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Abstract. The purpose of the present paper is to introduce and study
new subclasses of analytic functions which generalize the classes of Janowski
functions with q-derivative. We also study certain a convolution condi-
tions, and apply the convolution conditions to get sufficient condition and
the neighborhood results related to the functions in the class Sq(A,B, α).

1 Introduction

Let A denote the class of functions of form

f(z) = z+

∞∑

n=2

anz
n, (1)

which are analytic in the open unit disk U = {z ∈ C : |z| < 1}, and S denote
the subclass of A consisting of all function which are univalent in U .
For f and g be analytic in U , we say that the function f is subordinate

to g in U , if there exists an analytic function w in U such that |w(z)| < 1

with w(0) = 0, and f(z) = g(w(z)), and we denote this by f(z) ≺ g(z). If
g is univalent in U , then the subordination is equivalent to f(0) = g(0) and
f(U) ⊂ g(U).
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Using the principle of the subordination we define the class P of functions
with positive real part.

Definition 1 [1] Let P denote the class of analytic functions of the form

p(z) = 1+
∞∑

n=1

pnz
n defined on U and satisfying p(0) = 1, Rep(z) > 0, z ∈ U .

Any function p in P has the representation p(z) =
1+w(z)

1−w(z)
, where w ∈ Ω

and

Ω = {w ∈ A : w(0) = 0, |w(z)| < 1}. (2)

Definition 2 [2] Let P[A,B], with −1 ≤ B < A ≤ 1, denote the class of

analytic function p defined on U with the representation p(z) =
1+Aw(z)

1+ Bw(z)
,

z ∈ U , where w ∈ Ω.

Remark: p ∈ P[A,B] if and only if p(z) ≺
1+Az

1+ Bz
.

In [3] the class P[A,B, α] of generalized Janowski functions was introduced.
For arbitrary numbers A,B, α, with −1 ≤ B < A ≤ 1, 0 ≤ α < 1, a function p

analytic in U with p(0) = 1 is in the class P[A,B, α] if and only if

p(z) ≺
1+ [(1− α)A+ αB]z

1+ Bz
⇔ p(z) =

1+ [(1− α)A+ αB]w(z)

1+ Bw(z)
, w ∈ Ω.

In order to define a new class of Janowski symmetrical functions associated
with q- derivative defined in the open unit disk U , we first recall the notion of
q-derivative.
Jackson[4] initiated q-calculus and developed the concept of the q-integral and
q-derivative.
For a function f ∈ S given by (1) and 0 < q < 1, the q-derivative of f is
defined by

Definition 3

∂qf(z) =

{
f(z)−f(qz)
z(1−q)

, z ̸= 0,

f ′(0), z = 0, 0 < q < 1.
(3)

Equivalently (3), may be written as ∂qf(z) = 1 +
∑

∞

n=2[n]qanz
n−1, z ̸= 0

where
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[n]q = 1−qn

1−q . Note that as q → 1, [n]q → n.
Under the hypothesis of the definition of q-difference operator, we have the
following rules.
(i) Dq(af(z) ± bg(z)) = aDqf(z) ± bDqg(z), where a and b any real (or
complex) constants
(ii) Dq(f(z)g(z)) = f(qz)Dqg(z) + g(z)Dqf(z) = f(z)Dqg(z) + g(qz)Dqf(z)

(iii) Dq

(

f(z)
g(z)

)

=
g(z)Dqf(z)−f(z)Dqg(z)

g(qz)g(z)
.

The convolution or Hadamard product of two analytic functions f, g ∈ A

where f is defined by (1) and g(z) = z+
∑

∞

n=2 bnz
n, is

(f ∗ g)(z) = z+

∞∑

n=2

anbnz
n.

It can be easily seen that

zDqf ∗ g = f ∗ zDqg. (4)

Using the generalized Janowski functions and the concept of q-derivative
we will de
ne the following classes:

Definition 4 A function f in A is said to belong to the class Sq(A,B, α),
(−1 ≤ B < A ≤ 1), 0 ≤ α < 1 if

zDqf(z)

f(z)
≺

1+ [(1− α)A+ αB]z

1+ Bz
, z ∈ U .

We note that for special values of q, α,A and B yield the following classes.
S1(A,B, α)=S(A,B, α) is the class introduced by Polatoglu, Bolcal, Sen and
Yavuz, [3], S1(A,B, 0)=S(A,B) is the class studied by Janowski [2] and etc.

