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Abstract. The thermosolutal instability of Rivlin-Ericksen elastico-
viscous rotating fluid permeated with suspended particles (fine dust) and
variable gravity field in porous medium in hydromagnetics is considered.
By applying normal mode analysis method, the dispersion relation has
been derived and solved analytically. It is observed that the rotation,
magnetic field, gravity field, suspended particles and viscoelasticity in-
troduce oscillatory modes. For stationary convection, the rotation and
stable solute gradient has stabilizing effects and suspended particles are
found to have destabilizing effect on the system whereas the medium
permeability has stabilizing or destabilizing effect on the system under
certain conditions. The magnetic field has destabilizing effect in the ab-
sence of rotation whereas in the presence of rotation, magnetic field has
stabilizing or destabilizing effect under certain conditions. The effect of
rotation, suspended particles, magnetic field, stable solute gradient and
medium permeability has also been shown graphically.

1 Introduction

A detailed account of the thermal instability of a Newtonian fluid, under
varying assumptions of hydrodynamics and hydromagnetics has been given by
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Chandrasekhar [3]. Bhatia and Steiner [1] have studied the thermal instability
of a Maxwellian visco-elastic fluid in the presence of magnetic field while the
thermal convection in Oldroydian visco-elastic fluid has been considered by
Sharma [14]. Veronis [20] has investigated the problem of thermohaline con-
vection in a layer of fluid heated from below and subjected to a stable salinity
gradient. The buoyancy forces can arise not only from density differences due
to variations in solute concentration. Thermosolutal instability problems arise
in oceanography, limnology and engineering.
The medium has been considered to be non-porous in all the above studies.

Lapwood [5] has studied the convective flow in a porous medium using lin-
earized stability theory. The Rayleigh instability of a thermal boundary layer
in flow through a porous medium has been considered byWooding [21] whereas
Scanlon and Segel [13] have considered the effect of suspended particles on the
onset of Be’nard convection and found that the critical Rayleigh number was
reduced solely because the heat capacity of the pure gas was supplemented by
the particles. The suspended particles were thus found to destabilize the layer.
Sharma and Sunil [15] have studied the thermal instability of an Oldroy-

dian viscoelastic fluid with suspended particles in hydromagnetics in a porous
medium. There are many elastico-viscous fluids that cannot be characterized
by Maxwell’s constitutive relations or Oldroyd’s constitutive relations. One
such class of fluids is Rivlin-Ericksen [12] elastico-viscous fluid. Srivastava and
Singh [18] have studied the unsteady flow of a dusty elastico-viscous Rivlin-
Ericksen fluid through channels of different cross-sections in the presence of
time-dependent pressure gradient. Garg et al. [4] has studied the rectilinear
oscillations of a sphere along its diameter in conducting dusty Rivlin-Ericksen
fluid in the presence of magnetic field.
Stommel and Fedorov [19] and Linden [6] have remarked that the length

scalar characteristic of double diffusive convecting layers in the ocean may
be sufficiently large that the Earth’s rotation might be important in their
formation. Moreover, the rotation of the Earth distorts the boundaries of a
hexagonal convection cell in a fluid through a porous medium and the dis-
tortion plays an important role in the extraction of energy in the geothermal
regions. Brakke [2] explained a double-diffusive instability that occurs when
a solution of a slowly diffusing protein is layered over a denser solution of
more rapidly diffusing sucrose. The problem of thermosolutal convection in
fluids in a porous medium is of importance in geophysics, soil sciences, ground
water hydrology and astrophysics. The scientific importance of the field has
also increased because hydrothermal circulation is the dominant heat transfer
mechanism in the development of young oceanic crust (Lister, [7]). Gener-
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ally, it is accepted that comets consist of a dusty ‘snowball’ of a mixture of
frozen gases which in the process of their journey change from solid to gas and
vice-versa. The physical properties of comets, meteorites and inter-planetary
dust strongly suggest the importance of porosity in the astrophysical context
(McDonnel, [8]).
Thermal instability of a fluid layer under variable gravitational field heated

from below or above is investigated analytically by Pradhan and Samal [9].
Although the gravity field of the Earth is varying with height from its surface,
we usually neglect this variation for laboratory purposes and treat the field
as constant. However, this may not the case for large scale flows in the ocean,
the atmosphere or the mantle. It can become imperative to consider gravity
as a quantity varying with distance from the centre.
A porous medium is a solid with holes in it, and is characterized by the

manner in which the holes are imbedded, how they are interconnected and the
description of their location, shape and interconnection. However, the flow of
a fluid through a homogeneous and isotropic porous medium is governed by
Darcy’s law which states that the usual viscous term in the equations of motion

of Rivlin-Ericksen fluid is replaced by the resistance term
[
− 1

k1

(
μ + μ ′ ∂

∂t

)]
q,

where μ and μ ′ are the viscosity and viscoelasticity of the incompressible
Rivlin-Ericksen fluid, k1 is the medium permeability and q is the Darcian
(filter) velocity of the fluid (Garg et al. [4], Sharma and Sunil [15] and Sharma
and Rana [16, 17]).
Sharma and Rana [16] have studied thermal instability of Walters’ (Model

