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Abstract: The Mojette Transformation Tool (MTTool) is an implementation of the 
Direct Mojette transform and its inverse in Net environment. In contrast with the 
hardware development (MoTIMoT) [1], the software development provides us both an 
endless possibility of different variations of the Mojette Transform in a shorter time 
frame and lower costs. Tests with such a tool are much easier and it is also better for 
demonstration and training purposes. This paper tries to outline how the MTTool could 
be helpful for further developments both in software and hardware development. 
 

Keywords: Mojette Transform, MoTIMoT, MTTool, performance test, image 
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1. Introduction 

The Mojette Transform (MT) originates from France where J-P. Guédon 
referred to an old French class of white beans, which were used to teach 
children computing basics of arithmetic with simple addition and subtraction. 
He named it after the analogy of beans and bins. Bins contain the sum of pixel 
values of the respective projection line [2]. There are several different variations 
of MT applications nowadays which are used in different areas, such as 
tomography [3], internet distributed data bases [4], encoding, multimedia error 
correction [5], or The Mojette Transform Tool (MTTool), which was created for 
testing purposes. Moreover, it can be used for demonstrations and training 
purposes as well. 
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Although the MTTool development has not been finished yet, we have 
already gained much experience with it, and we can see how it may become 
more helpful for further projects both in software and hardware development. 
So the main purpose to build such an environment is that with its help we could 
try to compare MT software version with the hardware one. Possible application 
of the SW and the HW can be a surveillance system, where the captured and 
transformed data is stored on different servers for security reasons. From one 
transformed data the recorded data cannot be restored and loosing connection to 
one storage server is not affecting the restoration of the requested data. 

2. Mojette and Inverse Mojette Transform 

Mojette Transform: The main idea behind the Mojette transformation 
(similarly to the Radon transformation) is to calculate a group of projections on 
an image block [6]. The Mojette transform (MOT) (see [7], [8] and [9]) projects 
the original digital 2D image: 

   , ; 1,..., ; 1,...,F F i j i N j M    (1) 

onto a set of K discrete 1D projections with: 

   1 ; 1,..., ;1 1,...,1k KM M k K   . (2) 

MOT is an exact discrete Radon transform defined for a set S = {(pk, qk), k 
= 1,…, K} specific projections angles: 

        
 ,

, , ,K k k l l k k
i j L

M l proj p q b F i j b iq jp


    , (3) 

where proj (pk, qk, bl) defines the projection lines pk, qk, δ(x) is the Dirac delta 
with the form: 

  
1, _ 0

0, _ 1

if x
x

if x



  

 (4) 

and 

  ( , ); 0l k kL i j b iq jp     (5) 

is a digital bin in the direction θk and on set bl. 
 

So the projection operator sums up all pixels values whose centers are 
intersected by the discrete projection line l. The restriction of angle θk leads both 
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to a different sampling and a different number of bins in each projection (pk, qk). 
For a projection defined by θi, the number of bins ni can be calculated by: 

    1 1i in N p M q    1i  (6) 

The direct MOT is depicted in Figure 1 for a 4x4 pixel image. The set of 
three directions S={(-1,2),(1,1),(0,-1)} results in 20 bins. 

 

Figure 1: The set of three projections computed from a 4x4 image. 

The MT can be performed by direct addition of the image pixel values in 
grey scale images, and for bitmaps we can add the different bitmap color table 
values. 
 

Inverse Mojette Transform: The basic principle of the inverse Mojette 
transform is the following. We start the image reconstruction with bins 
corresponding to a single pixel summation. This reconstructed pixel value is 
then subtracted from the other projections and the process is iterated for the N2-
1 pixels: the image is then completely decoded. In the case of a 4x4 pixel image 
reconstruction, if the directions of the MT sets are S={(-1,2),(1,1),(0,-1)}, then 
the minimum number of subtractions needed is 10, from the 20 bins. So should 
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it happen to lose some of the bins we could still reconstruct the image due to the 
redundancy of the MT. 

3. Mojette Transform in MTTool 

In MTTool the implementation of the MT was applied in three different 
ways. This is due to the fact that this application is still under development and 
the three different ways were constructed not at the same time, but in the 
previous years.  

 Table 1: MT implementation and its main differences 

Nr. 
Image 
Format 

Projections  MT and Inverse MT 

1 PGM 
p={1,-1,3,-3}; 

q={quarter of the image size} 

addition and 
subtraction 

2 BMP 
p={2,-2}; q={1} and 
p={3,-3,2}; q={1} 

addition and 
subtraction 

3 BMP 
p={2,-2}; q={1} 

and p={3,-3,2}; q={1} 
Matrix 

 
The First Version: In the initial release one of the hardest decisions was to 

declare some rules, which had to be both flexible and at the same time not very 
complex. We had to declare the image sizes we had to work later with, and to 
look for a useful relationship between the picture size and the vectors we use in 
the MT, Inverse Mojette Transform (IMT). Considering several different file 
sizes, it was clear the smallest image size which can be used in real system is 
the 256 x 256 so, we decided to take the picture size 2nx2n, where n is equal to 8 
and 9, but can be changed easily later on. So the transformable picture size are 
256 x 256 and 512 x 512. In the Picture Preview we can open and display any 
kind of PGM or BMP file irrespective of the picture size, but some of the 
images are increased or decreased to fit on the screen. 

