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Abstract. In this paper we study the continuous dependence and the
differentiability with respect to the parameter λ ∈ [λ1, λ2] of the solution
operator S : [λ1, λ2] → L2[a, b] for a mixed Fredholm-Volterra type inte-
gral equation. The main tool is the fiber Picard operators theorem (see
[9], [8], [11], [3] and [2]).

1 Introduction

We study the solution operator of the equations

y(x) = f(x) +

x∫
a

K1(x, s, y(s); λ)ds+

b∫
a

K2(x, s, y(s); λ)ds, (1)

and

y(x) = f(x) +

x∫
a

K1(x, s, y(g1(s)); λ)ds+

b∫
a

K2(x, s, y(g2(s)); λ)ds, (2)
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where λ ∈ [λ1, λ2] is a real parameter. The existence and uniqueness of the
solutions of such equations in C[a, b] was studied by many authors [5], [6], [1],
we recall the results from [1]. If the functions Ki and f satisfy the conditions
under which the existence and uniqueness (in C[a, b]) is guaranteed then the
differentiability of the functions Ki with respect to the parameter guarantees
the differentiability of the solution. This property was proved in [1] using the
following fiber Picard operator theorem:

Theorem 1 (Fiber Picard operator’s) [9] Let (V, d) be a generalized metric
space with d(v1, v2) ∈ R

p
+, and (W,ρ) a complete generalized metric space with

ρ(w1, w2) ∈ R
m
+ . Let A : V × W → V × W be a continuous operator. If we

suppose that:

a) A(v,w) = (B(v), C(v,w)) for all v ∈ V and w ∈ W;

b) the operator B : V → V is a weakly Picard operator;

c) there exists a matrix Q ∈ Mm(R+) convergent to zero, such that the
operator C(v, ·) : W → W is a Q contraction for all v ∈ V,

then the operator A is a weakly Picard operator. Moreover, if B is a Picard
operator, then the operator A is a Picard operator.

In this paper we use the same technique to give some modified Carathéodory
type conditions which guarantee the continuity and differentiability with re-
spect to the parameter of the solution operator. We study these equations
both in bounded and unbounded intervals.

2 Fredholm-Volterra equations on a compact

interval

We need the following lemma.

Lemma 1 If I = [a, b], k ∈ L2(I2) and the function u ∈ L2(I) has nonnegative
values then the inequality

u(t) ≤ α+

∫b
a

k(t, s)u(s)ds, a.e. t ∈ I, (3)

where α > 0 and ‖k‖L2(I2) < 1, implies

‖u‖L2(I) ≤
α
√
2(b− a)

1− ‖k‖L2(I2)

.
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Proof. Consider the sets

A = {t ∈ I |u(t) ≤ α} and B = {t ∈ I |u(t) > α}.

These sets are measurable because u is measurable. If t ∈ B, from the Cauchy-
Buniakovski inequality we have

(u(t) − α)2 ≤
(∫b

a

k(t, s)u(s)ds

)2

≤
∫b
a

k2(t, s)ds ·
∫b
a

u2(s)ds.

By integrating on B we deduce∫
B

u2(s)ds ≤ 2α
∫
B
u(t)dt− α2 · μ(B) + ∫

B

∫b
a
k2(t, s)dsdt · ‖u‖2

L2(I)

≤ 2α
∫
B
u(t)dt− α2 · μ(B) + ∫b

a

∫b
a
k2(t, s)dsdt · ‖u‖2

L2(I)

≤ 2α

√
μ(B)

∫b
a
u2(t)dt− α2 · μ(B) + ‖k‖2

L2(I2)
· ‖u‖2

L2(I)
.

By the other hand u2(t) ≤ α2, for t ∈ A, so∫
A

u2(t)dt ≤ α2 · μ(A).

From these inequalities we have(
‖u‖L2(I)− α

√
μ(B)

)2
≤ α2μ(A) + ‖k‖2L2(I2) · ‖u‖2L2(I),

so
‖u‖L2(I)− α

√
μ(B) ≤

√
α2μ(A) + ‖k‖2

L2(I2)
· ‖u‖2

L2(I)
.

