

DOI: 10.2478/ausm-2023-0001

A note on convolution of Janowski type functions with q-derivative

F. Alsarari

Department of Mathematics, College of Sciences, Yanbu, Taibah University, Saudi Arabia email: alsrary@gmail.com

Abstract. The purpose of the present paper is to introduce and study new subclasses of analytic functions which generalize the classes of Janowski functions with q-derivative. We also study certain a convolution conditions, and apply the convolution conditions to get sufficient condition and the neighborhood results related to the functions in the class $\mathcal{S}^{q}(A, B, \alpha)$.

1 Introduction

Let \mathcal{A} denote the class of functions of form

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n, \tag{1}$$

which are analytic in the open unit disk $\mathcal{U} = \{z \in \mathbb{C} : |z| < 1\}$, and \mathcal{S} denote the subclass of \mathcal{A} consisting of all function which are univalent in \mathcal{U} .

For f and g be analytic in \mathcal{U} , we say that the function f is subordinate to g in \mathcal{U} , if there exists an analytic function w in \mathcal{U} such that |w(z)| < 1 with w(0) = 0, and f(z) = g(w(z)), and we denote this by $f(z) \prec g(z)$. If g is univalent in \mathcal{U} , then the subordination is equivalent to f(0) = g(0) and $f(\mathcal{U}) \subset g(\mathcal{U})$.

Key words and phrases: Janowski functions, subordination, starlike functions, convex functions, q-derivative, convolution or Hadamard product

²⁰¹⁰ Mathematics Subject Classification: 30C45

Using the principle of the subordination we define the class \mathcal{P} of functions with positive real part.

 $\begin{array}{ll} \textbf{Definition 1} & \textit{[1] Let \mathcal{P} denote the class of analytic functions of the form} \\ p(z) = 1 + \sum\limits_{n=1}^{\infty} p_n z^n \ \text{defined on \mathcal{U} and satisfying } p(0) = 1, \ \operatorname{Re} p(z) > 0, \ z \in \mathcal{U}. \end{array}$

Any function p in \mathcal{P} has the representation $p(z) = \frac{1 + w(z)}{1 - w(z)}$, where $w \in \Omega$ and

$$\Omega = \{ w \in \mathcal{A} : w(0) = 0, |w(z)| < 1 \}.$$
 (2)

Definition 2 [2] Let $\mathcal{P}[A, B]$, with $-1 \leq B < A \leq 1$, denote the class of analytic function \mathfrak{p} defined on \mathcal{U} with the representation $\mathfrak{p}(z) = \frac{1 + Aw(z)}{1 + Bw(z)}$, $z \in \mathcal{U}$, where $w \in \Omega$.

Remark: $p \in \mathcal{P}[A, B]$ if and only if $p(z) \prec \frac{1 + Az}{1 + Bz}$.

In [3] the class $\mathcal{P}[A, B, \alpha]$ of generalized Janowski functions was introduced. For arbitrary numbers A, B, α , with $-1 \le B < A \le 1$, $0 \le \alpha < 1$, a function p analytic in \mathcal{U} with p(0) = 1 is in the class $\mathcal{P}[A, B, \alpha]$ if and only if

$$\mathfrak{p}(z) \prec \frac{1 + [(1 - \alpha)A + \alpha B]z}{1 + Bz} \Leftrightarrow \mathfrak{p}(z) = \frac{1 + [(1 - \alpha)A + \alpha B]w(z)}{1 + Bw(z)}, \quad w \in \Omega.$$

In order to define a new class of Janowski symmetrical functions associated with q- derivative defined in the open unit disk \mathcal{U} , we first recall the notion of q-derivative.

Jackson[4] initiated q-calculus and developed the concept of the q-integral and q-derivative.

For a function $f \in \mathcal{S}$ given by (1) and 0 < q < 1, the q-derivative of f is defined by

Definition 3

$$\partial_{q} f(z) = \begin{cases} \frac{f(z) - f(qz)}{z(1-q)}, & z \neq 0, \\ f'(0), & z = 0, \end{cases}$$
(3)

Equivalently (3), may be written as $\partial_q f(z) = 1 + \sum_{n=2}^{\infty} [n]_q a_n z^{n-1}, \quad z \neq 0$ where

 $[n]_q = \tfrac{1-q^n}{1-q}. \ \mathrm{Note \ that \ as} \ q \to 1, \ \ [n]_q \to n.$

Under the hypothesis of the definition of q-difference operator, we have the following rules.

