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Abstract. The covariance matrix is an important element of many asset 
allocation strategies. The widely used sample covariance matrix estimator is 
unstable especially when the number of time observations is small and the 
number of assets is large or when high-dimensional data is involved in the 
computation. In this study, we focus on the most important estimators that 
are applied on a group of Markowitz-type strategies and also on a recently 
introduced method based on hierarchical tree clustering. The performance 
tests of the portfolio strategies using different covariance matrix estimators 
rely on the out-of-sample characteristics of synthetic and real stock data.
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1.  Introduction

Portfolio optimization is the process of selecting the best possible allocation 
among certain assets (e.g. individual stocks, asset classes, bonds, cash) according 
to some specifi c objective such as risk minimization, return, risk-adjusted return, 
diversifi cation maximization, and so on. Asset allocation is generally a challenging 
task due to a lot of factors that can infl uence the results. The outcome may be 
infl uenced by the investment period and asset universe, by the risk tolerance of 
the investor, and so on.

Henry Markowitz (1952) revolutionized the portfolio optimization by considering 
the expected return and standard deviation as the key components for quantifying 
an asset return and risk. This theory formulates portfolio construction as a quadratic 
optimization problem, where the goal is to maximize return for risk, or equivalently, 
minimize risk for a given level of expected return. Although the Markowitz model 
is theoretically sound and has a major impact on portfolio research, its application 
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in real-life situations is challenging. Practically, the researcher or the portfolio 
manager should estimate the unknown expected value and variance of the returns 
of the securities in order to apply them in the model. The risk and return are usually 
calculated inaccurately by using the historical sample, leading to unacceptable 
solutions with worse out-of-sample performance. Therefore, the portfolios hold 
a small number of stocks with extreme weights, thus making these portfolios less 
diversifi ed. Furthermore, small changes in the inputs often cause substantially 
modifi ed weights in the optimal portfolio. Based on the Markowitz model, in 
DeMiguel et al. (2009), the constraint variant of the model was investigated. In 
Scutellà and Recchia (2013), a slightly different approach was proposed based on 
robust optimization.

Tremendous efforts have been devoted by the researchers to handle estimation 
errors to improve the performance of the Markowitz model. Considering the 
estimation errors, the literature on the portfolio selection problem has been 
extended in several directions. Jorin (1986) proposed shrinkage estimator for 
expected returns. This kind of estimator usually shrinks the sample estimate towards 
some average value. Ledoit and Wolf (2003, 2004) presented a transformation 
procedure of the empirical covariance matrix called shrinkage. Another approach 
to reducing the risk estimate is to denoise (Bun, Bouchaud, and Potters 2017; López 
de Prado, 2020) the sample covariance matrix. The denoising procedure eliminates 
those eigenvalues of the covariance matrix that are affected by noise. Michaud 
(1998) tries to overcome the uncertainty associated with the estimated parameters 
using a technique called resampling. A detailed comparison of the Michaud and 
Markowitz strategies can be followed in Becker, Gürtler, and Hibbeln (2015). The 
subset resampling (Gillen, 2016; Shen and Wang, 2017) method tries to improve 
Michaud’s algorithm by sampling subset-size portfolios. Recently, the Hierarchical 
Risk Parity (HRP) by López Prado (2017) has received substantial attention. The 
method calculates the covariance matrix by hierarchical clustering and avoids the 
matrix inversion procedure.

In this paper, we analyse the effects of covariance matrix estimators that are 
applied on a group of Markowitz-type strategies and a recently introduced method 
based on hierarchical tree clustering. The performance tests of the portfolio 
strategies using different estimators rely on the out-of-sample characteristics of 
synthetic and real stock data.

The paper is structured as follows. In Section 2, we review the mean-variance 
model and its special variant, the minimum variance optimization model. 
Furthermore, we describe the covariance matrix estimators examined in this study 
and the reference strategies as well. In Section 3, we conduct two experiments: 
at fi rst, the three Markowitz-type algorithms are assessed using a Monte Carlo 
experiment with synthetic data, while in the second experiment all the methods 
are compared based on the S&P 100 stocks data. Finally, Section 5 concludes.
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2.  The Mean-Variance Optimization Model

Markowitz formulated his portfolio allocation model as a quadratic optimization 
problem called mean-variance optimization (MVO). According to this formulation 
for each level of expected return, the portfolio with the smallest variance is 
preferable. If the return constraints are omitted from the previous model, we get 
the global minimum variance or simply the minimum variance portfolio (MV). 
This approach is popular among researchers since the covariance matrix estimation 
induces a smaller estimation error than the return estimation.

