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Abstract. In this paper, we consider the performance evaluation of two
retrial queueing system. Customers arrive to the system, if upon arrival,
the queue is full, the new arriving customers either move into one of
the orbits, from which they make a new attempts to reach the primary
queue, until they find the server idle or balk and leave the system, these
later, and after getting a service may comeback to the system requiring
another service. So, we derive for this system, the joint distribution of
the server state and retrial queue lengths. Then, we give some numerical
results that clarify the relationship between the retrials, arrivals, balking
rates, and the retrial queue length.

1 Introduction

In the parlance of queueing theory, such a mechanism in which ejected (or
rejected) customers return at random intervals until they receive service is
called a retrial queue. Retrial queues have an important application in a wide
variety of fields, they are likewise prevalent in the evaluation and design of
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computer networks as they are in telecommunications, computer networks,
and particularly wireless networks.

A retrial queue is similar to any ordinary queueing system in that there
is an arrival process and one or more servers. The fundamental differences
are firstly, the entities who enter during a down or busy period of the server
or servers may reattempt service at some random time in the future, and
secondly a waiting room, which is known as a primary queue in the context
of retrial queues, is not mandatory. In place of the ordinary waiting room is a
buffer called an orbit to which entities proceed after an unsuccessful attempt
at service, and from which they retry service according to a given probabilistic
or deterministic policy.

Owing to the utility and interesting mathematical properties of retrial queue-
ing models, a vast literature on the subject has emerged over the past several
decades. For a general survey of retrial queues and a summary of many results,
the reader is directed to the works of [6, 8, 7, 5, 12, 15] and references therein.

In [4] Choi and Kim considered the M/M/c retrial queues with geometric
loss and feedback when c = 1, 2, they found the joint generating function of the
number of busy servers and the queue length by solving Kummer differential
equation for c = 1, and by the method of series solution for c = 1, 2. Retrial
queueing model MMAP/M2/1 with two orbits was studied by Avrachenkov,
Dudin and Klimenok [3], in their paper, authors considered a retrial single-
server queueing model with two types of customers. In case of the server oc-
cupancy at the arrival epoch, the customer moves to the orbit depending on
the type of the customer. One orbit is infinite while the second one is a finite.
Joint distribution of the number of customers in the orbits and some perfor-
mance measures are computed. An M/M/1 queue with customers balking was
proposed by Haight [9], Sumeet Kumar Sharma [10] studied the M/M/1/N

queuing system with retention of reneged customers, Kumar and Sharma [11]
studied a single server queueing system with retention of reneged customers
and balking. Kumar and Sharma [14] consider a single server, finite capac-
ity Markovian feedback queue with balking, balking and retention of reneged
customers in which the inter-arrival and service times follow exponential dis-
tribution. In our paper, we consider a retrial queueing model with two orbits
O1 and O2, balking and feedback. In case of the server occupancy at the arrival
epoch, the arriving customers have to choose between the two orbits depend-
ing on their thresholds if they decide to stay for an attempt to get served or
leave the system (balk), and after getting a service, customers may comeback
to the system requiring another service. The main result in this work consists
in deriving the approximate analysis of the system.
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2 Mathematical model

Figure 1: Retrial queueing model with balking and feedback

We consider a retrial queueing model with two orbits O1 and O2, new cus-
tomers arrive from outside to the service node according to a poisson process
with rate λ. If the queue is not full upon primary call arrivals, then the cus-
tomers wait in the queue, thus will be served according to the FIFO order,
where service times B(t) are assumed to be independent and exponentially
distributed with mean 1/μ. However, if upon arrival, the customers find the
queue full, then they decide to stay for an attempt to get served with probabil-
ity β̄ = 1 − β or leave the system with probability β, 0 ≤ β ≤ 1. The arriving
customers who decide to stay for an attempt, they have to choose one of the
orbits O1, O2; depending on their thresholds; if the number of customers in
orbit O1 is quite larger than that of orbit O2, the customer will move into
the orbit O2 with probability β̄β2; 0 ≤ β2 ≤ 1, otherwise he/she removes into
orbit O1 with probability β̄β1; 0 ≤ β1 ≤ 1.