(i) $D_q(af(z) \pm bg(z)) = aD_qf(z) \pm bD_qg(z)$, where a and b any real (or complex) constants

$$\begin{array}{l} \text{(ii)} \ D_{\mathsf{q}}(\mathsf{f}(z)\mathsf{g}(z)) = \mathsf{f}(\mathsf{q}z)D_{\mathsf{q}}\mathsf{g}(z) + \mathsf{g}(z)D_{\mathsf{q}}\mathsf{f}(z) = \mathsf{f}(z)D_{\mathsf{q}}\mathsf{g}(z) + \mathsf{g}(\mathsf{q}z)D_{\mathsf{q}}\mathsf{f}(z) \\ \text{(iii)} \ D_{\mathsf{q}}\left(\frac{\mathsf{f}(z)}{\mathsf{g}(z)}\right) = \frac{\mathsf{g}(z)D_{\mathsf{q}}\mathsf{f}(z) - \mathsf{f}(z)D_{\mathsf{q}}\mathsf{g}(z)}{\mathsf{g}(\mathsf{q}z)\mathsf{g}(z)}. \end{array}$$

(iii)
$$D_q\left(\frac{f(z)}{g(z)}\right) = \frac{g(z)D_qf(z) - f(z)D_qg(z)}{g(qz)g(z)}$$
.

The convolution or Hadamard product of two analytic functions $f,g\in\mathcal{A}$ where f is defined by (1) and $g(z) = z + \sum_{n=2}^{\infty} b_n z^n$, is

$$(f*g)(z) = z + \sum_{n=2}^{\infty} a_n b_n z^n.$$

It can be easily seen that

$$zD_{\mathfrak{q}}f * g = f * zD_{\mathfrak{q}}g. \tag{4}$$

Using the generalized Janowski functions and the concept of q-derivative we will de

ne the following classes:

Definition 4 A function f in A is said to belong to the class $S^q(A, B, \alpha)$, $(-1 \le B < A \le 1), 0 \le \alpha < 1$ if

$$\frac{zD_{q}f(z)}{f(z)} \prec \frac{1 + [(1 - \alpha)A + \alpha B]z}{1 + Bz}, \quad z \in \mathcal{U}.$$

We note that for special values of q, α , A and B yield the following classes. $S^{1}(A, B, \alpha) = S(A, B, \alpha)$ is the class introduced by Polatoglu, Bolcal, Sen and Yavuz, [3], $S^1(A, B, 0) = S(A, B)$ is the class studied by Janowski [2] and etc.

Definition 5 A function f in A is said to belong to the class $K^{q}(A, B, \alpha)$, $(-1 \le B < A \le 1), 0 \le \alpha < 1$ if

$$\frac{D_{\mathfrak{q}}(zD_{\mathfrak{q}}f(z))}{D_{\mathfrak{q}}f(z)} \prec \frac{1 + [(1 - \alpha)A + \alpha B]z}{1 + Bz}, \quad z \in \mathcal{U}.$$

We need to recall the following neighborhood concept introduced by Goodman [5] and generalized by Ruscheweyh [6]

Definition 6 For any $f \in A$, which is of the form (1), ρ -neighborhood of function f can be defined as:

$$\mathcal{N}_{\rho}(f) = \left\{ g \in \mathcal{A} : g(z) = z + \sum_{n=2}^{\infty} b_n z^n, \quad \sum_{n=2}^{\infty} n |a_n - b_n| \le \rho \right\}. \tag{5}$$

For e(z) = z, we can see that

$$\mathcal{N}_{\rho}(e) = \left\{ g \in \mathcal{A} : g(z) = z + \sum_{n=2}^{\infty} b_n z^n, \quad \sum_{n=2}^{\infty} n |b_n| \le \rho \right\}. \tag{6}$$

Ruscheweyh [6] proved, among other results that for all $\eta \in \mathbb{C}$, with $|\eta| < \rho$,

$$\frac{f(z)+\eta z}{1+\eta}\in\mathcal{S}^*\Rightarrow\mathcal{N}_{\rho}(f)\subset\mathcal{S}^*.$$

In this paper, we investigate a sufficient condition and convolution property. Finally motivated by Definition 6, we give analogous definition of neighborhood for the class $S^q(A, B, \alpha, b)$, proof the convolution Lemma and then investigate related neighborhood result for this new class.