For a given N risky assets, the minimum variance strategy can be defi ned as:min  subject to 1 1, 
where  , , … ,  represents the portfolio weights at time t = 1, …, T, 
while ∑ denotes the covariance matrix. Usually, the real covariance matrix is 
unknown, hence requiring a suitable estimator.

2.1 Covariance Matrix Estimators

The covariance matrix is an important element of many asset allocation strategies. 
The widely used empirical covariance matrix estimator is unstable, especially 
when the number of assets (N) is larger than the time observations (T). Furthermore, 
during the mean-variance optimization, the covariance matrix inverting procedure 
amplifi es the noise and numerical instability. In the following, we present three 
covariance matrix estimators assessed during our experiments. A more detailed 
description of covariance matrix estimators can be followed in Senneret et al. 
(2016) and Choi, Lim, and Choi (2019).

The Sample Covariance Estimate

The sample covariance matrix for N assets with return rt can be formulated as follows:

: 1 , 
where    is the expected return. 

Ledoit–Wolf Linear Shrinkage Estimator

Shrinkage is a transformation procedure of the sample covariance matrix adopted 
in order to get a more robust covariance matrix. The linear shrinkage estimator 
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proposed by Ledoit and Wolf (2004) combines the sample covariance matrix 
with the identity matrix. An important ingredient of shrinkage is the shrinkage 
intensity, which has a weighting role in the procedure. The Ledoit–Wolf estimator 
is defi ned by : 1  tr , 
where the optimal shrinkage intensity 0,1  is chosen to minimize some risk 
function. A nonlinear variant of the shrinkage estimator is proposed by Ledoit and 
Wolf (2012). Furthermore, the nonlinear shrinkage estimator is combined with 
the composite likelihood method and applied to some special models (see Engle, 
Ledoit, and Wolf, 2019).

Denoising Covariance Matrix

Cleaning large-dimensional covariance matrices is a common task in different 
research areas as fi nance, physics, or multivariate statistics. Recently, some 
interesting works (see, for example: Bouchaud and Potters, 2011; Bun, Bouchaud, 
and Potters, 2017) have been conducted to fi nd more robust covariance estimators. 
These experiments are usually relying on tools from Random Matrix Theory (RMT) 
in order to distinguish the signal part from the noisy part of the covariance matrix. 
More concretely, the cleaning process relies on correcting the eigenvalues of the 
covariance matrix by using the Marcenko–Pastur distribution.

Bouchaud and Potters (2011) proposed a cleaning procedure (eigenvalues clipping) 
where all eigenvalues below some threshold value are shrunk. Furthermore, Bun, 
Bouchaud, and Potters (2017) investigated a rotationally invariant estimator with 
promising results.

In this study, we apply a Targeted Shrinkage Denoising procedure (López de 
Prado, 2020) to the sample covariance matrix. Basically, this implementation is 
based on the clipping procedure proposed by Bouchaud and Potters (2011).

2.2 Reference Algorithms

In this subsection, we review the portfolio allocation methods considered in this 
study. The starting point of our comparisons is represented by the previously 
presented minimum-variance algorithm. The assessments also include two 
bootstrapped variants of the minimum-variance method and a recently proposed 
strategy that follows a slightly different approach than the others. The main 
subject of the investigations is how these algorithms perform using the different 
covariance matrix estimators.
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Resampling Method

Michaud (1998) proposed the resampling (RES) method in order to overcome the 
instability of the estimated parameters of the mean-variance optimization method 
by applying Monte Carlo simulations during the portfolio construction process. 
The algorithm generates random resamples of asset returns based on the historical 
data by considering all securities simultaneously. For each of the resample, the 
optimal weights of mean-variance portfolio are computed, aggregating across all 
the samples by averaging the optimized weights. As a result, the obtained portfolio 
has less extreme fi nal compositions and is well-diversifi ed.

Subset Resampling

The subset resampling (SRES) procedure is a recently proposed (Gillen, 2016; 
Shen and Wang, 2017) variant of the resampling method. Rather than calculating 
weights for all assets, subset resampling constructs portfolios considering a smaller 
number of assets. By aggregating a suffi ciently large number of subset portfolios, 
we obtain a well-diversifi ed portfolio. This approach may be useful when there 
are many securities with short return histories. The performance of the method 
depends a lot on the two input parameters of the algorithm: the subset size and 
the number of subsets. In Shen and Wang (2017), the authors conducted detailed 
experiments and found that the subset resampling procedure is superior to other 
strategies. Subset resampling has the advantage that usually the subset size is 
smaller than the size of the observations, hence a more stable estimation of the 
covariance matrix can be obtained. Applying new estimators, we hope that further 
improvements can be achieved.