From √
α2μ(A) + ‖k‖2

L2(I2)
· ‖u‖2

L2(I)
≤ α

√
μ(A) + ‖k‖L2(I2) · ‖u‖L2(I)

and √
μ(A) +

√
μ(B) ≤

√
2(b− a)

we deduce the desired inequality. �

Remark 1 By using both the Minkovski and the Cauchy-Buniakovski inequal-
ity we can prove a sharpened version:

‖u‖L2(I) ≤
α
√

(b− a)

1− ‖k‖L2(I2)

.
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Indeed (3) implies

‖u‖L2(I) ≤

∥∥∥∥∥∥∥α+

√√√√√b∫
a

k2(t, s)ds ·
b∫
a

u2(s)ds

∥∥∥∥∥∥∥
L2(I)

≤ α
√
b− a+‖k‖L2(I2)·‖u‖L2(I).

By an analogous reasoning we have the following property: If k ∈ L2(I2), g ∈
L2(I) and the function u ∈ L2(I) has nonnegative values then the inequality

u(t) ≤ g(t) +

∫b
a

k(t, s)u(s)ds, a.e. t ∈ I,

where ‖k‖L2(I2) < 1, implies

‖u‖L2(I) ≤
‖g‖L2(I)

1− ‖k‖L2(I2)

.

These inequalities are in fact Gronwall type inequalities and they can be proved
also by using the abstract Gronwall lemma from [10].

We use the usual definition of differentiability for functions with values in
a Banach space and a generalized Weierstrass type theorem. To avoid any
misunderstanding we recall this definition and we prove the above mentioned
theorem.

Definition 1 If S : [λ1, λ2] → L2(I) is a continuous function then we call it
differentiable at the point λ, if exists zλ ∈ L2(I) such that

lim
λ→λ

‖S(λ) − S(λ) − (λ− λ)zλ‖L2(I)

λ− λ
= 0.

For the simplicity we identify the function t → tzλ (the differential) with the
element zλ.

Theorem 2 If the sequence yn(·, λ) ∈ L2(I), n ≥ 0 converges in L2(I) to
y∗(·, λ) for all λ ∈ [λ1, λ2], the operators Sn : [λ1, λ2] → L2(I) defined by
Sn(λ)(t) = yn(t, λ), ∀ t ∈ I, ∀ λ ∈ [λ1, λ2] are differentiable, their differentials
converge in L2(I) to z∗(·, λ), and these convergencies are uniform with respect
to λ, then the operator S : [λ1, λ2] → L2(I) defined by S(λ)(t) = y∗(t, λ), ∀ t ∈
I, ∀ λ ∈ [λ1, λ2] is differentiable and z∗(·, λ) is its differential in λ.
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Proof. Due to the mean theorem for functions with values in a Banach space
(see [4] 2-5) we have the following inequality:

‖[ym(·, λ) − yn(·, λ)] − [ym(·, λ) − yn(·, λ)]‖L2(I)

λ− λ

≤ sup
λ∈[λ1,λ2]

‖zm(·, λ) − zn(·, λ)‖L2(I),

where zm(·, λ) is the differential of Sn(λ)(·).
The condition ‖zn(·, λ)−z∗(·, λ)‖L2(I) → 0 uniform with respect to λ, implies

that for every ε > 0 exists n1(ε) ∈ N such that

‖[y∗(·, λ) − y∗(·, λ)] − [yn(·, λ) − yn(·, λ)]‖L2(I)

λ− λ
≤ ε

3
, ∀n ≥ n1(ε). (4)

By the other hand for all ε > 0 exists n2(ε) ∈ N such that

‖zn(·, λ) − z∗(·, λ)‖L2(I) ≤
ε

3
, ∀n ≥ n2(ε) (5)

and there exists δ > 0 such that

‖yn(·, λ) − yn(·, λ) − (λ− λ)zn(·, λ)‖L2(I)

λ− λ
≤ ε

3
, (6)

if |λ− λ| < δ. From these relations we deduce

lim
λ→λ

‖y∗(·, λ) − y∗(·, λ) − (λ− λ)z∗(·, λ)‖L2(I)

