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Abstract. In the paper, with the aid of weighted sharing method we
study the problems of meromorphic functions that share fixed points (or
a nonzero finite value) and poles with finite weights. The results of the
paper improve some recent results due to Y. H. Cao and X. B. Zhang
[Journal of Inequalities and Applications, 2012:100].

1 Introduction, definitions and results

In this paper, by meromorphic functions we will always mean meromorphic
functions in the complex plane. We adopt the standard notations in the Nevan-
linna theory of meromorphic functions as explained in [8], [15] and [16]. For
a nonconstant meromorphic function f, we denote by T(r,f) the Nevanlinna
characteristic of f and by S(r,f) any quantity satisfying S(r,f) = o{T(r,f)} as
T — 00 possibly outside a set of finite linear measure. A meromorphic func-
tion o(z)(# oo) is called a small function with respect to f, provided that
T(r, ) = S(r, f).

We say that two meromorphic functions f and g share a small function
a(z) CM, provided that f — a and g — a have the same zeros with the same
multiplicities. Similarly, we say that f and g share a(z) IM, provided that f—a
and g — a have the same zeros ignoring multiplicities. In addition, we say that
f and g share co CM, if % and 19 share 0 CM, and we say that f and g share co

2010 Mathematics Subject Classification: 30D35
Key words and phrases: meromorphic function, fixed point, weighted sharing

184


szabo.beata
Typewritten Text
DOI: 10.2478/ausm-2014-0013

szabo.beata
Typewritten Text


Meromorphic functions sharing fixed points and poles 185

IM, if % and é share 0 IM. A finite value z is a fixed point of f(z) if f(z¢) = z¢
and we define

Ef ={z € C: f(z) = z, counting multiplicities}.

In 1995, W. Bergweiler and A. Eremenko, H. H. Chen and M. L. Fang, L.
Zalcman respectively proved the following result.

Theorem A (see ([3], Theorem 2), ([5], Theorem 1) and [17]) Let f be a
transcendental meromorphic function and n(> 1) is an integer. Then ™' =1
has infinitely many solutions.

In 1997, C. C. Yang and X. H. Hua proved the following result, which
corresponded to Theorem A.

Theorem B (see [14], Theorem 1) Let f and g be two nonconstant meromor-
phic functions, n > 11 be a positive integer. If f™' and g™g’ share 1 CM,
then either f(z) = c1e*, g(z) = coe™ %, where c1, c2 and ¢ are three constants
satisfying (c1c2)™'c?2 = —1 or f = tg for a constant t such that t™ =1.

In 2000, M. L. Fang proved the following result.

Theorem C (see [6], Theorem 2) Let f be a transcendental meromorphic
function, and let 1 be a positive integer. Then f™' —z = 0 has infinitely many
solutions.

In 2002, M. L. Fang and H. L. Qiu proved the following result, which cor-
responded to Theorem C.

Theorem D (see [7], Theorem 1) Let f and g be two nonconstant meromorphic
functions, and let n > 11 be a positive integer. If ™' —z and g™g’ — z share
0 CM, then either f(z) = c1eczz, g(z) = Cze_czz, where c1, ¢2 and c are
three nonzero complex numbers satisfying 4(cic2)™'c¢? = —1 or f = tg for a
complex number t such that t™1 =1,

In 2009, J. F. Xu, H. X. Yi and Z. L. Zhang proved the following result.

Theorem E (see [12]) Let f be a transcendental meromorphic function, n(>
2), k be two positive integers. Then T takes every finite nonzero value
infinitely many times or has infinitely many fixed points.

Regarding Theorem E, it is natural to ask the following question:

Question 1 Is there a corresponding uniqueness theorem to Theorem E?
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Recently, Y. H. Cao and X. B. Zhang proved the following results which
deal with Question 1.

Theorem F (see [4], Theorem 1.1) Let f and g be two transcendental mero-
morphic functions, whose zeros are of multiplicities at least k, where k is a
positive integer. Let n > max{2k—1,k+4/k—+4} be a positive integer. If ™)
and g™g'®) share z CM, f and g share oo IM, then one of the following two
conclusions hold:

(i) ) = gnglh;

(ii) f(z) = C1eczz, g(z) = Cze_czz, where ¢y, ¢2 and ¢ are constants satisfying
4(cqe)™ T2 = —1.