B
′

) elastico-viscous in the presence of variable gravity field and rotation in
porous medium. Sharma and Rana [17] have also studied the thermosolu-
tal instability of incompressible Walters’ (Model B

′

) rotating fluid perme-
ated with suspended particles and variable gravity field in porous medium.
Recently, Rana and Kumar [11] have studied thermal instability of Rivlin-
Ericksen elastico-viscous rotating fluid permeated with suspended particles
and variable gravity field in porous medium and thermal instability of com-
pressible Walters’ (Model B’) elastico-viscous rotating fluid a permeated with
suspended dust particles in porous medium have been studied by Rana and
Kango [10]. Keeping in mind the importance in various applications mentioned
above, our interest, in the present paper is to study the thermosolutal instabil-
ity of Rivlin-Ericksen elastico-viscous rotating fluid permeated with suspended
particles and variable field in porous medium in hydromagnetics.
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2 Mathematical formulation of the problem

Consider an infinite horizontal layer of an electrically conducting Rivlin-Ericksen
elastico-viscous fluid of depth d in a porous medium bounded by the planes
z = 0 and z = d in an isotropic and homogeneous medium of porosity ε and
permeability k1, which is acted upon by a uniform rotation Ω (0, 0,Ω) uniform
vertical magnetic field H (0, 0,H) and variable gravity g (0, 0,−g), g = λg0,
g0 (> 0) is the value of g at z = 0 and λ can be positive or negative as grav-
ity increases or decreases upward from its value g0. This layer is heated and
soluted from below such that a uniform temperature gradient β

(
=

∣∣dT
dz

∣∣) and

a uniform solute gradient β
′
(
=

∣∣dC
dz

∣∣) are maintained as shown in schematic
sketch of physical situation.
The character of equilibrium of this initial static state is determined by

supposing that the system is slightly disturbed and then following its further
evolution.
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The hydromagnetic equations in porous medium (Chandrasekhar [3], Rivlin
and Ericksen [12], Rana and Kumar [11]) relevant to the problem are

1

ε

[
∂q

∂t
+

1

ε
(q · ∇)q

]
= −

1

ρ0
∇p+ g

(
1+

δρ

ρ0

)
−

1

k1

(
υ+ υ

′ ∂

∂t

)
q

+
2

ε
(q×Ω) +

K
′

N

ρ0ε
(qd − q) +

μe

4πρ0
(∇×H)×H,

(1)

∇ · q = 0, (2)

E
∂T

∂t
+ (q · ∇) T +

mNCpt

ρ0Cf

[
ε
∂

∂t
+ qd.∇

]
T = κ ∇2T, (3)

E ′
∂C

∂t
+ (q · ∇) T +

mNC ′

pt

ρ0C
′

f

[
ε
∂

∂t
+ qd.∇

]
T = κ ′ ∇2T (4)

∇ ·H = 0, (5)

ε
∂H

∂t
= ∇× (q×H) + εη∇2H, (6)

where E = ε+(1−ε)
(
ρscs
ρ0cf

)
, ρs, cs; ρ0, cf denote the density and heat capacity

of solid (porous) matrix and fluid respectively and E ′ is a constant analogous to
E but corresponding to solute rather than heat; κ, κ ′ are the thermal diffusivity
and solute diffusivity respectively.
The equation of state is

ρ = ρ0[1− α(T − T0) + α ′(C− C0)], (7)

where the suffix zero refers to values at the reference level z = 0. Here ρ, υ, υ ′,

p, ε, T, C, μe, α, α
′, q(0, 0, 0) and H(0, 0,H) stand for density, kinematic vis-

cosity, kinematic viscoelasticity, pressure, medium porosity, temperature, so-
lute concentration, magnetic permeability, thermal coefficient of expansion, an
analogous solvent coefficient of expansion, velocity of the fluid and magnetic
field. Here qd(x, t) and N(x, t) denote the velocity and number density of the
particles respectively, K = 6πηρυ, where η is particle radius, is the Stokes drag
coefficient, qd = (l, r, s) and x = (x, y, z).
If mN is the mass of particles per unit volume, then the equations of motion

and continuity for the particles are

mN

[
∂qd

∂t
+

1

ε
(qd · ∇)qd

]
= K

′

N (q− qd) , (8)