λ− λ
= 0,

so S is differentiable in λ and its differential is z∗(·, λ). �

For equation (1) we have the following theorem (some parts of this theorem
are classical):

Theorem 3 If

I. (Carathéodory type conditions) the functions Ki : I
2× [λ1, λ2]× R → R,

i ∈ {1, 2} with I = [a, b] satisfy the conditions

a ) Ki(·, ·, λ, u) is measurable on I2 = [a, b] × [a, b] for all u ∈ R and
λ ∈ [λ1, λ2];

b ) Ki(x, s, λ, ·) is continuous on R for almost every pairs (x, s) ∈ I2

and every λ ∈ [λ1, λ2].
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II. (space invariance) f ∈ L2(I), Ki(·, ·, λ, 0) ∈ L2(I2) for all λ ∈ [λ1, λ2],

i ∈ {1, 2} and exists M1 > 0 such that ‖Ki(·, ·, λ, 0)‖L2(I2) < M1 for all
λ ∈ [λ1, λ2];

III. (Lipschitz type conditions) exists ki ∈ L2(I2), i ∈ {1, 2}, such that

|Ki(t, s, λ, u)−Ki(t, s, λ, v)| ≤ ki(t, s)|u−v|, ∀ t, s ∈ I, λ ∈ [λ1, λ2], u, v ∈ R;

IV. (contraction condition)

L2 :=

∫b
a

∫t
a

(k1(t, s) + k2(t, s))
2dsdt+

∫b
a

∫b
t

k22(t, s)dsdt < 1 (7)

then

1. for all λ ∈ [λ1, λ2] exists a unique solution y∗(·, λ) ∈ L2(I) of the equation
(1);

2. the sequence of successive approximation

yn+1(x) = f(x) +

x∫
a

K1(x, s, λ, yn(s))ds+

b∫
a

K2(x, s, λ, yn(s))ds

converges in L2(I) to y∗(·, λ), for all y0(·) ∈ L2(I) and every λ ∈ [λ1, λ2];

3. for every n ∈ N we have

‖yn(·) − y∗(·, λ)‖L2(I) ≤
Ln

1− L
‖y1(·) − y0(·)‖L2(I).

Moreover if

I.c) the functions (Ki(x, s, ·, u))x,s∈I,u∈R are equally continuous,

then the operator S : [λ1, λ2] → L2(I) defined by S(λ)(x) = y∗(x, λ), ∀ x ∈ I,

∀ λ ∈ [λ1, λ2] is continuous.
If instead of I.b), I.c) and III. we have the conditions

I.b’) Ki(x, s, λ, ·) is in C1(R) for all λ ∈ [λ1, λ2], a.e. (x, s) ∈ I2, and there
exist ki ∈ L2(I2), i ∈ {1, 2}, such that∣∣∣∣∂Ki(t, s, λ, u)

∂u

∣∣∣∣ ≤ ki(t, s), ∀ t, s ∈ I,∀ λ ∈ [λ1, λ2], ∀u ∈ R;
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I.c’) Ki(x, s, ·, u) is in C1[λ1, λ2] for all u ∈ R, a.e. (x, s) ∈ I2, the partial
derivatives satisfy condition I., ∂Ki

∂λ (·, ·, λ, u) ∈ L2(I2), i ∈ {1, 2} and there
exists M2 > 0 such that∥∥∥∥∂Ki

∂λ
(·, ·, λ, u)

∥∥∥∥
L2(I2)

< M2, ∀ λ ∈ [λ1, λ2], ∀u ∈ R,

then the operator S is differentiable.

Proof. First we prove that for a fixed λ the operator T : L2(I) → L2(I) defined
by

T [y](x) = f(x) +

x∫
a

K1(x, s, λ, y(s))ds+

b∫
a

K2(x, s, λ, y(s))ds

is a contraction. From the Lipschitz condition we have

b∫
a

K2(t, s, λ, y(s))ds ≤
b∫
a

K2(t, s, λ, 0) + k2(t, s)|y(s)|ds.