Notice that if the threshold of customers in orbit O1 is quite larger than
that of orbit O2, the customers in orbit O1 will make the attempts firstly and
vice versa. Afterward, customers go in the retrial queues and make attempts
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to reach the primary queue, where the attempt times are assumed also to be
independent and exponentially distributed with mean 1/αi, i = 1, 2. Finally,
after the customer is served completely, he/she may decide either to join the
retrial groups O1 or O2 again for another service with probability ξ̄δ1; (δ1 is
the probability that the customer chooses orbit O1 ), with 0 ≤ δ1 ≤ 1, or ξ̄δ2;

(δ2 is the probability that the customer chooses orbit O2 ), with 0 ≤ δ2 ≤ 1,

or leaves the system forever with probability ξ, 0 ≤ ξ ≤ 1.

This sort of system abstracts and characterizes different practical situations
in the telecommunication networks. For example, the mechanism based auto-
matic repeat request protocol in data transmission systems may be modeled
by a retrial queue system with feedback, since lost packets are negatively ac-
knowledged by the receivers, then the senders send them once again.

In this paper we provide approximate expressions for our queueing perfor-
mance measures; we investigate the joint distribution of the server state and
queue length under the system steady state assumption. The condition of sys-
tem stability is assumed to be hold, Further analysis around the stability of
retrial queues can be found in [2], where E. Altman and A. A. Borovkov pro-
vided the general conditions under which ρ (system’s load) < 1 is a sufficient
condition for the stability of retrial queuing systems.

3 Main result

Theorem 1 For our retrial queueing model with two orbits, balking and feed-

back in the steady state:

1. The average of the queue length along the idle period of the server is

expressed by

E(Ni, S = 0) = mi

(
β

β̄βi

(
β̄βi(λ + αi) + ξ̄δiμ

β(λ + αi) + μ(1 − δiξ̄)

)
(

αiβ + μ(1 − δiξ̄)

λ
− β̄βi

)

F

{
ββ̄i(λ + 2αi) + ξ̄δiμ

ββiαi

,
β(2αi + λ) + μ(1 − δiξ̄)

βαi

,
λβ̄βi

αiβ

}
+

(
αiβ

3

λβ̄2β2
i

)
(

β̄βi(λ + αi) + ξ̄δiμ

β(λ + αi) + μ(1 − δiξ̄)

)(
β̄βi(λ + 2αi) + ξ̄δiμ

β(λ + 2αi) + μ(1 − δiξ̄)

)

−β̄βiF

{
βiβ̄(λ + αi) + ξ̄δiμ

β̄βiαi

,
β̄βi(αi + λ) + μδiξ̄

β̄βiαi

,
λβ̄βi

αiβ.

})
.
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2. The average of the queue length along the busy period of the server is

expressed by

E(Ni, S = 1) = mi

(
β

β̄βi

(
β̄βi(λ + αi) + ξ̄δiμ

β(λ + αi) + μ(1 − δiξ̄)

)

F

{
ββ̄i(λ + 2αi) + ξ̄δiμ

ββiαi

,
β(2αi + λ) + μ(1 − δiξ̄)

βαi

,
λβ̄βi

αiβ

})
.

3. The average of the queue length is given by

E(N, S = 0) + E(N, S = 1) =

2∑
i=1

mi

(
β

β̄βi

(
β̄βi(λ + αi) + ξ̄δiμ

β(λ + αi) + μ(1 − δiξ̄)

)

(
αiβ + μ(1 − δiξ̄)

λ
+ 1 − β̄βi

)

F

{
ββ̄i(λ + 2αi) + ξ̄δiμ

ββiαi

,
β(2αi + λ) + μ(1 − δiξ̄)

βαi

,
λβ̄βi

αiβ

}

+

(
αiβ

3

λβ̄2β2
i

)(
β̄βi(λ + αi) + ξ̄δiμ

β(λ + αi) + μ(1 − δiξ̄)

)
(

β̄βi(λ + 2αi) + ξ̄δiμ

β(λ + 2αi) + μ(1 − δiξ̄)

)

F

{
ββ̄i(λ + 3αi) + ξ̄δiμ

ββiαi

,
β(3αi + λ) + μ(1 − δiξ̄)

βαi

,
λβ̄βi

αiβ

}

−β̄βiF

{
βiβ̄(λ + αi) + ξ̄δiμ

β̄βiαi

,
β̄βi(αi + λ) + μδiξ̄

β̄βiαi

,
λβ̄βi

αiβ

})
.