Theorem G (see [4], Theorem 1.2) Let f and g be two nonconstant mero-
morphic functions, whose zeros are of multiplicities at least k, where k is a
positive integer. Let 1 > max{2k—1,k+4/k-+4} be a positive integer. If f™f¥)
and g™g'®) share 1 CM, f and g share oo IM, then one of the following two
conclusions hold:

(i) fnf(k) _ gng(k)’.

dz

(i) f(z) = c3e%, g(z) = cqe™ 9%, where c3, cq4 and d are constants satisfying
(

—1 )k(C3C4)anZk —1.

Regarding Theorem F and Theorem G, one may ask the following questions
which are the motive of the author.

Question 2 Is it really possible in any way to relax the nature of sharing the
fized point (1-point) in Theorem F' (Theorem G) without increasing the lower
bound of n?

Question 3 What will be the IM-analogous of Theorems F and G?

In the paper, we will prove two theorems first one of which improves The-
orem F' and second one improves Theorem G and dealt with Question 2 and
Question 3. To state the main results of the paper we need the following notion
of weighted sharing of values introduced by I. Lahiri [9, 10] which measure how
close a shared value is to being shared CM or to being shared IM.

Definition 1 Let k be a nonnegative integer or infinity. For a € C U {oco} we
denote by Ex(a;f) the set of all a-points of f where an a-point of multiplicity
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m is counted m times if m < k and k+1 times if m > k. If Ex(a;f) = Ex(a; g),
we say that f, g share the value a with weight k.

The definition implies that if f, g share a value a with weight k, then zg is
an a-point of f with multiplicity m(< k) if and only if it is an a-point of g
with multiplicity m(< k) and zg is an a-point of f with multiplicity m(> k)
if and only if it is an a-point of g with multiplicity n(> k), where m is not
necessarily equal to n.

We write f, g share (a,k) to mean that f, g share the value a with weight k.
Clearly if f, g share (a,k) then f, g share (a,p) for any integer p, 0 < p < k.
Also we note that f, g share a value a IM or CM if and only if f, g share
(a,0) or (a,oc0) respectively.

We now state the main results of the paper.

Theorem 1 Let f and g be two transcendental meromorphic functions, whose
zeros are of multiplicities at least k, where kK is a positive integer. If ) and
g™g'® share (z,1), where |, n are positive integers; f and g share oo IM, then
conclusions of Theorem F hold provided one of the following holds:

(i) 1> 2 and n > max{2k — 1,k +4/k + 4};
(ii)) L=1 and n > max{2k — 1,3k/2 4+ 5/k + 5};
(iii)) 1 =0 and n > max{2k — 1,4k + 10/k + 10}.

Theorem 2 Let f and g be two nonconstant meromorphic functions, whose
zeros are of multiplicities at least k, where K is a positive integer. If %) and
g™g™ share (1,1), where |, n are positive integers; f and g share oo IM, then
conclusions of Theorem G hold provided one of the following holds:

(i) 1> 2 and n > max{2k — 1,k +4/k + 4};
(ii)) L=1 and n > max{2k —1,3k/2 4+ 5/k + 5};
(iii) 1 =0 and n > max{2k — 1,4k + 10/k + 10}.
We now explain some definitions and notations which are used in the paper.

Definition 2 [8] For a € C U {co} we denote by N(r,a;f |= 1) the count-
ing functions of simple a-points of f. For a positive integer p we denote by
N(r, a;f |> p) the counting function of those a-points of f (counted with proper
multiplicities) whose multiplicities are not less than p. By N(r,a;f [> p) we
denote the corresponding reduced counting function.

Analogously we can define N(r, a;f |[< p) and N(r,a;f |< p).
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Definition 3 [10] Let k be a positive integer or infinity. We denote by Ny (r, a; f)
the counting function of a-points of f, where an a-point of multiplicity m is
counted m times if m < k and k times if m > k. Then

Ni(r,a;f) = N(r,a;f) + N(r,a;f [> 2) + - + N(r, a; f [> k).

Clearly Nq(r, a;f) = N(r, a; f).

Definition 4 [1] Let f and g be two nonconstant meromorphic functions such
that f and g share the value 1 IM. Let zo be a 1-point of f with multiplicity
P and also a 1-point of g with multiplicity q. We denote by Ny (r,1;f) the
counting function of those 1-points of f and g, where p > q, by N(Ek(r,kf)
(k > 2 is an integer) the counting function of those 1-points of f and g, where
p = q > k, where each point in these counting functions is counted only once.
In the same manner we can define Ny (r,1;g) and N](Ek(r, 1;9).