Due to Minkovski and Cauchy-Buniakovski inequality we deduce

∫b
a

(∫b
a

K2(t, s, λ, y(s))ds

)2

dt

≤
(√

b− a‖K2(·, ·, λ, 0)‖L2(I2)+
√
b− a‖k2‖L2(I2) · ‖y‖L2(I)

)2
< ∞.

Analogously ∫b
a

(∫t
a

K1(t, s, λ, y(s))ds

)2

dt < ∞,

so because of f ∈ L2(I) we have T [y] ∈ L2(I). On the other hand

|T [y1](t) − T [y2](t)| ≤
∫t
a

|K1(t, s, λ, y1(s)) − K1(t, s, λ, y2(s))|ds

+

∫b
a

|K2(t, s, λ, y1(s)) − K2(t, s, λ, y2(s))|ds

≤
∫t
a

k1(t, s)|y1(s) − y2(s)|ds+

∫b
a

k2(t, s)|y1(s) − y2(s)|ds

=

∫b
a

(k1(t, s) + k2(t, s))|y1(s) − y2(s)|ds,
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where k1(t, s) =

{
k1(t, s), t ≥ s

0, t < s
. From the Cauchy-Buniakovski inequality

we obtain

‖T [y1](·) − T [y2](·)‖2L2(I) ≤ L2 · ‖y1(·) − y2(·)‖2L2(I),

where L2 is defined by (7). Hence T is a contraction and from the contractions
principle we have the conclusions.
If we have condition I.c), then for every ε > 0 there exists ε1 =

(1−L)ε

2(b−a)
√

2(b−a)

and δ > 0 such that for |λ− λ| < δ we have

|Ki(t, s, λ, u) − Ki(t, s, λ, u)| ≤ ε1,

for all u ∈ R and a.e. (t, s) ∈ I2. If y∗

λ and y∗

λ
are the corresponding unique

solutions to λ, and λ, then

|y∗

λ(t) − y∗

λ
(t)| ≤

∫t
a

|K1(t, s, λ, y
∗

λ(s)) − K1(t, s, λ, y
∗

λ
(s))|ds

+

∫b
a

|K2(t, s, λ, y
∗

λ(s)) − K2(t, s, λ, y
∗

λ
(s))|ds

≤ 2(b− a)ε1+

∫t
a

|K1(t, s, λ, y
∗

λ(s)) − K1(t, s, λ, y
∗

λ
(s))|ds

+

∫b
a

|K2(t, s, λ, y
∗

λ(s)) − K2(t, s, λ, y
∗

λ
(s))|ds

≤ 2(b− a)ε1+

∫b
a

(k1(t, s) + k2(t, s))|y
∗

λ(s) − y∗

λ
(s)|ds.

From this inequality and Lemma 1 we obtain

‖y∗

λ(·) − y∗

λ
(·)‖L2(I) ≤

2(b− a)ε1
√

2(b− a)

1− L
,

where L is defined in (7). So for every ε > 0 there exists δ > 0 such that

|λ− λ| < δ ⇒ ‖y∗

λ(·) − y∗

λ
(·)‖L2(I) < ε,

this is the continuity of the operator S.
If we have I.b’) and I.c’), we use the fiber Picard theorem to study the

differentiability of the operator S. Consider the spaces V = W = L2(I) and the
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operators B : V → V, C : V ×W → W defined by the following relations

B[v](t) = f(t) +

t∫
a

K1(t, s, λ, y(s))ds+

b∫
a

K2(t, s, λ, y(s))ds

and

C[(v,w)](t) =

t∫
a

∂K1(t, s, v(s); λ)

∂λ
ds+

b∫
a

∂K2(t, s, v(s); λ)

∂λ
ds

+

t∫
a

∂K1(t, s, v(s); λ)

∂v
w(s)ds+

b∫
a

∂K2(t, s, v(s); λ)

∂v
w(s)ds.