Proof. To prove the theorem, we should firstly introduce the system statis-
tical equilibrium equations for the system, so let us denote N1(t), N2(t) the
number of repeated calls in the the retrial queue O1 respectively O2 at time t,

and S(t) represents the server state, where it takes two values 1 or 0 at time t

when the server is busy or idle respectively. Thus, a process {S(t), N1(t), N2(t)}

which describes the number of customers in the system is the simplest and si-
multaneously the most important process associated with the retrial queueing
system described in Fig.1.

To simplify our analysis, we suppose that the service time function B(t) is
exponentially distributed. Thus, {S(t), N1(t), N2(t)} forms a markov process,
where we can consider the markov chain of this process representing this sys-
tem is embedded at jump customers arrival times rather than a chain embed-
ded at service completion epochs. Hence, the process {(S(t), N1(t), N2(t)) : t �
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0} forms a Markov chain with a state space {0, 1}× {0, 1, ..., N1}× {0, 1, ..., N2},

where {S, N1, N2} ≈ limt→∞{S(t), N1(t), N2(t)} in the steady state.
As a result, in the steady state the joint probabilities of server state S and
the retrial queue lengths N1, N2, P0n1n2

= P{S = 0, N1 = n1, N2 = n2},

and P1n1n2
= P{S = 1, N1 = n1, N2 = n2}, can be characterized through the

corresponding partial generating functions for |z1| ≤ 1, |z2| ≤ 1 by P0(z1) =∑∞
n1=0 P0n1n2

z
n1

1 , P0(z2) =
∑∞

n2=0 P0n1n2
z
n2

2 and P1(z1) =
∑∞

n1=0 P1n1n2
z
n1

1 ,

P1(z2) =
∑∞

n2=0 P1n1n2
z
n2

2 . Consequently, we can describe the set of statistical
equilibrium equations for these probabilities (P0n1n2

, P1n1n2
) as follows:

(λ + n1α1)P0n1n2
= ξμP1n1n2

+ ξ̄δ1μP1n1−1n2
(1)

(λββ1 + μ + n1βα1)P1n1n2
= β̄β1λP1n1−1n2

+ (n1 + 1)βα1P1n1+1n2

+ (n1 + 1)α1P0n1+1n2
+ λP0n1n2

(2)

(λ + n2α2)P0n1n2
= ξμP1n1n2

+ ξ̄δ2μP1n1n2−1 (3)

(λβ̄β2 + μ + n2βα2)P1n1n2
= β̄β2λP1n1n2−1 + (n2 + 1)βα2P1n1n2+1

+ (n2 + 1)α2P0n1n2+1 + λP0n1n2
.

(4)

Now to continue in deriving the joint distribution, we multiply the equations
(1), (2), (3) and (4) by

∑∞
i=ni

z
ni

i , i = 1, 2 which yields to the following
equations :

λP0(zi) + αiziP
′

0(zi) = ξμP1(zi) + ξ̄δiμziP1(zi) (5)

[
λβ̄βi(1 − zi) + μ)

]
P1(zi) + αiβ(zi − 1)P ′

1(zi) = αiP
′

0(zi) + λP0(zi). (6)

By taking the sum of equation (5) and (6), then divide the sum by (zi − 1)

we obtain
αiP

′

0(zi) + αiβP ′

1(zi) = (β̄βiλ + ξ̄δiμ)P1(zi). (7)

By substituting equation (7) into (6), we can express P0(zi) in terms of P ′

1(zi),

P1(zi) as follows:

P0(zi) = (αiβ
λ

)ziP
′

1(zi) +
(

μ
λ
(1 − δiξ̄) − β̄βizi

)
P1(zi). (8)

By differentiating equation (8), we get

P ′

0(zi) = αiβ
λ

ziP
′′

1 (zi) +
(

μ(1−δiξ̄)+αiβ
λ

− β̄βizi

)
P ′

1(zi) − β̄βiP1(zi). (9)

By substituting equations (8) and (9) into (5), we obtain a differential equa-
tion of P1(zi)
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ziP
′′

1 (zi) +

(
μ(1 − δiξ̄) + (λ + αi)β

αiβ
−

λβ̄βi

αiβ
zi

)
P ′

1(zi)

−
λ

(
β̄βi(λ + αi) + (1 − ξ̄δi)μ

)
α2

iβ
P1(zi) = 0.