Definition 5 [9, 10] Let f and g be two nonconstant meromorphic functions
such that f and g share the value a IM. We denote by N, (r,a;f,g) the re-
duced counting function of those a-points of f whose multiplicities differ from
the multiplicities of the corresponding a-points of g. Clearly Ny (v, a;f, g) =
N, (r,a;9,f) and N, (r,a;f, g) = N (r, a;f) + N (7, a; 9).

2 Lemmas

In this section we present some lemmas which will be needed in the sequel.
Let F and G be two nonconstant meromorphic functions defined in C. We shall
denote by H the following function:

F” 2F G” 2G’
H= (F’_F—1> h <G’_G—1)'
Lemma 1 [13] Let f be a nonconstant meromorphic function and let an(z)(#

0), an_1(2),...,ao(z) be meromorphic functions such that T(r, ai(z)) = S(r, )
fori=0,1,2,...,n. Then

T(r,anf™+ an 1™ "+ ...+ aif + ap) = nT(r, ) + S(r, f).

Lemma 2 [16] Let f be a nonconstant meromorphic function, and let k be
positive integer. Suppose that f0 % 0. Then

N (r,O;f(k)> < N(r,0:f) + kN(r, 00: f) + S(r, ). (1)
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Lemma 3 [18] Let f be a nonconstant meromorphic function, and p, k be
positive integers. Then

N, (r, O;f(k)) < kN(r, 00, ) + Ny (1, 0;F) + S(r, f). (2)

Lemma 4 [2] Let F, G be two nonconstant meromorphic functions sharing
(1,2), (00,0) and H#£ 0. Then
(i) T(r,F) < Na(r, 05F)+No(r,0; G)+N(r, 00; F)+N (1, 00; G)+N. 1, 00} F, G) —
m(r,1;6) = NE (1, 1;F) = Ni(r, 1;G) + S(r,F) + S(r, G);
(i) T(r, G) < Na(r,0;F)+Na(r,0; G)+N(r, 00 F)+N(r, 00; G)+ N, (1, 00; F, G)—
m(r, 1;F) = N (r,1;G) — Ni(r, 1;F) + S(r, F) + S(r, G).

Lemma 5 [11] Let F, G be two nonconstant meromorphic functions sharing
(1,1), (00,0) and H# 0. Then

(i) T(r,F) < Na(r,0;F)+Nz(r,0; G)Jr N(r, 00; F)+N(1, 00; G)+ N(r,O;F)+
N, (r,00;F, G) + S(r,F) + S(r, G);
(i) T(r,G) < Na(r,0;F)+N2(r,0; G)+N(r, 00; F)+3N(r, 00; G)+IN(r, 0; G) +

N, (r,00;F, G) + S(r,F) + S(r, G).

Lemma 6 [11] Let F, G be two nonconstant meromorphic functions sharing

(1,0), (00,0) and H#£ 0. Then

(i) T(r,F) < Nz(T 0: F)4+Ny(r, 0; G)+3N(r, 00; F)+2N(r, 00; G)+2N (1, 0; F)+

N(r,0;G) + Ny (r,00;F, G) + S(r,F) + S(r, G);
(ii)) T(r,G) < NZ(T 0; F)4+Nz(1,0; G)+2N(r, 00; F)+3N(r, 00; G)+N(r, 0; F) +
2N(1,0;G) + N, (r,00;F, G) + S(r,F) + S(r, G).

Lemma 7 [4] Let f and g be nonconstant meromorphic functions, whose zeros
are of multiplicities at least k, where k is a positive integer. Let n > 2k —
1 be a positive integer. If f, g share oo IM and if T gngk) = 22 then
f(z) = c1eC7'2, gz) = Cze_czz, where c1, ¢2 and ¢ are three constants satisfying
4(crcr)™ e = —1.

Lemma 8 [4] Let f and g be nonconstant meromorphic functions, whose zeros
are of multiplicities at least k, where k is a positive integer. Let n > 2k —
1 be a positive integer. If f, g share oo IM and if ffgng®) = 1, then
f(z) = c3e9%, g(z) = c4e %, where c3, c4 and d are three constants satisfying
(—1)*(czca)™ a2k =1.
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3 Proof of the theorems

Proof of Theorem 1. We consider F(z) = ¥, G(z) = g"g'¥, Fy(z) =
F(z)/z and Gq(z) = G(z)/z. Then F;, G; are transcendental meromorphic
functions that share (1,1) and f, g share (0o, 0). Since f and g are transcen-
dental, z is a small function with respect to both F and G. We now discuss the
following two cases separately.