ε
∂N

∂t
+∇ · (Nqd) = 0. (9)
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The presence of particles adds an extra force term proportional to the velocity
difference between particles and fluid and appears in the equation of motion
(1). Since the force exerted by the fluid on the particles is equal and opposite
to that exerted by the particles on the fluid, there must be an extra force term,
equal in magnitude but opposite in sign, in the equations of motion for the
particles (8). The buoyancy force on the particles is neglected. Interparticles
reactions are not considered either since we assume that the distance between
the particles are quite large compared with their diameters. These assumptions
have been used in writing the equations of motion (8) for the particles.
The initial state of the system is taken to be quiescent layer (no settling)

with a uniform particle distribution number. The initial state is

q = (0, 0, 0),qd = (0, 0, 0),

T = −βz+ T0, C = −β
′

z+ C0,

ρ = ρ0(1+ αβz− α ′β ′z),N0 = constant (10)

is an exact solution to the governing equations.

3 Perturbation equations

Let q(u, v,w), qd(l, r, s), θ, γ, δp and δρ denote, respectively, the perturba-
tions in fluid velocity q(0, 0, 0), the perturbation in particle velocity qd(0, 0, 0),

temperature T, solute concentration C, pressure p and density ρ.

The change in density δρ caused by perturbation of temperature θ and
solute concentration γ is given by

δρ = −ρ0(αθ−α
′

γ). (11)

The linearized perturbation equations governing the motion of fluids are

1

ε

∂q

∂t
= −

1

ρ0
Ωδp− g

(
αθ−α

′

γ
)
−

1

k1

(
υ+ υ

′ ∂

∂t

)
q

+
K

′

N

ε
(qd − q) +

2

ε
(q×Ω) +

μe

4πρ0
(∇× h)×H,

(12)

∇ · q = 0, (13)(
m

K ′

∂

∂t
+ 1

)
qd = q, (14)
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(E + bε)
Ωθ

∂t
= β (w+ bs) + κ∇2θ, (15)

(
E ′ + b ′ε

) Ωθ

∂t
= β ′

(
w+ b

′

s
)
+ κ ′∇2γ (16)

∇ · h = 0, (17)

ε
∂H

∂t
= (H · ∇)q+ εη∇2H, (18)

where b =
mNCpt

ρ0Cf
, b ′ =

mNC ′

pt

ρ0C
′

f
and w, s are the vertical fluid and particles

velocity.
In the Cartesian form, equations (12)–(18) can be expressed as

1

ε

(
m

K ′

∂

∂t
+ 1

)
∂u

∂t
= −

1

ρ0

(
m

K
′

∂

∂t
+ 1

)
∂

∂x
(δp)

−
1

k1

(
υ+ υ

′ ∂

∂t

)(
m

K
′

∂

∂t
+ 1

)
u−

mN

ερ0

∂u

∂t

+
μeH

4πρ0

(
∂hx

∂z
−

∂hz

∂x

)
+

2

ε

(
m

K
′

∂

∂t
+ 1

)
Ωv,

(19)

1

ε

(
m

K ′

∂

∂t
+ 1

)
∂v

∂t
= −

1

ρ0

(
m

K
′

∂

∂t
+ 1

)
∂

∂y
(δp)

−
1

k1

(
υ+ υ

′ ∂

∂t

)(
m

K
′

∂

∂t
+ 1

)
v−

mN

ερ0

∂v

∂t

+
μeH

4πρ0

(
∂hy

∂z
−

∂hz

∂y

)
2

ε

(
m

K
′

∂

∂t
+ 1

)
Ωu,

(20)

1

ε

(
m

K ′

∂

∂t
+ 1

)
∂w

∂t
= −

1

ρ0

(
m

K
′

∂

∂t
+ 1

)
∂

∂z
(δp) −

1

k1

(
υ + υ

′ ∂

∂t

)
(
m

K
′

∂

∂t
+ 1

)
w−

mN

ερ0

∂w

∂t
+ g

(
m

K
′

∂

∂t
+ 1

)
αθ,

(21)

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0, (22)

(E + bε)
Ωθ

∂t
= β (w+ bs) + κ∇2θ, (23)

(
E ′ + b ′ε

) Ωθ

∂t
= β ′

(
w+ b

′

s
)
+ κ ′∇2γ (24)

ε
∂hx

∂t
= H

∂u

∂z
+ εη∇2hx, (25)
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ε
∂hy

∂t
= H

∂v

∂z
+ εη∇2hy, (26)

ε
∂hz

∂t
= H

∂w

∂z
+ εη∇2hz, (27)

∂hx

∂x
+

∂hy

∂y
+

∂hz

∂z
= 0. (28)