(10)

Consequently, we transform the equation (10) into Kummer’s differential equa-
tion, since it has already a solution.
Let

Y(xi) = P1(zi(xi)) and zi =
βαi

β̄βiλ
xi, i = 1, 2

which transforms (10) into

xiY
′′

i (xi) +
(

(λ+αi)β+μ(1−δiξ̄)
βαi

− xi

)
Y ′

i(xi) −
(

ββ̄(αi+λ)+μδiξ̄

αiββ̄

)
Yi(xi) = 0. (11)

The equation (11) can be rewritten as follows

xiY
′′

i (xi) + (di − xi)Y
′(x) − aiY(xi) = 0 (12)

such that ai =
ββ̄(αi+λ)+μδiξ̄

αiββ̄
and di =

(λ+αi)β+μ(1−δiξ̄)
βαi

. Referring to [1], [13],

the equation (12) has a regular singular point at xi = 0, and an irregular
singularity at xi = ∞. Furthermore, the solution of equation (12) is found
analytically in a unite circle, U = {x : |x| ≺ 1} which represents in turn the
solution of kummer’s function Y(xi) and expressed by Y(xi) = mi×F(ai; di; xi),

mi �= 0 so, equation (10) is solved for P1(zi) as follows

P1(zi) = mi × F

{
β̄βi(λ + αi) + ξ̄δiμ

β̄βiαi

;

(λ + αi)β + μ(1 − δiξ̄)

αiβ
;
β̄βiλ

αiβ
zi

}
, |zi| ≤ 1.

(13)

Referring to [13], the first derivative of Kummer’s function F(ai; di; xi) is de-
fined as follows: dF

dxi
= ai

di
F(ai + 1; di + 1; xi), hence P ′

1(zi) is expressed as
follows:

P ′

1(zi) = mi

{
β

β̄βi

(
β̄βi(λ + αi) + ξ̄δiμ

β(λ + αi) + μ(1 − δiξ̄)

)
F

{
β̄βi(λ + 2αi) + ξ̄δiμ

β̄βiαi

;

(λ + 2αi)β + μ(1 − δiξ̄)

αiβ
;
β̄βiλ

αiβ
zi

}}
, |zi| ≤ 1.

(14)
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Then we replace into equation (8) for P0(zi), P1(zi) and P ′

1(zi) by their
equivalence in equations (13) and (14), and hence P0(zi) is expressed as follows:

P0(zi) = mi

[
αiβ

2

λβ̄βi

(
β̄βi(λ + αi) + ξ̄δiμ

β(λ + αi) + μ(1 − δiξ̄)

)

F

{
ββ̄i(λ + 2αi) + ξ̄δiμ

β̄βiαi

,
β(2αi + λ) + μ(1 − δiξ̄)

βαi

,
λβ̄βi

αiβ

}

+

(
μ(1 − δ1ξ̄)

λ
− β̄βi

)

F

{
βiβ̄(λ + αi) + ξ̄δiμ

β̄βiαi

,
β̄βi(αi + λ) + μδiξ̄

βαi

,
λβ̄βi

αiβ

}]
(15)

Then at the boundary condition, where zi = 1, i = 1, 2 we can ge the value
of m through P0(1) + P1(1) = 1

mi =

[
αiβ

2

λβ̄βi

(
β̄βi(λ + αi) + ξ̄δiμ

β(λ + αi) + μ(1 − δiξ̄)

)

F

{
ββ̄i(λ + 2αi) + ξ̄δiμ

β̄βiαi

,
β(2αi + λ) + μ(1 − δiξ̄)

βαi

,
λβ̄βi

αiβ

}

+

(
μ(1 − δ1ξ̄)

λ
− β̄βi + 1

)

F

{
βiβ̄(λ + αi) + ξ̄δiμ

β̄βiαi

,
β̄βi(αi + λ) + μδiξ̄

βαi

,
λβ̄βi

αiβ

}]−1

(16)