Hierarchical Risk Parity

The Hierarchical Risk Parity (HRP) algorithm was introduced recently by 
López de Prado (2017) as an alternative asset allocation strategy that alleviates 
the main pitfalls of the general mean-variance approach. The method performs 
asset allocation without the need to invert the covariance matrix. Unlike the 
Ledoit–Wolf and denoising methods, the HRP algorithm simply reorganizes the 
covariance matrix to place similar assets (in terms of linear co-movements) together 
and then employs an inverse-variance weighting allocation. The algorithm has 
three main steps:

–  Tree clustering: the procedure transforms recursively the correlation matrix 
into smaller groups considering some distance metrics.

–  Quasi-diagonalization: it is a technique where the covariance matrix is 
rearranged in order to refl ect the similarity of the securities (see Figure 1).
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–  Recursive bisection: split portfolio weights between subsets based on inverse 
proportion to their aggregated variances.

Portfolios generated by HRP exhibit better out-of-sample performance than other 
traditional portfolio allocation algorithms (López de Prado, 2017). Although the 
covariance matrix transformation technique seems to be effi cient, a question is 
arising whether further improvement can be achieved by using Ledoit–Wolf or 
denoised covariance estimators instead of the sample estimate.

Figure 1. Quasi-diagonalization (see PortfolioLab)

3.  Empirical Comparison

The main aim of this section is to compare the previously described strategies 
considering different covariance estimator techniques. At fi rst, the three Markowitz-
type algorithms are assessed using a Monte Carlo experiment with synthetic data, 
while in the second experiment all the methods are compared based on the S&P 
100 stock data.

3.1.  Monte Carlo Experiment

This experiment is based on a novel approach (Gautier Marti, 2020) for sampling 
realistic fi nancial correlation matrices. The method (called CorrGAN) relies on a 
generative adversarial network. CorrGAN generates correlation matrices that have 
many “stylized facts” seen in empirical correlation matrices based on asset returns. 
We simulate data using a 0-mean multivariate Gaussian parameterized by CorrGAN-
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generated correlation matrices with 80 stocks. An in-sample and an out-of-sample 
dataset of daily returns are generated based on the computed distributions. We use 
different observation numbers: T = 50, 100, and 200. The comparison methodology 
is based on in-sample and out-of-sample results as follows: the empirical covariance 
matrix is estimated by using the in-sample dataset. Then the asset allocation 
strategy computes the optimal weights which are further used to fi nd the portfolio 
returns and their associated volatilities. The main performance metric is the 
portfolio volatility in- and out-of-sample.

The presented methodology is applied to the MV, RES, and SRES Markowitz-type 
asset allocation strategies, each of them using the following covariance estimation 
methods: sample estimate, Ledoit–Wolf estimator, and denoising covariance. In the 
case of RES, the results are averaged over 1,000 draws, while SRES used 21 as the 
size of the subsample and 3,000 for the subsample number. A single experiment 
is repeated for 1,000 generated correlation matrices, and the portfolio volatilities 
(in-sample and out-of-sample) are computed.

Table 1 contains the root-mean-square errors (RMSE) of volatilities of the 
examined methods using different covariance matrix estimators and observation 
numbers. Based on the results, SRES provides the best RMSE values indifferent 
of the sample size and covariance estimator. Obviously, the differences become 
smaller as the sample size increases, because the covariance matrix becomes more 
stable. Considering the effects of covariance estimators on the individual strategies, 
it can be stated that the Ledoit–Wolf approach managed in all cases to improve the 
results obtained by the sample estimate. On the other hand, the denoised variant 
provides better values than the sample estimate just using MV and RES for T = 50.

The distributions of the volatilities with 50 observations can be followed in 
fi gures 2–4. The fi gures also refl ect the fact that the SRES is more stable than the 
MV and RES strategies independently of the covariance estimator.