Operating equation (19) and (20) by ∂
∂x

and ∂
∂y

respectively, adding and
using equation (25)-(28), we get

1

ε

(
m

K ′

∂

∂t
+ 1

)
∂

∂t

(
∂w

∂z

)
=

1

ρ0

(
m

K
′

∂

∂t
+ 1

)(
∇2−

∂2

∂z2

)
δp−

−
1

k1

(
υ+ υ

′ ∂

∂t

)(
m

K
′

∂

∂t
+ 1

)(
∂w

∂z

)
−

mN

ερ0

∂

∂t

(
∂w

∂z

)
+

+

(
m

K
′

∂

∂t
+ 1

)
eH

4πρ0
∇2hz −

2

ε

(
m

K
′

∂

∂t
+ 1

)
Ωζ,

(29)

where ζ = ∂v
∂x

− ∂u
∂y

is the z-component of vorticity.

Operating equation (21) and (29) by
(
∇2− ∂2

∂z2

)
and ∂

∂z
respectively and

adding to eliminate δp between equations (21) and (29), we get

1

ε

(
m

K ′

∂

∂t
+ 1

)
∂

∂t

(
∇2w

)
−

1

k1

(
υ − υ

′ ∂

∂t

)(
m

K
′

∂

∂t
+ 1

)
∇2w+

+ g

(
∂2

∂x2
+

∂2

∂y2

)(
m

K
′

∂

∂t
+ 1

)
αθ−

mN

ερ0

∂

∂t

(
∇2w

)
+

+
eH

4πρ0

(
m

K ′

∂

∂t
+ 1

)
∂

∂t
∇2hz −

2

ε

(
m

K
′

∂

∂t
+ 1

)
Ω
Ωζ

∂z
,

(30)

where ∇2= ∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2
.

Operating equation (19) and (20) by − ∂
∂y

and ∂
∂x

respectively and adding,
we get

1

ε

(
m

K
′

∂

∂t
+ 1

)
Ωζ

∂t
= −

1

k1

(
υ− υ

′ ∂

∂t

)(
m

K
′

∂

∂t
+ 1

)
ζ−

−
mN

ερ0

Ωζ

∂t
+

2

ε

(
m

K
′

∂

∂t
+ 1

)
Ω
∂w

∂z
+

μeH

4πρ0

(
m

K ′

∂

∂t
+ 1

)
Ωξ

∂t
,

(31)

where ξ =
∂hy

∂x
− ∂hx

∂y
is the z-component of current density.
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Operating equations (25) and (26) by − ∂
∂y

and ∂
∂x

respectively and adding,
we get

1

ε

Ωξ

∂t
= H

Ωξ

∂t
+ εη∇2ξ. (32)

4 Dispersion relation

Analyzing the disturbances into normal modes, we assume that the pertur-
bation quantities have x, y and t dependence of the form
[w, s, θ, γ, ζ, hz, ξ] = [W (z) , S (z) , Θ (z) , Z (z) , Γ (z) , K (z) , X(z)]

exp (ikxx+ ikyy+ nt) , (33)

where kx and ky are the wave numbers in the x and y directions, k =
(
kx

2 + ky
2
)1/2

is the resultant wave number and n is the frequency of the harmonic distur-
bance, which is, in general, a complex constant.
Using expression (33) in (30)–(32), (27), (23), and (24) become

n

ε

[
d2

dz2
− k2

]
W = −gk2(αΘ − α

′

Γ) −
1

k1

(
υ+ υ

′

n
)(

d2

dz2
− k2

)
W

−
mNn

ερ0

(
m

K
′ n + 1

) (
d2

dz2
− k2

)
W −

2Ω

ε

dZ

dz
+

μeH

4πρ0

d

dz

(
d2

dz2
− k2

)
K,

(34)

n

ε
Z = −

1

k1

(
υ+ υ

′

n
)
−

mNn

ερ0

(
m

K
′ n + 1

)Z+
2Ω

ε

dW

dz
+

eH

4πρ0
DX, (35)

εnX = H
dZ

dz
+ εη

(
d2

dz2
− k2

)
X, (36)

εnK = H
dW

dz
+ εη

(
d2

dz2
− k2

)
K, (37)

(E+ bε)nΘ = β (W + bS) + κ

(
d2

dz2
− k2

)
Θ, (38)

(
E ′ + b ′ε

)
nΓ = β ′

(
W + b

′

S
)
+ κ ′

(
d2

dz2
− k2

)
Γ. (39)
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Equations (34)–(39) are in non dimensional form, become[
σ