Case 1 We assume that H # 0. Now we consider the following three subcases.
Subcase 1 Suppose that 1 > 2. Then using Lemma 4 we obtain

T(r,F) < T(r,F1) + S(r,F)
< Ny(r,0;F1) + N3(1,0;G1) + N(r,00; F1) + N(1,00; G1)
+ N, (r,00;F1,G1) —m(r,1;G1) — NP(r, 1;Fy)

_ (3)
—Ng(r,1;Gq1) + S(r,Fq) + S(r, Gq)
S NZ(T) O) F) + NZ(T) ov G) + N(T, (SN F) + N(T, (SN G)
+ N, (r,00;F, G) + S(r,F) + S(r, G).
Noting that
N*(T,OO,F,G) :NL(T)OO)F)+NL(T,OO)G) (4)
S N(T? m?F) - N(‘r? (X),G),
we obtain from (3) that
T(r,F) < Na(r,0;F) + Na(r,0; G) 4+ 2N(r, 00; F) + N(r, 00; G) 5)
+S(r,F) + S(r, G).
Obuviously,
N(r,00;F) = (n 4+ 1)N(r, 00; ) + kN(1, 00; f) + S(r, f). (6)
Again

nm(r, f) = m(r, F/£%) < m(r, F) + m(r, 1/f%) + S(r, f)
m(r, F) + T(r, %) = N(r,0: %)) + S(r, f) (7)
<m(r,F) 4+ T(r, ) + kKN(r, 00, f) — N(r,0; £ 5} + S(, f).
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From (6) and (7) we obtain

(n—NT(rf) < T(r,F)=N(ro0;f) = N(r,0;f®) + S(r, f).  (8)
Similarly,

(n—=1T(r,g) < T(r,G)—N(r,00;9) —N(r,0;g™)) +S(r,9).  (9)
Using (6), Lemma 2 we obtain from (8)

(n—DT(r,f) < Ny(r,0;F) + Ny(r,0;G) + 2N(r, 00; F) + N(r, 00; G)
— N(r,00;f) — N(r,0; ¥ 4+ S(r, f) + S(, g)
< Na(r,0;f) + Na(r, 05.g) + Na(r, 0; ) + N (r, 0; ')
+ 2N(r, 00; f) + N(r,00; g) — N(7, 00; f)
—N(r,0; ) +S(r,f) + S(r, g)
< 2N(r,0;f) + 2N(r,0;g) + N(r,0; &) + N(r,0; g*))
+ 2N(r, 00; f) + N(r, 00; g) — N(r, 00; f)
— N(r,0;f)) + S(r,f) + S(r, ) (10)
< 2N(1,0;f) + 2N(r,0;g) + N(1,0;g) + N(r, 00; f)
+ (k+ 1)N(r, 00;g) + S(r,f) + S(7,9)

N

< =N(r,0;f) + N(rOg)+N(rOg)+N(roog)
(k+1)N(r,oo,g)—|—S(r,f)—|—S(r,g)
< (T, f) +T(r,g)) + (k4 3)T(r, 9)
+S(r,f) + S(r, g9).

(_\.

~IN

Similarly,
(n—1)T(r,g) < %(T(T,f) +T(r,g) + (k+3)T(r, 1)
+S(r,f) + S(r, g). (11)
Combining (10) and (11) we get
(n - k_4/k_4)(T(T,f) + T(T‘, g)) S S(T)f) + S(T) 9))

a contradiction with the fact that n >k +4/k+ 4.
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Subcase 2 Let | = 1. Then using (4) and Lemma 5 we obtain

T(r,F) <T(r,F1) +S(r,F)

N W

< Na(1,0;F1) + N2(r,0;Gq) + SN (1, 00;F1) + N(1,00; G1)
4 NL(1,001F1, G1) + 9 NIr,0;F1) 4 S(r,F1) +S(r, Go)

< Na(r,0;F) + Ny(1,0;G) + %N(r, o0; F) + N(r, 00; G) (12)
+ N, (r,00;F, G) + %N(r,O;F) +S(r,F) + S(r, G)

< No(r,0;F) + Na(r,0;G) + gﬁ(r, o0; F) + N(r, 00; G)

+ %N(r,O;F) + S(r,F) + S(r, G).