So, the generating functions of the joint distribution of server state S and
queue length Ni are given by

P0(zi) = E(z
Ni

i , S = 0) = mi

[
αiβ

2

λβ̄βi

(
β̄βi(λ + αi) + ξ̄δiμ

β(λ + αi) + μ(1 − δiξ̄)

)

F

{
ββ̄i(λ + 2αi) + ξ̄δiμ

β̄βiαi

,
β(2αi + λ) + μ(1 − δiξ̄)

βαi

,
λβ̄βi

αiβ

}

+

(
μ(1 − δ1ξ̄)

λ
− β̄βi

)

F

{
βiβ̄(λ + αi) + ξ̄δiμ

β̄βiαi

,
β̄βi(αi + λ) + μδiξ̄

βαi

,
λβ̄βi

αiβ
zi

}]

P1(zi) = E(z
Ni

i : S = 1) = mi · F

{
β̄βi(λ + αi) + ξ̄δiμ

β̄βiαi

;

β(λ + αi) + (1 − δiξ̄)μ

βαi

;
β̄βiλ

αiβ
zi

}
, |zi| ≤ 1.
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Consequently, the average of the queue length along the idle period of the
server is equivalent to P ′

0(1), which is expressed by

E(Ni, S = 0) = mi

(
β

β̄βi

(
β̄βi(λ + αi) + ξ̄δiμ

β(λ + αi) + μ(1 − δiξ̄)

)(
αiβ + μ(1 − δiξ̄)

λ
− β̄βi

)

F

{
ββ̄i(λ + 2αi) + ξ̄δiμ

ββiαi

,
β(2αi + λ) + μ(1 − δiξ̄)

βαi

,
λβ̄βi

αiβ

}
+

(
αiβ

3

λβ̄2β2
i

)
(

β̄βi(λ + αi) + ξ̄δiμ

β(λ + αi) + μ(1 − δiξ̄)

) (
β̄βi(λ + 2αi) + ξ̄δiμ

β(λ + 2αi) + μ(1 − δiξ̄)

)

F

{
ββ̄i(λ + 3αi) + ξ̄δiμ

ββiαi

,
β(3αi + λ) + μ(1 − δiξ̄)

βαi

,
λβ̄βi

αiβ

}

−β̄βiF

{
βiβ̄(λ + αi) + ξ̄δiμ

β̄βiαi

,
β̄βi(αi + λ) + μδiξ̄

β̄βiαi

,
λβ̄βi

αiβ

})

And the average of the queue length along the busy period of the server is
equivalent to P ′

1(1), which is expressed by

E(z
Ni

i : S = 1) = mi

{
β

β̄βi

(
β̄βi(λ + αi) + ξ̄δiμ

β(λ + αi) + μ(1 − δiξ̄)

)

F

{
β̄βi(λ + 2αi) + ξ̄δiμ

β̄βiαi

;
(λ + 2αi)β + μ(1 − δiξ̄)

αiβ
;
β̄βiλ

αiβ

}} (17)

Thus the average of the queue length in the retrial queuing system is the sum
of P ′

0(1) and P ′

1(1), which is given by

E(N, S = 0) + E(N, S = 1) =

2∑
i=1

mi

(
β

β̄βi

(
β̄βi(λ + αi) + ξ̄δiμ

β(λ + αi) + μ(1 − δiξ̄)

)

(
αiβ + μ(1 − δiξ̄)

λ
+ 1 − β̄βi

)

F

{
ββ̄i(λ + 2αi) + ξ̄δiμ

ββiαi

,
β(2αi + λ) + μ(1 − δiξ̄)

βαi

,
λβ̄βi

αiβ

}

+

(
αiβ

3

λβ̄2β2
i

)(
β̄βi(λ + αi) + ξ̄δiμ

β(λ + αi) + μ(1 − δiξ̄)

) (
β̄βi(λ + 2αi) + ξ̄δiμ

β(λ + 2αi) + μ(1 − δiξ̄)

)

F

{
ββ̄i(λ + 3αi) + ξ̄δiμ

ββiαi

,
β(3αi + λ) + μ(1 − δiξ̄)