2 Main results

Theorem 1 The function $f \in \mathcal{K}^q(A,B,\alpha)$ if and only if

$$\frac{1}{z} \left[f * \frac{xz + \left(x + \frac{[2]_q(1 + Ax)}{(B - A)(1 - \alpha)}\right) qz^2 + \frac{(1 + q - [2]_q)(1 + Ax)}{(B - A)(1 - \alpha)} qz^3}{(1 - z)(1 - qz)(1 - q^2z)} \right] \neq 0$$

where 0 < q < 1, $-1 \le B < A \le 1$, $0 \le \alpha < 1$ and $|z| < R \le 1$, |x| = 1.

Proof. The function $f \in \mathcal{K}^q(A, B, \alpha)$ if and only if

$$\frac{D_{\mathfrak{q}}(zD_{\mathfrak{q}}f(z))}{D_{\mathfrak{q}}f(z)}\in P(A,B,\alpha), \qquad \text{for all } z\in\mathcal{U}. \tag{7}$$

Since $\frac{D_q(zD_qf)}{D_qf} = 1$ at z = 0, so (7) is equivalent to

$$\frac{D_q(zD_qf)}{D_qf} \neq \frac{1 + [(1-\alpha)A + \alpha B]x}{1 + Bx}, \quad (|z| < R, \ |x| = 1, \ x \neq -1)$$

which implies

$$(1 + Bx)D_{q}(zD_{q}f) - (1 + [(1 - \alpha)A + \alpha B]x)D_{q}f \neq 0.$$
 (8)

Setting $f(z) = z + \sum_{n=2}^{\infty} a_n z^n$, we have

$$D_{\mathfrak{q}}f = 1 + \sum_{n=2}^{\infty} [n]_{\mathfrak{q}} a_n z^{n-1}$$

$$D_q(zD_qf) = 1 + \sum_{n=2}^{\infty} [n]_q^2 a_n z^{n-1} = D_q f * \frac{1}{(1-z)(1-qz)}.$$

The left hand side of (8) is equivalent to

$$\begin{split} (1+Bx) \left[D_q f * \sum_{n=1}^{\infty} [n]_q z^{n-1} \right] - D_q f * \sum_{n=1}^{\infty} (1+[(1-\alpha)A+\alpha B]x) z^{n-1} \\ &= D_q f * \sum_{n=1}^{\infty} \left[(1+Bx)[n]_q - (1+[(1-\alpha)A+\alpha B]x) \right] z^{n-1} \\ &= D_q f * \left(\frac{-(1+[(1-\alpha)A+\alpha B]x)}{1-z} + \frac{1+Bx}{(1-z)(1-qz)} \right) \\ &= D_q f * \left(\frac{x((B-A)(1-\alpha)+(1+[(1-\alpha)A+\alpha B]x)qz}{(1-z)(1-qz)} \right). \end{split}$$

Thus

$$\frac{1}{z} \left[z D_{q} f * \frac{xz + \frac{(1 + [(1 - \alpha)A + \alpha B]x)}{(B - A)(1 - \alpha)} qz^{2}}{(1 - z)(1 - qz)} \right] \neq 0.$$
 (9)

By using (4), we can write (9) as

$$\frac{1}{z} \left[f * \frac{xz + \left(x + \frac{[2]_q(1 + [(1 - \alpha)A + \alpha B]x)}{(B - A)(1 - \alpha)}\right)qz^2 + \frac{(1 + q - [2]_q)(1 + [(1 - \alpha)A + \alpha B]x)}{(B - A)(1 - \alpha)}qz^3}{(1 - z)(1 - qz)(1 - q^2z)} \right] \neq 0$$

which completes the proof.

As $q \to 1^-$, and $\alpha = 0$ we have following result proved by Ganesan and et al. in [7].