Using (12), Lemma 2 and Lemma 3 we obtain from (8)
(Mm—1)T(r,f) < Nz(r,0;F) +N(r,0;G) + %N(r, 00; F) + N(r, 00; G)

+1N(T, 0;F) — N(r, 00;f) — N(r, O;f(k))

2
+S(r,f) + S(r, g)
< No(r,05f) + Na(r,0;9) + Na(r, 0, F*) + Ny (r,0,g™)
5 _ 1
+§N(T‘, 00;T) + N(r,00;g) + EN(r,O;f)
1—
—I—EN(T,O;f(k)) — N(r,00;f) — N(r, 0; )
+S(r,f) + S(r, g)
< gﬂ(r, 0;) + 2N(r,0;g) + N(r,0; f*)) 4 N(r,0; g™
5 — 1
+§N(T) OO,f) + N(T) o035 g) + ENkJﬂ (T)O»f)
k—
—I—EN(r, o0 f) — N(r, 00; f) — N(r, 0; f*))
+S(r,f) + S(r, g)
k+6— _ _
< ——N(1,0;f) + 2N(1,0;g) + (k+ 1)N(r, 00; )

2
K+ 3
N(r0:g) + %N(r, 00: ) + S(r, ) + S(r, g)
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< %N(r,o;f) + ki:zN(r, 0;9) + Sk+5
+S(r,f) + S(r, g)
(2 + ]> (T(r,f) +T(r,9)) + lT(r f) +
k 2 ' ’ k

+S(r,f) + S(r, g).

N(r, 00; g)

3k+6
2

IN

T(r,g)

This implies

k2
3k+6

<n— - L) T f) < <2 N ‘) (T(r, )+ T(r, 9))

+ T(r,g) + S(r,f) + S(r, g).

Similarly,

<n— - L) Tirg) < <]2< + ;) (T, ) + T(r, g))

3k+6

+ T(r,f) + S(r,f) + S(r,g).

From (13) and (14) we obtain
(n= 3 = 5 =5) (0,71 Tlr,00) < 501,11+ 5(r,9),

a contradiction with our assumption that n > 3k/2+5/k + 5.

Subcase 3 Let | =0. Then using (4) and Lemma 6 we obtain

T(r,F) <T(r,Fy) +S(r,F)
< Na(r,0;F1) + Na(r,0;G1) 4+ 3N(r, 00; F1) + 2N(7, 00; G1)
+ N, (1, 00;F1, G7) + 2N(r,0; F1) + N(r,0; G1)
+ S(r,F1) + S(r, Gq)
< Na(r,0;F) + N(r,0; G) + 3N(r, 00; F) + 2N(r, 00; G)
+ N (r,00;F, G) + 2N(r,0; F) + N(r,0; G) + S(7,F) + S(r, G)
< Na(1,0;F) + Na(r,0; G) + 4N(r, 00; F) + 2N(r, 00; G)
+ 2N(r,0;F) + N(r,0; G) + S(r,F) + S(r, G).

(15)
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Using (15), Lemma 2 and Lemma 3 we obtain from (8)

(n—DT(r,f) <

IN

IN

IN

IN

IN

IN

This gives

(

2

n—2k— . —5) T(r,f) < <1 + i) (T(r,f)+T(r,g))

Similarly,

(

NP _5> Tir.g) < <1 + i) (T(r, ) + T(r, 9))

k

No(r,0;F) + Na(1,0; G) + 4N (1, 00; F) + 2N(1, 00; G)
+2N(r,0;F) + N(r,0; G) — N(r, 00; f) — N(r, 0; <))
+S(r,f) + S(r, g)

4N(r,0;f) + 3N(r,0;g) 4+ Na(r,0; f¥) + Ny(r,0;g¥)
+4N(r, 00; f) + 2N(r, 00; ) + 2N(r, 0; 1)) + N(r,0; )
—N(r,00;f) — N(r,0; ) + S(r, f) + S(r, g)

4N(r,0;f) + 3N(r,0;9) + N(r,0; g™ + 2N (r, 0; f )
+N(r,0; ™) 4+ 3N(r, 00; f) + 2N(r, 00; )

+S(r,f) + S(r, g)

4N(1,0;f) 4+ 3N(r,0;9) + N(1,0;g) + 2Ny 1(r, 0; )