Definition 5 A function f in A is said to belong to the class Kq(A,B, α),
(−1 ≤ B < A ≤ 1), 0 ≤ α < 1 if

Dq(zDqf(z))

Dqf(z)
≺

1+ [(1− α)A+ αB]z

1+ Bz
, z ∈ U .

We need to recall the following neighborhood concept introduced by Good-
man [5] and generalized by Ruscheweyh [6]
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Definition 6 For any f ∈ A, which is of the form (1), ρ-neighborhood of
function f can be defined as:

Nρ(f) =

{

g ∈ A : g(z) = z+

∞∑

n=2

bnz
n,

∞∑

n=2

n|an − bn| ≤ ρ

}

. (5)

For e(z) = z, we can see that

Nρ(e) =

{

g ∈ A : g(z) = z+

∞∑

n=2

bnz
n,

∞∑

n=2

n|bn| ≤ ρ

}

. (6)

Ruscheweyh [6] proved, among other results that for all η ∈ C, with |η| < ρ,

f(z) + ηz

1+ η
∈ S∗ ⇒ Nρ(f) ⊂ S∗.

In this paper, we investigate a sufficient condition and convolution prop-
erty. Finally motivated by Definition 6, we give analogous definition of neigh-
borhood for the class Sq(A,B, α, b), proof the convolution Lemma and then
investigate related neighborhood result for this new class.

2 Main results

Theorem 1 The function f ∈ Kq(A,B, α) if and only if

1

z



f ∗
xz+

(

x+
[2]q(1+Ax)
(B−A)(1−α)

)

qz2 +
(1+q−[2]q)(1+Ax)

(B−A)(1−α)
qz3

(1− z)(1− qz)(1− q2z)



 ̸= 0

where 0 < q < 1, −1 ≤ B < A ≤ 1, 0 ≤ α < 1 and |z| < R ≤ 1, |x| = 1.

Proof. The function f ∈ Kq(A,B, α) if and only if

Dq(zDqf(z))

Dqf(z)
∈ P(A,B, α), for all z ∈ U . (7)

Since
Dq(zDqf)

Dqf
= 1 at z = 0, so (7) is equivalent to

Dq (zDqf)

Dqf
̸=

1+ [(1− α)A+ αB]x

1+ Bx
, (|z| < R, |x| = 1, x ̸= −1)
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which implies

(1+ Bx)Dq (zDqf) − (1+ [(1− α)A+ αB]x)Dqf ̸= 0. (8)

Setting f(z) = z+
∑

∞

n=2 anz
n, we have

Dqf = 1+

∞∑

n=2

[n]qanz
n−1

Dq (zDqf) = 1+

∞∑

n=2

[n]2qanz
n−1 = Dqf ∗

1

(1− z)(1− qz)
.

The left hand side of (8) is equivalent to

(1+Bx)

[

Dqf ∗

∞∑

n=1

[n]qz
n−1

]

−Dqf∗

∞∑

n=1

(1+[(1−α)A+αB]x)zn−1

= Dqf ∗

∞∑

n=1

[(1+ Bx)[n]q − (1+ [(1− α)A+ αB]x)] zn−1

= Dqf ∗

(

−(1+ [(1− α)A+ αB]x)

1− z
+

1+ Bx

(1− z)(1− qz)

)

= Dqf ∗

(

x((B−A)(1− α) + (1+ [(1− α)A+ αB]x)qz

(1− z)(1− qz)

)

.

Thus

1

z



zDqf ∗
xz+

(1+[(1−α)A+αB]x)
(B−A)(1−α)

qz2

(1− z)(1− qz)



 ̸= 0. (9)

By using (4), we can write (9) as

1

z



f ∗
xz+

(

x+
[2]q(1+[(1−α)A+αB]x)

(B−A)(1−α)

)

qz2 +
(1+q−[2]q)(1+[(1−α)A+αB]x)

(B−A)(1−α)
qz3

(1− z)(1− qz)(1− q2z)



 ̸= 0

which completes the proof. □

As q → 1−, and α = 0 we have following result proved by Ganesan and et al.
in [7].
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Corollary 1 The function f ∈ C(A,B) in |z| < R ≤ 1 if and only if

1

z

[

f ∗
xz+

(Ax+Bx+2)
B−A z2

(1− z)3

]

̸= 0.

Remark 1 As q → 1−, α = 0 and A = 1, B = −1, we get convolution
condition characterizing convex functions as in Silverman and et al. in [8]
with a suitable modification.