Due to the given conditions the operator B is a Picard operator (condition
I.b’) implies condition III.) and the operator C satisfies

‖C[(v,w1)] − C[(v,w2)]‖L2(I) ≤ L1‖w1−w2‖L2(I),

where L1 =

√∫b
a

∫t
a
(k1(t, s) + k2(t, s))2dsdt+

∫b
a

∫b
t
k22(t, s)dsdt. Theorem 1

implies that the triangular operator A[v,w] = (B[v], C[v,w]) is a Picard op-
erator and so the sequence of successive approximations constructed by the
relations (yn+1, zn+1) = A[yn, zn] converges in (L2(I))2 to the unique fixed
point. If we choose for y0(·, λ) a C1 function in its last variable and z0 = ∂y0

∂λ
,

then from the definition of the operator C we deduce zn = ∂yn
∂λ . By the other

hand the operators Sn : [λ1, λ2] → L2(I) defined by Sn(λ)(t) = yn(t), ∀ t ∈
I, ∀ λ ∈ [λ1, λ2] are differentiables and the differential of Sn in λ is zn, hence
we can apply Theorem 2 and we obtain the differentiability of the operator S.
�

Remark 2 We can prove the same results working in the space

Y =
{
y : I×Λ → R

∣∣∣y(·, λ) ∈ L2[I], ∀ λ ∈ Λ, y(t, ·) ∈ C(Λ)a.e. t ∈ I
}
,

where Λ = [λ1, λ2] and the norm is defined by ‖y‖Y = max
λ∈Λ

‖y(·, λ)‖L2(I).

Using the same arguments we can prove the following theorem for equation
(2).
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Theorem 4 If

a) the functions Ki : I × I × [λ1, λ2] × R → R, i = 1, 2 satisfy conditions
I.-IV. from Theorem 3;

b) the functions g1, g2 : [a, b] → R are injective and measurable and they
satisfy the conditions Im(g1) = [a1, a2], Im(g2) = [b2, b1] with a1 ≤
a ≤ a2 ≤ b, and a ≤ b2 ≤ b ≤ b1;

c) ϕ1 ∈ L2([a1, a]) and ϕ2 ∈ L2([b, b1]);

then

1) equation (2) has a unique solution y∗(·, λ) in L2(I1) for all λ ∈ [λ1, λ2],
where I1 = [a1, b1];

2) the sequence of successive approximations converges L2(I1) to y∗(·, λ)
for every admissible initial function y0(·, λ), where the set of admissible
functions is

Ya =
{
y(·, λ) ∈ L2(I1) |y0(t, λ) = ϕ1(t), ∀ t ∈ [a1, a], y0(t, λ)

= ϕ2(t), ∀ t ∈ [b, b1]
}
;

3) we have the following estimation:

‖yn(·) − y∗(·, λ)‖L2(I1)
≤ Ln

1− L
‖y1(·) − y0(·)‖L2(I1)

,

where L is defined by relation (7).

Moreover if condition I.c) holds, then the operator S : [λ1, λ2] → L2(I1) defined
by S(λ)(x) = y∗(x, λ), ∀ x ∈ [a1, b1], ∀ λ ∈ [λ1, λ2] is continuous.
If instead of conditions I.b), I.c) and III. the conditions I.b’) and I.c’) are

satisfied, then S is differentiable.

Remark 3 The differentiability of S implies the existence of the partial deriva-
tive ∂y∗(·,λ)

∂λ and so from the construction of the operator C we deduce that this
partial derivative satisfies the equation

∂y∗(t, λ)

∂λ
=

t∫
a

∂K1(t, s, λ, y
∗(s, λ))

∂λ
ds+

b∫
a

∂K2(t, s, λ, y
∗(s, λ))

∂λ
ds

+

t∫
a

∂K1(t, s, λ, y
∗(s, λ))

∂y∗

∂y∗(s, λ)

∂λ
ds+

b∫
a

∂K2(t, s, λ, y
∗(s, λ))

∂y∗

∂y∗(s, λ)

∂λ
ds;
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in the case of Theorem 3 and the equation

∂y∗(t, λ)

∂λ
=

t∫
a

∂K1(t, s, λ, y
∗(g1(s), λ))

∂λ
ds+

b∫
a

∂K2(t, s, λ, y
∗(g2(s), λ))

∂λ
ds

+

t∫
a

∂K1(t, s, λ, y
∗(g1(s), λ))

∂y∗
· ∂y

∗(g1(s), λ)

∂λ
ds

+

b∫
a

∂K2(t, s, λ, y
∗(g2(s), λ))

∂y∗
· ∂y

∗(g2(s), λ)

∂λ
ds

in the case of Theorem 4.