βαi

,
λβ̄βi

αiβ

}

− β̄βiF

{
βiβ̄(λ + αi) + ξ̄δiμ

β̄βiαi

,
β̄βi(αi + λ) + μδiξ̄

β̄βiαi

,
λβ̄βi

αiβ

})

�



Performance evaluation of two Markovian retrial queueing model 141

4 Numerical results

The average waiting time W in the steady state is often considered to be the
most important of performance measures in retrial queuing systems. However,
W is an average over all primary calls, including those calls which receive
immediate service and really do not wait at all. A better grasp of under-
standing the waiting time process can be obtained by studying first the rela-
tionship between the retrial queue length E(N) = E(N1) + E(N2) and other
inputs,outputs and feedback parameters. We have conducted some prelimi-
nary analysis through some simulations done on the queue lengths, in order
to show the impact of the different parameters and its relationship with the
retrial queue length E(N). The primary objective behind this was to under-
stand what does happen at some telecommunication systems where redials or
connection retrials arise naturally.

These analysis involved three scenarios “figure 2-figure 4” in order to clarify
the relations in different situations among the input, output, balk and feed-
back parameters. These scenarios are realized through simulations via Matlab
program. To begin, we chose a significant values for the parameters so as to
meet the requirements of the phase-merging algorithm.

For the first figure, for each value of ξ̄ (ξ̄ = 0; 0.2; 0.4; 0.6; 0.8; 1) selected,
we vary μ from 0 to 1 in increments of 0.1, where we evaluate E(N) at different
values of service completion probability while β1 = β2 = α1 = α2 = δ1 = δ2 =

0.5, β = 0.7, λ = 0.7. The numerical results are summarized in the following
table:

μ Average Retrial Queue Length ξ̄ = 1 ξ̄ = 0.8 ξ̄ = 0.6 ξ̄ = 0.4 ξ̄ = 0.2 ξ̄ = 0

0 E(N,C = 0)+E(N,C = 1) 2.2963 2.2963 2.2963 2.2963 2.2963 2.2963
0.1 E(N,C = 0)+E(N,C = 1) 2.6852 2,5577 2,4302 2,3026 2,1749 2,0472
0.2 E(N,C = 0)+E(N,C = 1) 3.0167 2,7798 2,5434 2,3077 2,0726 1,8383
0.3 E(N,C = 0)+E(N,C = 1) 3.3060 2,9723 2,6409 2,3119 1,9857 1,6625
0.4 E(N,C = 0)+E(N,C = 1) 3.5629 3,1417 2,7258 2,3154 1,9111 1,5135
0.5 E(N,C = 0)+E(N,C = 1) 3.7937 3,2926 2,8005 2,3183 1,8467 1,3864
0.6 E(N,C = 0)+E(N,C = 1) 4.0031 3,4280 2,8670 2,3208 1,7905 1,2771
0.7 E(N,C = 0)+E(N,C = 1) 4.1945 3,5506 2,9264 2,3229 1,7413 1,1826
0.8 E(N,C = 0)+E(N,C = 1) 4.3705 3,6623 2,9800 2,3247 1,6977 1,1002
0.9 E(N,C = 0)+E(N,C = 1) 4.5332 3,7645 3,0284 2,3262 1,6591 1,0278
1 E(N,C = 0)+E(N,C = 1) 4.6843 3,8586 3,0726 2,3276 1,6245 0,9639

The first figure shows that along the increase of μ the retrial queue lengths
increase when the values of ξ̄ become larger; for instance when ξ̄ = 1; 0.8;
0.6 and decrease when ξ̄ become smaller; for instance when ξ̄ = 0; 0.2; 0.4.
Obviously, this refers to the possibility of accepting repeated and primary calls
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becomes large. This figure shows us also that when ξ becomes greater than 0.6

or the feedback probability becomes less than 0.6, then E(N) is not affected
remarkably or it decreases very slowly.

Figure 2: Average retrial queue length E(N) & service server rate μ

For the second figure, for each value of β̄ such that

• For β = 0, 5 we choose a significant parameters α1 = α2 = 0.7, δ1 = 0.1,

δ2 = 0.9 and β1 = β2 = 0.5.