Theorem 2 The function f ∈ Sq(A,B, α) in |z| < R ≤ 1 if and only if

1

z



f ∗
xz+

1+[(1−α)A+αB]x
(B−A)(1−α)

qz2

(1− z)(1− qz)



 ̸= 0, (|z| < R, |x| = 1).

Proof. Since f ∈ Sq(A,B, α) if and only if g(z) =
∫z
0
f(ζ)
ζ dqζ ∈ Kq(A,B, α),

we have

1

z



g ∗
xz+

(

x+
[2]q(1+[(1−α)A+αB]x)

(B−A)(1−α)

)

qz2 +
(1+q−[2]q)(1+[(1−α)A+αB]x)

(B−A)(1−α)
qz3

(1− z)(1− qz)(1− q2z)





=
1

z



f ∗
xz+

1+[(1−α)A+αB]x
(B−A)(1−α)

qz2

(1− z)(1− qz)



 .

Thus the result follows from Theorem 1. □

Remark 2 Note that from The Theorem 2 we can easily obtain that the equiv-
alent condition for a function f belonging to the class Sq(A,B, α) if and only
if

(f ∗ g)(z)

z
̸= 0, g ∈ A, z ∈ U , (10)

where g(z) has the form

g(z) = z+

∞∑

n=2

tnz
n,

tn =
[n]q − 1+ ([n]qB− [(1− α)A+ αB])x

(B−A)(1− α)x
. (11)
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As q → 1− and α = 0 in Theorem 2 we have following result proved by
Ganesan and et al. in [7].

Corollary 2 The function f ∈ S∗(A,B) in |z| < R ≤ 1 if and only if

1

z

[

f ∗
xz+ 1+Ax

B−A z2

(1− z)2

]

̸= 0, (|z| < R, |x| = 1).

Theorem 3 Let f be a function defined f(z) = z+
∑

∞

n=2 anz
n, which is ana-

lytic in U , for −1 ≤ B < A ≤ 1, and 0 ≤ α < 1, if

∞∑

n=2

{([n]q − 1) + |[(1− α)A+ αB] − B[n]q|} |an| ≤ (A− B)(1− α),

then f(z) ∈ Sq(A,B, α).

Proof.

For the proof of Theorem 3, it suffices to show that (f∗g)(z)
z ̸= 0 where g

is given by (11). Let f(z) = z +
∑

∞

n=2 anz
n and g(z) = z +

∑
∞

n=2 tnz
n. The

convolution

(f ∗ g)(z)

z
= 1+

∞∑

n=2

tnanz
n−1, z ∈ U . (12)

It is known from Theorem 2 that f(z) ∈ Sq(A,B, α) if and only if (f∗g)(z)
z ̸= 0,

for g given by (11). Using (11) and (12), we get

∣

∣

∣

∣

(f ∗ g)(z)

z

∣

∣

∣

∣

≥ 1−

∞∑

n=2

[n]q − 1+ |[n]qB− [(1− α)A+ αB]|

|(B−A)(1− α)|
|an||z|

n−1 > 0, z ∈ U .

Thus, f ∈ Sq(A,B, α).
□

To find some neighborhood results for the class Sq(A,B, α) analogous to
those obtained by Ruscheweyh [6], we need the following concept of neighbor-
hood.
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Definition 7 For −1 ≤ B < A ≤ 1, 0 ≤ α < 1 and ρ ≥ 0 we define
N q(A,B, α; f, ρ) the neighborhood of a function f ∈ A as

N q(A,B, α; f, ρ) =

{

g ∈ A : g(z) = z+

∞∑

n=2

bnz
n, d(f, g)

=

∞∑

n=2

([n]q − 1) + |[(1− α)A+ αB] − B[n]q|

(1− α)(A− B)
|bn − an| ≤ ρ

}

,

(13)

where f(z) = z+
∑

∞

n=2 anz
n.

Remark 3 For parametric values q → 1,A = −B = 1, and α = 0 (13) reduces
to (5).

Theorem 4 Let f be a function defined f(z) = z+
∑

∞

n=2 anz
n, which is ana-

lytic in U , and for all complex number η, with |η| < ρ, if

f(z) + ηz

1+ η
∈ Sq(A,B, α), (14)

then

N q(A,B, α; f, ρ) ⊂ Sq(A,B, α).