+ Ny 1(1,0;9) 4 (2k + 3)N(r, 00; f) + (2k + 2)N(r, 00; g)
+S(r,f) + S(r, g)

(2k + 6)N(r,0;f) + (k +4)N(r,0;g) + N(r,0; )

+(2k + 3)N(r, 00; f) + (2k + 2)N(r, 00; g)

+S(r,f) + S(r,g)

k7;:4(N(r,0;f) +N(r,0;9)) + ki:zN(r,O;f)
+N(7,0;g) + (2k 4+ 3)N(r, 00; f) 4+ (2k + 2)N(1, 00; g)
+S(r,f) + S(r, g)

<1 + i) (T(r,f) + T(r,9)) + <2k = % +4> T(r,f)

+(2k + 3)T(r,g) + S(r,f) + S(r, g).

(16)
+ (2k 4+ 3)T(r,g) + S(r,f) + S(r, g).

(17)
+(2k 4 3)T(r,f) + S(r, f) + S(r, 9).
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In view of (16) and (17) we obtain
(k=30 =10) (T A1 Tirg)) < S(r,) 4 S(r,g),

which contradicts our assumption that n > 4k + 10/k + 10.

Case 2 We now assume that H=0. That is

F/2F Gi 261\ _,
Fl o Fi—1 Gl Gi—1)

Integrating both sides of the above equality twice we get

1T A N
Fi—1 G;—1

B, (18)

where A(# 0) and B are constants. From (18) it is clear that Fy and G
share 1 CM and hence they share the value 1 with weight 2, and therefore,
n>k+4/k+4. Now we consider the following three subcases.

Subcase 4 Let B # 0 and A = B. Then from (18) we get

1 BG
Fi—1 G -1

If B = —1, then from (19) we obtain

Fi1Gy =1,
i.e.,
f“f(k)g“g(k) = Z2,
7022

Therefore by Lemma 7 we obtain f(z) = c1eczz, g(z) =cae , where ¢c1, ¢2

and ¢ are three constants satisfying 4(c1c2)™'c¢? = —1. If B # —1, from (19)

we have % = (HE)%, and therefore, N(r, H%; G1) = N(1,0;F1). Now using

the second fundamental theorem of Nevanlinna, we get

T(r,G) < T(r,G1) +5(r,G)

1+ B
(r,0;F1) + N(r,0; G1) + N(r,00; G1) + S(r, G)
(r,0;F) + N(1,0;G) + N(r,00; G) + S(1, G).

_ _ 1 _
<N(r,0;G1) +N (r,;G1)+N(r,oo;G1)~I—S(r,G) (20)
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Using (20), Lemma 2 and Lemma 3 we obtain from (9)

(m—1)T(r,g) < N(r,0;F)+N(r,0;G) + N(r,00; G) — N(r,00; g)
—~N(r,0;9™) +S(r, g)

< N(r,0;f) + N(r,0;9) + N(r,00; g) + N(r,0; f¥)
+N(r,0;9™) — N(r,00;g) — N(r,0; g™
+S(r,f) + S(r, 9)

< N(1,0;f) + N(1,0;9) + Nyj1(r,0; f) + kN(r, 00; f)
+S(r,f) + S(r, g)

< k—:ZN(r,O;f) + %N(r,o; g) + KN(r, o0: f)
+S(r,f) + S(r, g)
1 1

< (T )+ Tlrg) 4+ (ke o+ DT f)

+S(r,f) + S(r, g).

Thus we obtain
(n—k— ’ —2) (T(r, )+ T(r, 9)) < S(r, ) + S(r, g),

a contradiction as n >k +4/k + 4.

Subcase 5 Let B # 0 and A # B. Then from (18) we get Fy = (B+|;)GG]]+_(9\3__S+”)

and so, N(r, B*B’iﬁ;G]) = N(r,0;F1). Proceeding as in Subcase J we obtain a

contradiction.

Subcase 6 Let B = 0 and A # 0. Then from (18) we get F1 = %
and Gy = AFy — (A —1). If A # 1, we have N(r, 275 Fq) = N(r,0;G1) and
N(r,1—A;Gq) = N(r,0;Fq). Using the similar arguments as in Subcase 4 we
obtain a contradiction. Thus A = 1 which implies F1 = Gy, and therefore,
frflk) — g“g(k).

This completes the proof of Theorem 1. O
Proof of Theorem 2. Using Lemma 8 and proceeding similarly as in the
proof of Theorem 1, we can prove Theorem 2. O
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