Corollary 1 The function $f \in C(A, B)$ in $|z| < R \le 1$ if and only if

$$\frac{1}{z} \left[f * \frac{xz + \frac{(Ax + Bx + 2)}{B - A}z^2}{(1 - z)^3} \right] \neq 0.$$

Remark 1 As $q \to 1^-$, $\alpha = 0$ and A = 1, B = -1, we get convolution condition characterizing convex functions as in Silverman and et al. in [8] with a suitable modification.

Theorem 2 The function $f \in S^q(A, B, \alpha)$ in $|z| < R \le 1$ if and only if

$$\frac{1}{z} \left[f * \frac{xz + \frac{1 + [(1-\alpha)A + \alpha B]x}{(B-A)(1-\alpha)} qz^2}{(1-z)(1-qz)} \right] \neq 0, \quad (|z| < R, \ |x| = 1).$$

Proof. Since $f \in \mathcal{S}^q(A, B, \alpha)$ if and only if $g(z) = \int_0^z \frac{f(\zeta)}{\zeta} d_q \zeta \in \mathcal{K}^q(A, B, \alpha)$, we have

$$\frac{1}{z} \left\lceil g * \frac{xz + \left(x + \frac{[2]_q(1 + [(1-\alpha)A + \alpha B]x)}{(B-A)(1-\alpha)}\right) qz^2 + \frac{(1+q-[2]_q)(1 + [(1-\alpha)A + \alpha B]x)}{(B-A)(1-\alpha)}qz^3}{(1-z)(1-qz)(1-q^2z)} \right\rceil$$

$$= \frac{1}{z} \left[f * \frac{xz + \frac{1 + [(1-\alpha)A + \alpha B]x}{(B-A)(1-\alpha)}qz^2}{(1-z)(1-qz)} \right].$$

Thus the result follows from Theorem 1.

Remark 2 Note that from The Theorem 2 we can easily obtain that the equivalent condition for a function f belonging to the class $\mathcal{S}^q(A,B,\alpha)$ if and only if

$$\frac{(f * g)(z)}{z} \neq 0, \quad g \in \mathcal{A}, z \in \mathcal{U}, \tag{10}$$

where g(z) has the form

$$g(z) = z + \sum_{n=2}^{\infty} t_n z^n,$$

$$t_n = \frac{[n]_q - 1 + ([n]_q B - [(1 - \alpha)A + \alpha B])x}{(B - A)(1 - \alpha)x}.$$
(11)

As $q \to 1^-$ and $\alpha = 0$ in Theorem 2 we have following result proved by Ganesan and et al. in [7].

Corollary 2 The function $f \in S^*(A, B)$ in $|z| < R \le 1$ if and only if

$$\frac{1}{z} \left[f * \frac{xz + \frac{1+Ax}{B-A}z^2}{(1-z)^2} \right] \neq 0, \quad (|z| < R, \ |x| = 1).$$

Theorem 3 Let f be a function defined $f(z) = z + \sum_{n=2}^{\infty} a_n z^n$, which is analytic in \mathcal{U} , for $-1 \leq B < A \leq 1$, and $0 \leq \alpha < 1$, if

$$\sum_{n=2}^{\infty} \{([n]_q - 1) + |[(1 - \alpha)A + \alpha B] - B[n]_q|\} |a_n| \le (A - B)(1 - \alpha),$$

then $f(z) \in \mathcal{S}^q(A, B, \alpha)$.

Proof.

For the proof of Theorem 3, it suffices to show that $\frac{(f*g)(z)}{z} \neq 0$ where g is given by (11). Let $f(z) = z + \sum_{n=2}^{\infty} a_n z^n$ and $g(z) = z + \sum_{n=2}^{\infty} t_n z^n$. The convolution

$$\frac{(f * g)(z)}{z} = 1 + \sum_{n=2}^{\infty} t_n a_n z^{n-1}, z \in \mathcal{U}.$$
 (12)

It is known from Theorem 2 that $f(z) \in \mathcal{S}^q(A, B, \alpha)$ if and only if $\frac{(f*g)(z)}{z} \neq 0$, for g given by (11). Using (11) and (12), we get

$$\left|\frac{(f*g)(z)}{z}\right| \geq 1 - \sum_{n=2}^{\infty} \frac{[n]_q - 1 + |[n]_q B - [(1-\alpha)A + \alpha B]|}{|(B-A)(1-\alpha)|} |a_n||z|^{n-1} > 0, \ z \in \mathcal{U}.$$

Thus, $f \in \mathcal{S}^q(A, B, \alpha)$.