 Table 2: Image display in Picture Preview 

Original size Displayed size Ratio 

1600 x 1200 400 x 300 0,25 

1599 x 1199 799 x 599 0,5 

1024 x 768 512 x 384 0,5 

Height < 1024 Height +180 Other 
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After checking the restrictions, the first step in the MT is to make a vector 
from the pixels of the image. When following a simple rule (1, 2n x 2n), it is 
easy to define the size of this vector. If n=8, this result in the vector (1, 65536), 
in which every line contains a pixel value from the picture. Because the PGM 
picture is a 256 greyscale image, a PGM file contains pixel values only from 0 
to 255. In case of a BMP image, we could make it three times because of the 
different bitmap color table values.  

In the second step we make the Mojette Transformation. The vector p is 
predefined for the four projection directions and the q vector has the same value 
in each case (quarter size of the 2n x 2n image). We generate four files for the 
four different projections, which are the following: 
• originalfilename.pgm.moj1 (1, q) 
• originalfilename.pgm.moj2 (-1, q) 
• originalfilename.pgm.moj3 (3, q) 
• originalfilename.pgm.moj4 (-3, q). 

From the existing MT files (moj1, … moj4), we get the original PGM 
picture with the IMT. In this case all of the four Mojette Transformed files are 
needed to rebuild the original image without any errors at all. If any of the 
Mojette Transform files is defect or incomplete, the Inverse Mojette Transform 
will not give back the original image. Each of the four files contains a vector 
described above. The next step of the IMT is to read the first and last vectors of 
the third and fourth MT files and put them in their place. So we have in all four 
corners of the picture the valid pixel values filled up. See step 1, 2, 3 and 4 on 
the following figure: 
 

 

Figure 2: First 30 steps of the IMT. 

After recreating the pixel values, we only need to add the new header for 
the file and the restoration of the original image is already performed. 
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The Second and Third Version: These solutions differ from the previous 
one in such a way that these are applied on BMP images and in these cases we 
perform the MT and IMT on the three different bitmap color tables. We use the 
same algorithm for the three different color maps and collecting the bins into 3 
separate files which differ in their extensions and of course in their content. On 
the bitmap images we use the directions S1={(2,1),(-2,1)} and S2={(3,1),(-
3,1),(2,1)}  for the block sizes 4 and 8. Although the MT is also prepared for the 
block size 16 and 32, the implementation of the IMT isn’t done yet. In the 
second version, we use simple addition and subtraction – different from the one 
mentioned in the first version –, since here we have block sizes 4 and 8 and 
there we perform the MT and IMT on the whole image at once and not step by 
step. In the third version, instead of addition and subtraction, we use matrices 
for the MT and IMT on the above mentioned block sizes. The MT with matrices 
is implemented in the following way, where bi is the bin resulted from the 
following equation: 
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The inverse matrix for the previous example (for the 4x4 matrix size) is 
implemented as it is shown in the next equation, where ai stands for the original 
values of the matrix: 
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4. MoTIMoT implementation 

The ‘MoTIMoT’ co-processor denotes the hardware implementation of the 
direct MT and IMT as co-processing elements of an embedded processor. The 
advantage in using FPGAs for this is the flexibility of the development tools, 
the hardware-software co-design solutions, and the compact hardware in the 
loop simulation. The embedded reconfigurable hardware is based on Xilinx 
ML310 board [10]. 

Starting from a 256x256 pixel size greyscale image, this requires 64KB 
memory. In order to process all the projection lines in parallel (in the case of the 
MT), one needs as many 64KB sized memory blocks (i.e. Block RAM) as many 
projection lines we have for this image size. The bin vectors are stored in the 
external memory in a so-called ‘MT memory file’. The division in slices of the 
original image is motivated by the fact that this can be corrupted during the 
transmission of the MT file. The image can not be reconstructed without the 
damaged area from the corrupted MT file. While applying the MT to slices, the 
effect of the MT corruption is diminished. Similarly, the memory necessary to 
calculate the MT and IMT is smaller in the case of slices. The whole image 
process would result in a need for reconfiguration in order to calculate all the 
projections, because 256KB are needed to load the 256x256 image in the 
embedded memory only for 4 projection lines (the XC2VP30 has 1.7Mb Block 
RAM ≈ 212KB). For this reason the 256x256 pixel image is divided in 4 slices 
(128x128). 
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Figure 3: MoTIMoT co-Processor Block Scheme [1]. 