ε

(
1+

M

1+ τ1σ

)
+

1+ Fσ

Pl

](
D2 − a2

)
W +

ga2d2αΘ

υ
−

−
ga2d2α

′

Γ

υ
+

2Ωd3

ευ
DZ−

μeHd

4πυρ0

(
D2 − a2

)
DK = 0,

(40)

[
D2 − a2 − p1σ

]
X = −

(
Hd

εη

)
DZ, (41)

[
D2 − a2 − p2σ

]
K = −

(
Hd

εη

)
DW, (42)[

σ

ε

(
1+

M

1+ τ1σ

)
+

1+ Fσ

Pl

]
Z =

(
2Ωd2

ευ

)
DW +

eHd

4πυρ0
DX, (43)

[
D2 − a2 − E1p1σ

]
Θ = −

(
βd2

κ

)(
B+ τ1σ

1+ τ1σ

)
W, (44)

[
D2 − a2 − E ′

1p
′

1σ
]
Γ = −

(
β

′

d2

κ
′

)(
B

′

+ τ1σ

1+ τ1σ

)
W, (45)

where we have put

a = kd, σ =
nd2

υ
, τ =

m

K
′
, τ1 =

τυ

d2
,M =

mN

ρ0
,

E1 = E + bε, B = b + 1, F = υ
′

d2 , Pl = k1
d2 is the dimensionless medium

permeability, p1 =
υ
κ
is the thermal Prandtl number, p1 =

υ

κ
′ is the Schmidt

number, p2 = υ
η
is the magnetic Prandtl number and D∗ = d d

dz
and the

superscript * is suppressed.
Applying the operator

(
D2 − a2 − p2σ

)
to the equation (41) to eliminate X

between equations (41) and (42), we get

{[
σ

ε

(
1+

M

1+ τ1σ

)
+

1+ Fσ

Pl

](
D2 − a2 − p2σ

)
+

Q

ε
D2

}
W

=
2Ωd2

υ

(
D2 − a2 − p2σ

)
DW.

(46)
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Eliminating K,Θ and Z between equations (40)–(46), we obtain[
σ

ε

(
1+

M

1+ τ1σ

)
+

1+ Fσ

Pl

]
(D2 − a2)(D2 − a2 − E1p1σ)

(D2 − a2 − p2σ)(D
2 − a2 − E ′

1p
′

1σ)W − Ra2λ

(
B+ τ1σ

1+ τ1σ

)

(D2 − a2 − E ′

1p
′

1σ)(D
2 − a2 − p2σ)W + Sa2λ

(
B

′

+ τ1σ

1+ τ1σ

)

(D2 − a2 − E1p1σ)(D
2 − a2 − p2σ)W +

Q

ε

(D2 − a2)(D2 − a2 − E ′

1p
′

1σ)(D
2 − a2 − E1p1σ)W+

+

[ TA
ε2
(D2 − a2 − E1p1σ)(D

2 − a2 − E ′

1p
′

1σ)(D
2 − a2 − p2σ)

2[
σ
ε

(
1+ M

1+τ1σ

)
+ 1+Fσ

Pl

]
(D2 − a2 − p2σ) +

Q
ε
D2

]
D2W = 0,

(47)

where R = g0αβd
4

υκ
, is the thermal Rayleigh number,

S = g0α
′

β
′

d4

υκ
′ , is the analogous solute Rayleigh number,

Q = μeH
2d2

4πυρ0η
, is the Chandrasekhar number,

and TA =
(
2Ωd2

υ

)2

, is the Taylor number.

Here we assume that the temperature at the boundaries is kept fixed, the
fluid layer is confined between two boundaries and adjoining medium is elec-
trically non conducting. The boundary conditions appropriate to the problem
are [Chandrasekhar, (1981); Veronis, (1965)]

W = D2 W = DZ = Γ = Θ = 0 at z = 0 and 1, (48)

and the components of h are continuous. Since the components of the magnetic
field are continuous and the tangential components are zero outside the fluid,
we have

DK = 0, (49)

on the boundaries. Using the boundary conditions (48) and (49), we can show
that all the even order derivatives of W must vanish for z = 0 and z = 1 and
hence, the proper solution of equation (47) characterizing the lowest mode is

W = W0 sinπz; W0 is a constant. (50)
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Substituting equation (50) in (47), we obtain the dispersion relation

R1xλ =

[
iσ1

ε

(
1+

M

1+ τ1π2iσ1

)
+

1+ Fπ2iσ1

P

]
(1+ x)(

1+ x+ E1p1iσ1

)(
1+ τ1π

2iσ1

B+ τ1π2iσ1

)

+

S1xλ

(
1+ x+ E1p1iσ1

)
(
D2 − a2 − E ′

1p
′

1σ

) (
B

′

+ τ1π
2iσ1

B+ τ1π2iσ1

)

+
Q1

ε

(
1+ x

)(
1+ x+ E1p1iσ1

)
1+ x+ p2iσ1

(
1+ τ1π

2iσ1

B+ τ1π2iσ1

)

+

TA1

ε2
(1+ x+ E1p1iσ1)

iσ1

ε

(
1+ M

1+τ1π2iσ1

)
+ 1−Fπ2iσ1

P

(
1+ τ1π

2iσ1

B+ τ1π2iσ1

)
,

(51)

where R1 =
R
π4 , S1 =

S
π4 , TA1

= TA
π4 , x = a2

π2 , iσ1 =
σ
π2 , P = π2Pl, Q1 =

Q

π4 .