To find some neighborhood results for the class $S^q(A, B, \alpha)$ analogous to those obtained by Ruscheweyh [6], we need the following concept of neighborhood.

Definition 7 For $-1 \le B < A \le 1, 0 \le \alpha < 1$ and $\rho \ge 0$ we define $\mathcal{N}^q(A,B,\alpha;f,\rho)$ the neighborhood of a function $f \in \mathcal{A}$ as

$$\mathcal{N}^{q}(A, B, \alpha; f, \rho) = \left\{ g \in \mathcal{A} : g(z) = z + \sum_{n=2}^{\infty} b_{n} z^{n}, d(f, g) \right.$$

$$= \sum_{n=2}^{\infty} \frac{([n]_{q} - 1) + |[(1 - \alpha)A + \alpha B] - B[n]_{q}|}{(1 - \alpha)(A - B)} |b_{n} - a_{n}| \le \rho \right\},$$
(13)

where $f(z) = z + \sum_{n=2}^{\infty} a_n z^n$.

Remark 3 For parametric values $q \to 1$, A = -B = 1, and $\alpha = 0$ (13) reduces to (5).

Theorem 4 Let f be a function defined $f(z) = z + \sum_{n=2}^{\infty} a_n z^n$, which is analytic in \mathcal{U} , and for all complex number η , with $|\eta| < \rho$, if

$$\frac{f(z) + \eta z}{1 + \eta} \in \mathcal{S}^{q}(A, B, \alpha), \tag{14}$$

then

$$\mathcal{N}^{q}(A, B, \alpha; f, \rho) \subset \mathcal{S}^{q}(A, B, \alpha).$$

Proof. We assume that a function h defined by $h(z) = z + \sum_{n=2}^{\infty} b_n z^n$ is in the class $\mathcal{N}^q(A, B, \alpha; f, \rho)$. In order to prove the theorem, we only need to prove that $h \in \mathcal{S}^q(A, B, \alpha)$. We would prove this claim in next three steps.

We first note that Theorem 2 is equivalent to

$$f \in \mathcal{S}^{q}(A, B, \alpha) \Leftrightarrow \frac{1}{z}[(f * g)(z)] \neq 0, \quad z \in \mathcal{U},$$
 (15)

where is given by (11). For $|x| = 1, -1 \le B < A \le 1$, and $0 \le \alpha < 1$. We can write $g(z) = z + \sum_{n=2}^{\infty} t_n z^n$,

where

$$t_{n} = \frac{([n]_{q} - 1) + |[(1 - \alpha)A + \alpha B] - B[n]_{q}|x}{(1 - \alpha)(B - A)x},$$
(16)

Secondly we obtain that (14) is equivalent to

$$\left| \frac{\mathsf{f}(z) * \mathsf{g}(z)}{z} \right| \ge \rho,\tag{17}$$

because, if $f(z) = z + \sum_{n=2}^{\infty} a_n z^n \in A$ and satisfy (14), then (15) is equivalent to

$$g \in \mathcal{S}^{\mathsf{q}}(\mathsf{A},\mathsf{B},\alpha) \Leftrightarrow \frac{1}{z} \left[\frac{\mathsf{f}(z) * \mathsf{g}(z)}{1+\eta} \right] \neq 0, \qquad |\eta| < \rho.$$

Thirdly letting $h(z) = z + \sum_{n=2}^{\infty} b_n z^n$ we notice that

$$\begin{split} \left| \frac{h(z) * g(z)}{z} \right| &= \left| \frac{f(z) * g(z)}{z} + \frac{(h(z) - f(z)) * g(z)}{z} \right| \\ &\geq \rho - \left| \frac{(h(z) - f(z)) * g(z)}{z} \right|, \quad \text{(by using (17))} \\ &= \rho - \left| \sum_{n=2}^{\infty} (b_n - a_n) t_n z^n \right|, \\ &\geq \rho - |z| \sum_{n=2}^{\infty} \left[\frac{([n]_q - 1) + |[(1 - \alpha)A + \alpha B] - B[n]_q|}{|(1 - \alpha)(B - A)|} \right] |b_n - a_n| \\ &\geq \rho - \rho |z| > 0, \quad \text{by applying (16).} \end{split}$$

This prove that

$$\frac{\mathsf{h}(z) * \mathsf{g}(z)}{z} \neq \mathsf{0}, \qquad z \in \mathcal{U}.$$

In view of our observations (15), it follows that $h \in \mathcal{S}^q(A, B, \alpha)$. This completes the proof of the theorem.