3 Fredholm-Volterra equations on an unbounded

interval

If I = [a,∞), we can’t use the same inequalities because in Lemma 1 and in
some estimations we used it was essential the finite length of the interval. Due
to this problem we need other conditions to guarantee the same properties of
the solution operator.

Theorem 5 If conditions I.-III. from Theorem 3 are satisfied with I = [a,∞)

and

L2 :=

∫
∞

a

∫t
a

(k1(t, s) + k2(t, s))
2dsdt+

∫
∞

a

∫
∞

t

k22(t, s)dsdt < 1, (8)

then

1. for every λ ∈ [λ1, λ2] there exists an unique solution y∗(·, λ) ∈ L2(I);

2. the sequence of successive approximations

yn+1(x) = f(x) +

x∫
a

K1(x, s, λ, yn(s))ds+

∞∫
a

K2(x, s, λ, yn(s))ds

converges in L2(I) to y∗(·, λ), for all y0(·) ∈ L2(I);
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3. for every n ∈ N we have

‖yn(·) − y∗(·, λ)‖L2(I) ≤
Ln

1− L
‖y1(·) − y0(·)‖L2(I).

Moreover if

I.c) there exist Λi : [λ1, λ2] × [λ1, λ2] → R, and gi : I
2 → R, i ∈ {1, 2} such

that

i)
|Ki(x, s, λ, u) − Ki(x, s, λ, u)| ≤ Λi(λ, λ) · gi(t, s), (9)

∀u ∈ R, λ, λ ∈ [λ1, λ2], a.e.(t, s) ∈ I2, i ∈ {1, 2};

ii) lim
λ→λ

Λ(λ, λ) = 0;

iii)
∞∫
a

[(
t∫
a

g1(s, t)ds

)2

+

(
∞∫
a

g2(s, t)

)2
]
dt < +∞

then the operator S : [λ1, λ2] → L2(I) defined by S(λ)(x) = y∗(x, λ), ∀ x ∈
I, ∀ λ ∈ [λ1, λ2] is continuous.
If instead of the conditions I.b) and III. condition I.b’) from Theorem 3 is

fulfilled and

I.c’) Ki(x, s, ·, u) is a C1[λ1, λ2] function for all u ∈ R, a.e. (x, s) ∈ I2, the
partial derivatives satisfy condition I., and there exists M3 > 0 such that∫

∞

a

(∫t
a

∂K1

∂λ
(t, s, λ, u)ds

)2

dt+

∫
∞

a

(∫t
a

∂K2

∂λ
(t, s, λ, u)ds

)2

dt < M2
3,

for all λ ∈ [λ1, λ2] and for all u ∈ R,

then S is differentiable.

Proof. As in Theorem 3 for a fixed λ the operator T : L2(I) → L2(I) defined
by

T [y](x) = f(x) +

x∫
a

K1(x, s, λ, y(s))ds+

∞∫
a

K2(x, s, λ, y(s))ds

is a contraction with Lipschitz constant L. If y∗

λ and y∗

λ
are the unique solutions

corresponding to λ and λ, from I.c) we deduce:

∞∫
a

⎛
⎝ t∫

a

|K1(t, s, λ, y
∗

λ
(s)) − K1(t, s, λ, y

∗

λ
(s))|ds

⎞
⎠

2

dt ≤ Λ2
1(λ, λ)·

∞∫
a

⎛
⎝ t∫

a

g1(t, s)ds

⎞
⎠

2

dt
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and

∞∫
a

⎛
⎝∞∫

a

|K2(t, s, λ, y
∗

λ
(s)) − K2(t, s, λ, y

∗

λ
(s))|ds

⎞
⎠

2

dt ≤ Λ2
2(λ, λ)·

∞∫
a

⎛
⎝∞∫

a

g2(t, s)ds

⎞
⎠

2

dt.