Equation (51) is required dispersion relation accounting for the effect of sus-
pended particles, stable solute gradient, magnetic field, medium permeability,
variable gravity field, rotation on thermosolutal instability of Rivlin-Ericksen
elastico-viscous fluid in porous medium.

5 Stability of the system and oscillatory modes

Here we examine the possibility of oscillatory modes, if any, in Rivlin-Ericksen
elastico-viscous fluid due to the presence of suspended particles, stable solute
gradient, rotation, magnetic field, viscoelasticity and variable gravity field.
Multiply equation (40) by W∗ the complex conjugate of W, integrating over
the range of z and making use of equations (41)–(44) with the help of boundary
conditions (48) and (49), we obtain[

σ

ε

(
1+

M

1+ τ1σ

)
+

1+ Fσ

Pl

]
I1 −

μeεη

4πυρ0

1+ τ1σ
∗

B+ τ1σ
∗

(
I2 + p2σ

∗I3

)

−
αa2λg0κ

υβ

1+ τ1σ
∗

B+ τ1σ
∗

(
I4 + E1p1σ

∗I5

)

+ d2

[
σ∗

ε

(
1+

M

1+ τ1σ

)
+

1+ Fσ∗

Pl

]
I6
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+
μeεηd

2

4πυρ0

1+ τ1σ
∗

B+ τ1σ∗

(
I7 + p2σ

∗I8

)

+
α

′

a2λg0κ
′

υβ
′

1+ τ1σ
∗

B
′

+ τ1σ∗
(I9 + E ′

1p
′

1σ
∗I10) = 0,

(52)

where

I1 =

∫ 1
0

(
|DW|

2 + a2 |W|
2
)
dz,

I2 =

∫ 1
0

(∣∣∣D2K

∣∣∣2 + a4|K|
2 + 2a2|DK|

2

)
dz,

I3 =

∫ 1
0

(
|DK|

2 + a2|K|
2
)
dz,

I4 =

∫ 1
0

(
|DΘ|

2 + a2|Θ|
2
)
dz,

I5 =

∫ 1
0

|Θ|
2
dz,

I6 =

∫ 1
0

|Z|
2
dz,

I7 =

∫ 1
0

(
|DX|

2 + a2|X|
2
)
dz,

I8 =

∫ 1
0

|X|2dz,

I9 =

∫ 1
0

(
|DΓ |2 + a2|Γ |2

)
dz,

I10 =

∫ 1
0

|Γ |
2
dz.

The integral parts I1-I10 are all positive definite. Putting σ = iσi in equation
(52), where σi is real and equating the imaginary parts, we obtain
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[
1

ε

(
1+

M

1+ τ12σi
2

)
+

F

Pl

](
I1 − d2I4

)
σi

−
μeεη

4πυρ0

[(
τ1(B− 1)

B2 + τ12σi
2

)
I2 +

B+ τ1
2σi

2

B2 + τ12σi
2
p2I3

]
σi

+
αa2λg0κ

υβ

[(
τ1(B− 1)

B2 + τ12σi
2

)
I4 +

B+ τ1
2σi

2

B2 + τ12σi
2
E1p1I5

]
σi

+
α

′

a2λg0κ
′

υβ
′

[(
τ1(B

′

− 1)

B
′2
+ τ12σi

2

)
I9 +

B
′

+ τ1
2σi

2

B
′2
+ τ12σi

2
E ′

1p
′

1I10

]
σi

+
μeεηd

2

4πυρ0

[(
τ1(B− 1)

B2 + τ12σi
2

)
I6 +

B+ τ1
2σi

2

B2 + τ12σi
2
p2I8

]
σi = 0

(53)

Equation (53) implies that σi = 0 or σi �= 0 which mean that modes may be
non oscillatory or oscillatory. The oscillatory modes introduced due to pres-
ence of rotation, stable solute gradient, magnetic field, suspended particles,
viscoelasticity and variable gravity field.