Proof. We assume that a function h defined by h(z) = z+
∑

∞

n=2 bnz
n is in the

class N q(A,B, α; f, ρ). In order to prove the theorem, we only need to prove
that h ∈ Sq(A,B, α). We would prove this claim in next three steps.
We first note that Theorem 2 is equivalent to

f ∈ Sq(A,B, α) ⇔
1

z
[(f ∗ g)(z)] ̸= 0, z ∈ U , (15)

where is given by (11). For |x| = 1,−1 ≤ B < A ≤ 1, and 0 ≤ α < 1.
We can write g(z) = z+

∑
∞

n=2 tnz
n,

where

tn =
([n]q − 1) + |[(1− α)A+ αB] − B[n]q| x

(1− α)(B−A)x
, (16)

Secondly we obtain that (14) is equivalent to

∣

∣

∣

∣

f(z) ∗ g(z)

z

∣

∣

∣

∣

≥ ρ, (17)
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because, if f(z) = z+
∑

∞

n=2 anz
n ∈ A and satisfy (14), then (15) is equivalent

to

g ∈ Sq(A,B, α) ⇔
1

z

[

f(z) ∗ g(z)

1+ η

]

̸= 0, |η| < ρ.

Thirdly letting h(z) = z+
∑

∞

n=2 bnz
n we notice that

∣

∣

∣

∣

h(z) ∗ g(z)

z

∣

∣

∣

∣

=

∣

∣

∣

∣

f(z) ∗ g(z)

z
+

(h(z) − f(z)) ∗ g(z)

z

∣

∣

∣

∣

≥ ρ−

∣

∣

∣

∣

(h(z) − f(z)) ∗ g(z)

z

∣

∣

∣

∣

, (by using (17))

= ρ−

∣

∣

∣

∣

∣

∞∑

n=2

(bn − an)tnz
n

∣

∣

∣

∣

∣

,

≥ ρ− |z|

∞∑

n=2

[

([n]q − 1) + |[(1− α)A+ αB] − B[n]q|

|(1− α)(B−A)|

]

|bn − an|

≥ ρ− ρ|z| > 0, by applying (16).

This prove that
h(z) ∗ g(z)

z
̸= 0, z ∈ U .

In view of our observations (15), it follows that h ∈ Sq(A,B, α). This completes
the proof of the theorem. □

When q → 1,A = −B = 1 and α = 0 in the above theorem we get (6) proved
by Ruscheweyh in [6].

Corollary 3 Let S∗ be the class of starlike functions. Let f ∈ A and for all
complex numbers η, with |µ| < ρ, if

f(z) + ηz

1+ η
∈ S∗, (18)

then Nσ(f) ⊂ S∗.

Theorem 5 Let f ∈ Sq(A,B, α), for ρ < c. Then

N q(A,B, α; f, ρ) ⊂ Sq(A,B, α).

Where
c is a non-zero real number with c ≤

∣

∣

∣

(f∗g)(z)
z

∣

∣

∣
, z ∈ U and g is defined in

Remark 2.
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Proof. Let h = z +
∑

∞

n=2 bnz
n ∈ N q(A,B, α; f, ρ). For the proof of Theorem

5, it suffices to show that (h∗g)(z)
z ̸= 0 where g is given by (11). Consider

∣

∣

∣

∣

h(z) ∗ g(z)

z

∣

∣

∣

∣

≥

∣

∣

∣

∣

f(z) ∗ g(z)

z

∣

∣

∣

∣

−

∣

∣

∣

∣

(h(z) − f(z)) ∗ g(z)

z

∣

∣

∣

∣

. (19)

Since f ∈ Sq(A,B, α), therefore applying Theorem 3, we obtain

∣

∣

∣

∣

(f ∗ g)(z)

z

∣

∣

∣

∣

≥ c, (20)

where c is a non-zero real number and z ∈ U . Now

∣

∣

∣

∣

(h(z) − f(z)) ∗ g(z)

z

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∞∑

n=2

(bn − an)tnz
n

∣

∣

∣

∣

∣

≤

∞∑

n=2

[

([n]q − 1) + |[(1− α)A+ αB] − B[n]q|

|(1− α)(B−A)|

]

|bn − an| = ρ, (21)

using (20) and (21) in (19), we obtain

∣

∣

∣

∣

h(z) ∗ g(z)

z

∣

∣

∣

∣

≥ c− ρ > 0,

where ρ < c. This completes the proof. □
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