Table 1. RMSE for different covariance estimators and sample sizes

Covariance 
estimation 
methods

T = 50 T = 100 T = 150

MV RES SRES MV RES SRES MV RES SRES

Sample 
estimate 0.1659 0.1449 0.1313 0.0987 0.0896 0.0801 0.0726 0.0680 0.0622

Ledoit–Wolf 
shrinkage 0.1559 0.1397 0.1256 0.0955 0.0878 0.0786 0.0713 0.0672 0.0616

Denoised
covariance 0.1592 0.1429 0.1339 0.0986 0.0902 0.0829 0.0747 0.0698 0.0647
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Figure 2. Distribution of portfolio variance using the sample covariance 
estimator

Figure 3. Distribution of portfolio variance using the Ledoit–Wolf covariance 
estimator

Figure 4. Distribution of portfolio variance using the denoised covariance
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3.2.  Experiments on Real Stock Data

In the following experiment, the MV, RES, SRES, and HRP asset allocation 
strategies are compared using different covariance matrix estimators. We provide 
a rolling window approach of the competitiveness of the strategies and analyse 
their performance on real stock data. The rolling window approach (DeMiguel, 
Garlappi, and Uppal, 2009) is a frequently applied procedure for performance 
analyses of asset allocation strategies. For a given T long dataset of asset returns, 
a rolling window (estimation window) of size M is chosen. The data of the fi rst 
rolling window are applied to fi nd the optimal allocation for each of the strategies. 
After that, the obtained weights are applied to the next period (out-of-sample) to 
calculate the returns. We continue this process by moving the rolling window 
towards the end of the dataset, getting a series of T − M out-of-sample returns.

The presented procedure is applied for weekly returns of the securities of the 
S&P 100 from 1 January 2005 to 1 January 2020. Hence, the total observations 
consist of T = 1,024 weeks (15 years), and we considered those stocks without 
missing data resulting in 87 assets. We choose in-sample (rolling window) sizes 
of M = 50, 100, and 150 weeks and an out-of-sample size of 25 weeks.

In order to compare the performance of the selected allocation strategies, we use 
the following measures to evaluate the out-of-sample characteristics: the Sharpe ratio, 
maximum drawdown, annual growth rate (CAGR), annual volatility, and turnover rate.

Tables 2–4 report the results of the presented indicators for the MV, RES, SRES, 
and HRP methods using the sample covariance estimate, the Ledoit–Wolf estimator, 
and the denoised covariance. The Hierarchical Risk Parity strategy performs 
the best considering the CAGR and turnover rate indicators independently of 
the applied covariance estimators. This means that HRP usually provides more 
diversifi ed portfolios than its counterparts. As we have expected, the impacts 
of the covariance estimators on the HRP method do not differ signifi cantly. In 
the case of the Ledoit–Wolf estimator, HRP has the lowest turnover rates, while 
the denoised covariance matrix provides better CAGR values. Except for a few 
cases, the subsampling variant of the minimum-variance method achieves the 
best Sharpe ratios and annual volatilities. SRES is much more preferable in terms 
of diversifi cation (turnover rate) than the MV and RES methods and achieves 
similar values as HRP as the estimation window size increases (see for M = 150).

Considering the individual covariance estimators, it can be concluded that the 
Ledoit–Wolf estimator and the denoised covariance usually improve the most important 
indicators obtained by the sample estimate. As we have previously observed, the 
differences are not signifi cant for HRP, but we managed to improve the diversifi cation 
property of the method, especially using the Ledoit–Wolf estimator. This estimator is 
slightly better than the denoised variant considering the Sharpe ratio and the turnover 
rate. In the latter case, the reduction is more signifi cant for the MV strategy.
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4.  Conclusions

In this paper, we have investigated different covariance matrix estimators applied 
to asset allocation strategies. We have compared the minimum variance portfolio 
with its resampling and subset resampling variants on synthetic data. Based on 
the conducted Monte Carlo experiment, we can conclude that the Ledoit–Wolf 
shrinkage estimator achieves the best performance independently of the applied 
allocation strategy. The RMSE values of portfolio volatilities between in-sample 
and out-of-sample show that the SRES algorithm is more robust than the MV and 
RES strategies. In the second experiment, the three Markowitz-type algorithms 
were compared with a recently proposed hierarchical tree clustering strategy using 
real fi nancial data. The methods were assessed using a rolling window approach 
by varying the number of observations. Finally, the out-of-sample characteristics 
of portfolios were evaluated. The HRP method performs well considering the 
CAGR and turnover rate indicators. SRES usually outperforms MV and RES, 
especially for Sharpe ratios and annual volatilities. The diversifi cation ability of 
SRES is also better than for MV and RES, and it achieves similar values as HRP 
as the number of observations are getting larger. The Ledoit–Wolf estimator and 
the denoised covariance usually improve the most important indicators obtained 
by the sample estimate. Using the newer nonlinear variant of the Ledoit–Wolf 
estimator or applying other cleaning schemes of covariance matrices, we may 
achieve further improvements. Another interesting research direction would be 
to apply clustered selection in the RES and SRES strategies.
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