6 The stationary convection

For stationary convection putting σ = 0 in equation (51) reduces it to

R1 =
1+ x

λxB

[
1+ x

P
+

Q1

ε
+

TA1
(1+ x)P

{ε (1+ x) +Q1P} ε

]
+

S1B
′

B
, (54)

which expresses the modified Rayleigh number R1 as a function of the dimen-
sionless wave number x and the parameters TA1

, B, P,Q1 and Rivlin-Ericksen
elastico-viscous fluid behave like an ordinary Newtonian fluid since elastico-
viscous parameter F vanishes with σ.

To study the effects of suspended particles, rotation and medium perme-
ability, we examine the behavior of dR1

dB
, dR1

dTA1

, dR1

dQ1
, dR1

dS1
and dR1

dP
analytically.

Equation (54) yields

dR1

dB
= −

1+ x

λxB2

[
1+ x

P
+

Q1

ε
+

TA1
(1+ x)P

{ε (1+ x) +Q1P} ε

]
−

S1B
′

B2
, (55)

which is negative implying thereby that the effect of suspended particles is
to destabilize the system when the gravity increases upward from its value g0
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(i.e., λ > 0 ). This stabilizing effect is an agreement with the earlier work of
Scanlon and Segel [13] and Rana and Kumar [11].
From equation (54), we get

dR1

dTA1

=

(
1+ x

λxB

)
(1+ x)P

{ε (1+ x) +Q1P} ε
, (56)

which shows that rotation has stabilizing effect on the system when gravity
increases upwards from its value g0 (i.e., λ > 0). This stabilizing effect is an
agreement of the earlier work of Sharma and Rana [17], Rana and Kango [10].
From equation (54), we get

dR1

dQ1

=
1+ x

λxB

[
1

ε
−

TA1
(1+ x)P2

{ε (1+ x) +Q1P}
2
ε

]
, (57)

which implies that magnetic field stabilizes the system, if

{ε (1+ x) +Q1P}
2
> TA1

(1+ x)P2,

and destabilizes the system, if

{ε (1+ x) +Q1P}
2
< TA1

(1+ x)P2,

when gravity increases upwards from its value g0 (i.e., λ > 0).

In the absence of rotation, magnetic field has destabilizing effect on the
system, when gravity increases upwards from its value g0 (i.e., λ > 0). From
equation (54), we get

dR1

dS1
=

B
′

B
, (58)

which is positive implying thereby that the stable solute gradient has a sta-
bilizing effect. This stabilizing effect is an agreement of the earlier work of
Sharma and Rana [17],
It is evident from equation (54) that

dR1

dP
= −

(1+ x)2

λxB

[
1

P2
−

TA1
(1+ x)

{ε (1+ x) +Q1P}
2

]
, (59)

From equation (58), we observe that medium permeability has destabilizing
effect when {ε (1+ x) +Q1P}

2
< TA1

(1+ x)P2 and medium permeability has

a stabilizing effect when {ε (1+ x) +Q1P}
2 > TA1

(1+ x)P2, when gravity in-
creases upwards from its value g0 (i.e. ,λ > 0 ).
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In the absence of rotation and for constant gravity field dR1

dP
is always nega-

tive implying thereby the destabilizing effect of medium permeability which is
identical with the result as derived by Rana and Kumar [11], Rana and Kango
[10].
The dispersion relation (54) is analyzed numerically. Graphs have been plot-

ted by giving some numerical values to the parameters, to depict the stability
characteristics.
In Fig. 1, Rayleigh number R1 is plotted against suspended particles B for

λ = 2, TA1
= 5, ε = 0.5, P = 0.2, Q1 = 10, S1 = 10, B ′ = 2 for fixed wave

numbers x = 0.2, x = 0.5, and x = 0.8. For the wave numbers x = 0.2, x = 0.5,

and x = 0.8, suspended particles have a destabilizing effect.
In Fig. 2, Rayleigh number R1 is plotted against rotation TA1

for B = 3,

λ = 2, ε = 0.2 , P = 0.2, Q1 = 10, S1 = 10, B ′ = 2 for fixed wave numbers
x = 0.2, x = 0.5, and x = 0.8. This shows that rotation has a stabilizing effect
for fixed wave numbers x = 0.2, x = 0.5, and x = 0.8.

In Fig. 3, Rayleigh number R1 is plotted magnetic field Q1 for B = 3,

λ = 2, ε = 0.2, TA1
= 5, P = 0.2, S1 = 10, B ′ = 2 for fixed wave numbers

x = 0.2, x = 0.5, and x = 0.8. This shows that magnetic field has a destabilizing
effect for Q1 = 0.1 to 1.5 and has a stabilizing effect for Q1 = 1.5 to 10.