From

|y∗

λ(t) − y∗

λ
(t)| ≤

∫t
a

|K1(t, s, λ, y
∗

λ(s)) − K1(t, s, λ, y
∗

λ
(s))|ds

+

∫b
a

|K2(t, s, λ, y
∗

λ(s)) − K2(t, s, λ, y
∗

λ
(s))|ds

≤
∫t
a

|K1(t, s, λ, y
∗

λ
(s)) − K1(t, s, λ, y

∗

λ
(s))|ds

+

∫b
a

|K2(t, s, λ, y
∗

λ
(s)) − K2(t, s, λ, y

∗

λ
(s))|ds

+

∫t
a

|K1(t, s, λ, y
∗

λ(s)) − K1(t, s, λ, y
∗

λ
(s))|ds

+

∫b
a

|K2(t, s, λ, y
∗

λ(s)) − K2(t, s, λ, y
∗

λ
(s))|ds

≤
∫t
a

|K1(t, s, λ, y
∗

λ
(s)) − K1(t, s, λ, y

∗

λ
(s))|ds

+

∫b
a

|K2(t, s, λ, y
∗

λ
(s)) − K2(t, s, λ, y

∗

λ
(s))|ds

+

∫b
a

(k1(t, s) + k2(t, s))|y
∗

λ(s) − y∗

λ
(s)|ds

we deduce (using Minkovski inequality)

‖y∗

λ(·) − y∗

λ
(·)‖L2(I) ≤

Λ

1− L
,

where L is defined in (8) and

Λ = Λ1(λ, λ)

√√√√√∞∫
a

⎛
⎝ t∫

a

k1(s, t)ds

⎞
⎠

2

dt+Λ2(λ, λ)

√√√√√∞∫
a

⎛
⎝∞∫

a

k2(s, t)

⎞
⎠

2

dt.

This inequality implies the continuity of the operator S.



18 Sz. András

If conditions I.b’) and I.c’) are satisfied we can use the fiber Picard theorem
again. Consider the spaces V = W = L2(I) and the operators B : V → V,

C : V ×W → W defined by the following relations

B[v](t) = f(t) +

t∫
a

K1(t, s, λ, y(s))ds+

∞∫
a

K2(t, s, λ, y(s))ds

and

C[(v,w)](t) =

t∫
a

∂K1(t, s, v(s); λ)

∂λ
ds+

∞∫
a

∂K2(t, s, v(s); λ)

∂λ
ds

+

t∫
a

∂K1(t, s, v(s); λ)

∂v
w(s)ds+

∞∫
a

∂K2(t, s, v(s); λ)

∂v
w(s)ds.

Due to the given conditions B is a Picard operator (condition I.b’) implies
condition III.) and C satisfies the uniform contraction condition:

‖C[(v,w1)] − C[(v,w2)]‖L2(I) ≤ L1‖w1−w2‖L2(I),

where L1 =

√∫
∞

a

∫t
a
(k1(t, s) + k2(t, s))2dsdt+

∫
∞

a

∫
∞

t
k22(t, s)dsdt. Theorem 1

implies that the triangular operator A[v,w] = (B[v], C[v,w]) is a Picard opera-
tor. Hence the sequence of successive approximation (yn+1, zn+1) = A[yn, zn]

converges in (L2(I))2 to the unique fixed point. If we choose y0(·, λ) continu-
ously differentiable (with respect to λ) and z0 = ∂y0

∂λ , then from the construc-

tion of the operator C we obtain zn = ∂yn
∂λ . On the other hand the operators

Sn : [λ1, λ2] → L2(I) defined by Sn(λ)(t) = yn(t, λ), ∀ t ∈ I, ∀ λ ∈ [λ1, λ2] are
differentiables and the differential of Sn in λ is zn, so from Theorem 2 we
obtain the differentiability of S. �
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