When $q \to 1, A = -B = 1$ and $\alpha = 0$ in the above theorem we get (6) proved by Ruscheweyh in [6].

Corollary 3 Let S^* be the class of starlike functions. Let $f \in \mathcal{A}$ and for all complex numbers η , with $|\mu| < \rho$, if

$$\frac{f(z) + \eta z}{1 + \eta} \in \mathcal{S}^*,\tag{18}$$

then $\mathcal{N}_{\sigma}(f) \subset \mathcal{S}^*$.

Theorem 5 Let $f \in \mathcal{S}^q(A, B, \alpha)$, for $\rho < c$. Then

$$\mathcal{N}^{\mathsf{q}}(\mathsf{A},\mathsf{B},\alpha;\mathsf{f},\mathsf{p})\subset\mathcal{S}^{\mathsf{q}}(\mathsf{A},\mathsf{B},\alpha).$$

Where

c is a non-zero real number with $c \leq \left|\frac{(f*g)(z)}{z}\right|, z \in \mathcal{U}$ and g is defined in Remark 2.

Proof. Let $h = z + \sum_{n=2}^{\infty} b_n z^n \in \mathcal{N}^q(A, B, \alpha; f, \rho)$. For the proof of Theorem 5, it suffices to show that $\frac{(h*g)(z)}{z} \neq 0$ where g is given by (11). Consider

$$\left| \frac{h(z) * g(z)}{z} \right| \ge \left| \frac{f(z) * g(z)}{z} \right| - \left| \frac{(h(z) - f(z)) * g(z)}{z} \right|. \tag{19}$$

Since $f \in \mathcal{S}^q(A, B, \alpha)$, therefore applying Theorem 3, we obtain

$$\left| \frac{(f * g)(z)}{z} \right| \ge c, \tag{20}$$

where c is a non-zero real number and $z \in \mathcal{U}$. Now

$$\left| \frac{(h(z) - f(z)) * g(z)}{z} \right| = \left| \sum_{n=2}^{\infty} (b_n - a_n) t_n z^n \right| \\
\leq \sum_{n=2}^{\infty} \left[\frac{([n]_q - 1) + |[(1 - \alpha)A + \alpha B] - B[n]_q|}{|(1 - \alpha)(B - A)|} \right] |b_n - a_n| = \rho, \quad (21)$$

using (20) and (21) in (19), we obtain

$$\left|\frac{h(z)*g(z)}{z}\right| \ge c - \rho > 0,$$

where $\rho < c$. This completes the proof.

References

- [1] P. L. Duren, Univalent Functions, Springer-Verlag, (1983).
- [2] W. Janowski, Some extremal problems for certain families of analytic functions, Ann. Polon. Math. 28 (3), (1973), 297–326.
- [3] Y. Polatoglu, M. Bolcal, A. Sen and E. Yavuz, A study on the generalization of Janowski functions in the unit disc, *Acta Math. Acad. Paedag. Nyhazi.* 22, (2006), 27–31.
- [4] F. H. Jackson, On q-functions and a certain difference operator, Trans. Royal Soc. Edinb, 46, (1909), 253-281.
- [5] A. W. Goodman, Univalent functions and nonanalytic curves, *Proc. Amer. Math. Soc.* 8, (1957), 598–601.

- [6] S. Ruschewyh, Neighborhoods of univalent functions, Proc. Amer. Math. Soc. 81, (1981), 521–527.
- [7] M. S. Ganesan, and K. S. Padmanabhan, Convolution conditions for certain classes of analytic functions, Int. J. Pure and Appl. Math. 15(7), (1984), 777–780.
- [8] H. Silverman, E. M. Silvia and D. Telage, Convolution conditions for convexity, starlikeness and spiral-likeness, Math. Z, 162(2), (1978), 125– 130.

Received: July 22, 2020