Figure 1: Variation of Rayleigh number R1 with suspended particles B for
λ = 2, TA1

= 5,Q1 = 10, ε = 0.2, P = 0.2, S1 = 10, B ′ = 2 for fixed wave
numbers x = 0.2, x = 0.5, and x = 0.8.
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Figure 2: Variation of Rayleigh number R1 with magnetic field S1 for B = 3,

λ = 2, ε = 0.2, P = 0.2, TA1
= 5,Q1 = 10, for fixed wave numbers x = 0.2, x =

0.5, and x = 0.8.

Figure 3: Variation of Rayleigh number R1 with magnetic field Q1 for B =

3, λ = 2, ε = 0.2, P = 0.2, TA1
= 5, S1 = 10, B ′ = 2 for fixed wave numbers

x = 0.2, x = 0.5, and x = 0.8.
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Figure 4: Variation of Rayleigh number R1 with magnetic field S1 for B = 3, λ =

2 , ε = 0.2, P = 0.2, TA1
= 5,Q1 = 10 for fixed wave numbers x = 0.2, x = 0.5,

and x = 0.8.

In Fig. 4, Rayleigh number R1 is plotted against stable solute gradient B ′

for B = 3, λ = 2, ε = 0.2, P = 0.2,Q1 = 10, S1 = 10, for fixed wave numbers
x = 0.2, x = 0.5, and x = 0.8. This shows that the stable solute gradient has a
stabilizing effect for fixed wave numbers x = 0.2, x = 0.5 and x = 0.8.

In Fig. 5, Rayleigh number R1 is plotted against medium permeability P for
B = 3, λ = 2, ε = 0.2, TA1

= 5, Q1 = 2, S1 = 10, B ′ = 2 for fixed wave numbers
x = 0.2, x = 0.5, and x = 0.8. This shows that medium permeability has a
destabilizing effect for P = 0.1 to 0.8 and has a stabilizing effect for P = 0.8

to 2.0.

7 Conclusion

The thermosolutal instability of Rivlin-Ericksen elastico-viscous rotating fluid
permeated with suspended particles and variable gravity field in porous medium
in hydromagnetics has been investigated. For the stationary convection, it has
been found that the rotation has stabilizing effect on the system as gravity
increases upward from its value g0 (i.e. for λ > 0). The stable solute gradi-
ent has stabilizing effect on the system and is independent of gravity field.
The suspended particles are found to have destabilizing effect on the system
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Figure 5: Variation of Rayleigh number R1 with medium permeability P for
B = 3, λ = 2 , Q1 = 2, ε = 0.2, TA1

= 5, S1 = 10, B ′ = 2 for fixed wave numbers
x = 0.2, x = 0.5 and x = 0.8.

as gravity increases upward from its value g0 (i.e. for λ > 0) whereas the
medium permeability has a stabilizing / destabilizing effect on the system
for {ε (1+ x) +Q1P}

2
< TA1

(1+ x)P2/ {ε (1+ x) +Q1P}
2
> TA1

(1+ x)P2,
as gravity increases upward from its value g0 (i.e. for λ > 0). The magnetic
field has stabilizing destabilizing effecton the system for {ε (1+ x) +Q1P}

2
>

TA1
(1+ x)P2/{ε (1+ x) +Q1P}

2
< TA1

(1+ x)P2, as gravity increases upward
from its value g0 (i.e. for λ > 0). The presence of rotation, gravity field, sus-
pended particles and viscoelasticity introduces oscillatory modes. The effects
of rotation, suspended particles and medium permeability on thermal insta-
bility have also been shown graphically.
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Nomenclature

q Velocity of fluid
qd Velocity of suspended particles
p Pressure
g Gravitational acceleration vector
g Gravitational acceleration
k1 Medium permeability
T Temperature
t Time coordinate
cf Heat capacity of fluid
cpt Heat capacity of particles
mN Mass of the particle per unit volume
k Wave number of disturbance
kx, ky Wave numbers in x and y directions
p1 Thermal Prandtl number
Pl Dimensionless medium permeability
Q Magnetic field
TA Taylor number

Symbols

ε Medium porosity
ρ Fluid density
μ Fluid viscosity
μ ′ Fluid viscoelasticity
υ Kinematic viscosity
υ ′ Kinematic viscoelasticity
η Particle radius
κ Thermal diffusitivity
κ ′ Solute diffusivity
α Thermal coefficient of expansion
α ′ Solvent coefficient of expansion
β Adverse temperature gradient
β ′ Solute gradient
Θ Perturbation in temperature
n Growth rate of the disturbance
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δ Perturbation in respective physical quantity
ζ z-component of vorticity
ξ z-component of current density
Ω Rotation vector having components (0, 0, Ω)
γ Perturbation in solute concentration
μe Magnetic permeability
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