• For β = 0.7, we choose a significant parameters α1 = α2 = 0.7, δ1 = 0.1,

δ2 = 0.9, and β1 = 0.6, β2 = 0.4,

we vary ξ from 0 to 1 in increments of 0.1, where we evaluate E(N) at different
values of balking probability β, while μ = 0.8 and λ = 0.7. The numerical
results are summarized in the following table:

ξ Average Retrial Queue Length β̄ = 0.3 β̄ = 0.5

0 E(N, C = 0) + E(N, C = 1) 4,8845 2,9873

0.1 E(N, C = 0) + E(N, C = 1) 4,4893 2,7386

0.2 E(N, C = 0) + E(N, C = 1) 4,1030 2,4980

0.3 E(N, C = 0) + E(N, C = 1) 3,7245 2,2662

0.4 E(N, C = 0) + E(N, C = 1) 3,3533 2,0440

0.5 E(N, C = 0) + E(N, C = 1) 2,9887 1,8319

0.6 E(N, C = 0) + E(N, C = 1) 2,6304 1,6302

0.7 E(N, C = 0) + E(N, C = 1) 2,2782 1,4391

0.8 E(N, C = 0) + E(N, C = 1) 1,9322 1,2588

0.9 E(N, C = 0) + E(N, C = 1) 1,5926 1,0889

1 E(N, C = 0) + E(N, C = 1) 1,2598 0,9294
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Figure 3: Average retrial queue length E(N) & probability of service comple-
tion ξ

The second figure shows that E(N) for our model with balking and feedback
is not affected by feedback probability ξ̄ when the probability β̄ of non-balking
or returning to retrial group after customer attempt’s failure becomes less than
0.5. However, E(N) increases rapidly as ξ̄ and β̄ become high.

For the third figure, For each value of αi (α1 = α2 = 0.1 and α1 = α2 = 0.8)
selected, we vary β̄ from 0.1 to 0.9 in increments of 0.1, such that for a good
requirement we choose

for β̄ = 0.1 β1 = 0.7 β2 = 0.3

for β̄ = 0.2 β1 = 0.9 β2 = 0.1

for β̄ = 0.3 β1 = 0.95 β2 = 0.05

for β̄ = 0.4 β1 = 0.97 β2 = 0.03

for β̄ = 0.5 β1 = 0.98 β2 = 0.02

for β̄ = 0.6 β1 = 0.99 β2 = 0.01

for β̄ = 0.7 β1 = 0.993 β2 = 0.007

for β̄ = 0.8 β1 = 0.996 β2 = 0.004

for β̄ = 0.9 β1 = 0.998 β2 = 0.002

Then, we evaluate E(N) at different values of retrial probability αi, while
δ1 = δ2 = 0.5, ξ = 0.5, μ = 0.8 and λ = 0.7. The numerical results are
summarized in the following table:
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β̄ Average Retrial Queue Length α1 = α2 = 0.1 α1 = α2 = 0.8

0.1 E(N, C = 0) + E(N, C = 1) 7.3610 5,8755
0.2 E(N, C = 0) + E(N, C = 1) 7,8458 6,1070
0.3 E(N, C = 0) + E(N, C = 1) 8,9262 6,7783
0.4 E(N, C = 0) + E(N, C = 1) 9,7914 7,3964
0.5 E(N, C = 0) + E(N, C = 1) 10,2588 7,8443
0.6 E(N, C = 0) + E(N, C = 1) 14,2576 10,7133
0.7 E(N, C = 0) + E(N, C = 1) 14,3527 11,1251
0.8 E(N, C = 0) + E(N, C = 1) 15,7566 13,0344
0.9 E(N, C = 0) + E(N, C = 1) 16,3376 13,9861

Figure 4: Average retrial queue length E(N) & non-balking rate β̄

Figure 4 shows that along the design of retrial queuing system, we have
to assign equivalent values for the non-balking probability β̄ and the retrial
probability αi in order to keep the retrial queue length as short as possible.
This can be concluded from the figure since when αi takes values greater or
equal to 0.5, and β̄ gets values less than 0.5 E(N) becomes small.

As a conclusion, we conclude that Figures 2 through 4 indicate that the
phase-merging algorithm is reasonably effective in approximating E(N), for
all values of μ, ξ, β, and α.
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