The main parts of the image processing systems are: the PowerPC as the 
main processing unit, the MoT unit and the IMoT unit. Both MoT and IMoT 
processors are connected to the PowerPC via the internal PLB bus, because 
their work runs under the main processor control. 

While processing the IMT (for the same image size and projection lines) 
one needs to read the MT memory file from the external memory and to 
reconstruct the image. The bin size means the maximum pixel numbers 
contained by a bin and also defines the number of bits needed for the unary bins 
of the unary MT file. Bins containing only one pixel value are placed to their 
corresponding position during the back projection (IMT). These pixel values 
contained by other bins (in other projections) as well and which bin values have 
to be decreased with the current pixel value. To calculate the positions of the 
bins in the projections and to calculate the correspondence in the image of a 
single pixel bin we need the unary image. Thus when the value of a single pixel 
bin is substituted and the other bin values are decreased, the changes have to be 
validated as well in the unary MT file. The unary MT file contains unary bins. 
These bins contain not only the current pixel number included in the bin in the 
MT file, but the corresponding position in the image of these pixels too. 
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5. Experiments and results with MTTool and MoTIMoT 

MTTool: We can decrease the size of any vectors which are created from 
the projections of MT with the built in ZIP and Huffman coding opportunities. 
The Huffman lossless encoding and decoding algorithm was chosen due to its 
binary block encoding attribute and not because of its compression capability. 
Good data compression can be achieved with Zip and Unzip, which are also 
implemented. The possibility of time measuring with simple tools, such as 
labels or easily generated text files which include the test results, can give us a 
good insight into the MT and IMT. From these results we can estimate and 
predict the consumed time on hardware implementation and its cost as well. 
 

 

Figure 4: Logical system architecture of the MTTool. 

 
The time measurement was applied on three different images with three 

different image sizes and with three different periods. The images were black 
and white PGM files with pixel values of 0 and 255 and the LENA.PGM. The 
first test ran only once, after which the second test ran for 6 times in a row, and 
the last test ran 24 times. Each test was performed with sizes of 16x16, 32x32 
and 512x512. The results of the two smallest image sizes are nearly identical, 
and the results were nearly always under 20 milliseconds for MT and IMT, but 
we could see the following difference regarding the 512x512 image size: 
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Table 3: Test result of the MT and IMT with the first version 

IMAGE Black (512x512) White (512x512) Lena (512x512) 

 

 

 

Minute: 

Second: 

Millisecond 

MT and 

IMT in 

Millisecond 

Minute: 

Second: 

Millisecond 

MT and 

IMT in 

Millisecond 

Minute: 

Second: 

Millisecond 

MT and 

IMT in 

Millisecond 

MT start 57:14:277  3:45:510  21:36:79  

MT end 

IMT 
start 

57:15:439 1162 3:47:403 1893 21:37:762 1683 

IMT end 57:15:910 471 3:47:964 561 21:38:303 541 

MT start 57:22:259  4:0:822  21:49:749  

MT end 

IMT 
start 

57:23:411 1152 4:2:555 1733 21:51:391 1642 

IMT end 57:23:891 480 4:3:105 550 21:51:932 541 

 
From this table we can see that the difference between black and white 

images is more than 50 percent, when it comes to the MT, and only 20 percent 
when we apply the IMT on the Mojette files. For a real time video surveillance 
application which should capture at least 25 image per second (PAL) this result 
is not enough. 
 

MOTIMOT: The simulations were made on PC hardware environment using 
a portable greymap 256x256 image (Lena) without transmission and no bit-
corrupted errors, just as in the MTTool. The simulation proved the correctness 
of the implemented algorithms and the functionality of the proposed hardware. 
In both implementation of the MT and IMT the images were restored with only 
small differences. The original creation date of the image is replaced with the 
date when the IMT was performed. All the header information is cut and isn’t 
restored later on. Restoration of the image includes only the pixel values of the 
original image. We also attach a new automatically generated header to these 
pixels, so the restored image pixel values are exactly the same as the pixel 
values in the original image. Therefore any information included in the image 
itself such as watermark, time and date etc. can be restored later on easily. 
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6. Conclusion 

The paper outlines the different ways, how the Mojette Transform is 
currently implemented in the MTTool and also gives an insight how the 
hardware implementation of Mojette and inverse transformation in the 
embedded system using FPGA has been done. The original contribution is the 
calculation of the dimension of Mojette memory file, the definition and analysis 
of the hardware structure as a whole with the simulation results. Future work is 
needed both in the software and hardware versions. In the software version 
(MTTool) more tests should be performed to get more accurate results, and by 
comparing them to the results of the hardware, we should find an optimal way 
to perform the Mojette Transform. In the hardware version (MoTIMoT), 
finalizing the implementation of the co-processors as a whole with run-time 
reconfiguration is needed. 
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