we see that the function ¢ is of the form
(16), is analytic in U, R{e(z)} > 0(z € U) and

’

2(D},(hxg)(2)  z¢'(z)
Dy (hxg)z)  o(z)

- P



58 T. M. Seoudy, M. K. Aouf

so that we find from (38) that

2D}, (F+ 9)(2)
”{ D}, [T+ 9)(2) }

' 39
> 2¢'(2) Zptm {(p +m)¥(z) + z¥ (z)} y (39)
=P ©(z) B 1+ zptmy(z) (zel).
Now, by using the following known estimates [9]
o'(2)| 2p+mprmt
@(z) = 1 — 2(p+m) (lzl =r<T1)
and
(p+m¥(z) +2¥'(z)| _ (p+m)
< —r <]
T+ zPrmy(z) Sy (H=T<D)
in (39), we obtain
z(DY (f * z ' — p+m __ 2(p+m)
o AP T*9)@) | p=3p+m™ = (2p+ m)r (ll=r<1),
D1y (fr9)(z) 1= Zpm)

which is certainly positive, provided that r < Ry, Ry being given as in Theorem
4. O
Theorem 5 If f € L, msatisfies the following subordination condition

1+ Az

1
(1= w)2PDR, (f % g)(2) + pzP DY (F* g)(2) < 1T+B2

then , ]
R{ZPDy,(fxg)(z)}? > &3 (deNzel),

where & is given as in Theorem 1. The result is the best possible.

Proof. Defining the function ¢ by
¢(z) =2°Dy,(fx g)(z) (f € Lpymiz € U), (40)

we see that the function ¢ is of the form (16) and is analytic in U. Differenti-
ating (40) with respect to z and using the identity (14), we obtain

14+ Az
1+Bz"

(1= W2PDR, (f % 9)(2) + n2P D3 (F % 9)(2) = @(2) + Anze'(2) <
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Now, by following the lines of the proof of Theorem 1 mutatis mutandis, and
using the elementary inequality:

% (Wi ) = (Bw)d (R(w) > 0;d € N),
we arrive at the result asserted by Theorem 5. O

Remark 2 (i) Taking by = A =1 in the above results, we obtain the results
obtained by Srivastava and Patel [15];

(i1) Taking by = Ty g5 (1), where Ty, qs (1) is given by (9), and n = 0 in
the above results, we obtain the results obtained by Aouf [3].
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