

 Acta Universitatis Sapientiae
 Electrical and Mechanical Engineering, 1 (2009) 163-174

163

The Mojette Transform Tool and Its Feasibility

Péter SZOBOSZLAI1, Jan TURÁN2,
József VÁSÁRHELYI3, Péter SERFŐZŐ4

1 Magyar Telekom, Budapest, Hungary,
e-mail: szoboszlai.peter@telekom.hu

2 Department of Electronics and Multimedia Communications,
 Technical University of Kosice, Košice, Slovak Republic,

e-mail: jan.turan@tuke.sk
3 Department of Automation, University of Miskolc, Miskolc-Egyetemváros, Hungary,

e-mail: vajo@mazsola.iit.uni-miskolc.hu
4 Ericsson Hungary Ltd, Budapest, Hungary, e-mail: peter.serf.z@ericsson.com

Manuscript received March 15, 2009; revised June 10, 2009.

Abstract: The Mojette Transformation Tool (MTTool) is an implementation of the
Direct Mojette transform and its inverse in Net environment. In contrast with the
hardware development (MoTIMoT) [1], the software development provides us both an
endless possibility of different variations of the Mojette Transform in a shorter time
frame and lower costs. Tests with such a tool are much easier and it is also better for
demonstration and training purposes. This paper tries to outline how the MTTool could
be helpful for further developments both in software and hardware development.

Keywords: Mojette Transform, MoTIMoT, MTTool, performance test, image
processing, software development.

1. Introduction

The Mojette Transform (MT) originates from France where J-P. Guédon
referred to an old French class of white beans, which were used to teach
children computing basics of arithmetic with simple addition and subtraction.
He named it after the analogy of beans and bins. Bins contain the sum of pixel
values of the respective projection line [2]. There are several different variations
of MT applications nowadays which are used in different areas, such as
tomography [3], internet distributed data bases [4], encoding, multimedia error
correction [5], or The Mojette Transform Tool (MTTool), which was created for
testing purposes. Moreover, it can be used for demonstrations and training
purposes as well.

164 P. Szoboszlai, J. Turán, J. Vásárhelyi, P. Serfőző

Although the MTTool development has not been finished yet, we have
already gained much experience with it, and we can see how it may become
more helpful for further projects both in software and hardware development.
So the main purpose to build such an environment is that with its help we could
try to compare MT software version with the hardware one. Possible application
of the SW and the HW can be a surveillance system, where the captured and
transformed data is stored on different servers for security reasons. From one
transformed data the recorded data cannot be restored and loosing connection to
one storage server is not affecting the restoration of the requested data.

2. Mojette and Inverse Mojette Transform

Mojette Transform: The main idea behind the Mojette transformation
(similarly to the Radon transformation) is to calculate a group of projections on
an image block [6]. The Mojette transform (MOT) (see [7], [8] and [9]) projects
the original digital 2D image:

   , ; 1,..., ; 1,...,F F i j i N j M   (1)

onto a set of K discrete 1D projections with:

   1 ; 1,..., ;1 1,...,1k KM M k K   . (2)

MOT is an exact discrete Radon transform defined for a set S = {(pk, qk), k
= 1,…, K} specific projections angles:

        
 ,

, , ,K k k l l k k
i j L

M l proj p q b F i j b iq jp


    , (3)

where proj (pk, qk, bl) defines the projection lines pk, qk, δ(x) is the Dirac delta
with the form:

  
1, _ 0

0, _ 1

if x
x

if x



  

 (4)

and

  (,); 0l k kL i j b iq jp    (5)

is a digital bin in the direction θk and on set bl.

So the projection operator sums up all pixels values whose centers are
intersected by the discrete projection line l. The restriction of angle θk leads both

 The Mojette Transform Tool and Its Feasibility 165

to a different sampling and a different number of bins in each projection (pk, qk).
For a projection defined by θi, the number of bins ni can be calculated by:

    1 1i in N p M q    1i (6)

The direct MOT is depicted in Figure 1 for a 4x4 pixel image. The set of
three directions S={(-1,2),(1,1),(0,-1)} results in 20 bins.

Figure 1: The set of three projections computed from a 4x4 image.

The MT can be performed by direct addition of the image pixel values in
grey scale images, and for bitmaps we can add the different bitmap color table
values.

Inverse Mojette Transform: The basic principle of the inverse Mojette
transform is the following. We start the image reconstruction with bins
corresponding to a single pixel summation. This reconstructed pixel value is
then subtracted from the other projections and the process is iterated for the N2-
1 pixels: the image is then completely decoded. In the case of a 4x4 pixel image
reconstruction, if the directions of the MT sets are S={(-1,2),(1,1),(0,-1)}, then
the minimum number of subtractions needed is 10, from the 20 bins. So should

166 P. Szoboszlai, J. Turán, J. Vásárhelyi, P. Serfőző

it happen to lose some of the bins we could still reconstruct the image due to the
redundancy of the MT.

3. Mojette Transform in MTTool

In MTTool the implementation of the MT was applied in three different
ways. This is due to the fact that this application is still under development and
the three different ways were constructed not at the same time, but in the
previous years.

 Table 1: MT implementation and its main differences

Nr.
Image
Format

Projections MT and Inverse MT

1 PGM
p={1,-1,3,-3};

q={quarter of the image size}

addition and
subtraction

2 BMP
p={2,-2}; q={1} and
p={3,-3,2}; q={1}

addition and
subtraction

3 BMP
p={2,-2}; q={1}

and p={3,-3,2}; q={1}
Matrix

The First Version: In the initial release one of the hardest decisions was to

declare some rules, which had to be both flexible and at the same time not very
complex. We had to declare the image sizes we had to work later with, and to
look for a useful relationship between the picture size and the vectors we use in
the MT, Inverse Mojette Transform (IMT). Considering several different file
sizes, it was clear the smallest image size which can be used in real system is
the 256 x 256 so, we decided to take the picture size 2nx2n, where n is equal to 8
and 9, but can be changed easily later on. So the transformable picture size are
256 x 256 and 512 x 512. In the Picture Preview we can open and display any
kind of PGM or BMP file irrespective of the picture size, but some of the
images are increased or decreased to fit on the screen.

 Table 2: Image display in Picture Preview

Original size Displayed size Ratio

1600 x 1200 400 x 300 0,25

1599 x 1199 799 x 599 0,5

1024 x 768 512 x 384 0,5

Height < 1024 Height +180 Other

 The Mojette Transform Tool and Its Feasibility 167

After checking the restrictions, the first step in the MT is to make a vector
from the pixels of the image. When following a simple rule (1, 2n x 2n), it is
easy to define the size of this vector. If n=8, this result in the vector (1, 65536),
in which every line contains a pixel value from the picture. Because the PGM
picture is a 256 greyscale image, a PGM file contains pixel values only from 0
to 255. In case of a BMP image, we could make it three times because of the
different bitmap color table values.

In the second step we make the Mojette Transformation. The vector p is
predefined for the four projection directions and the q vector has the same value
in each case (quarter size of the 2n x 2n image). We generate four files for the
four different projections, which are the following:
• originalfilename.pgm.moj1 (1, q)
• originalfilename.pgm.moj2 (-1, q)
• originalfilename.pgm.moj3 (3, q)
• originalfilename.pgm.moj4 (-3, q).

From the existing MT files (moj1, … moj4), we get the original PGM
picture with the IMT. In this case all of the four Mojette Transformed files are
needed to rebuild the original image without any errors at all. If any of the
Mojette Transform files is defect or incomplete, the Inverse Mojette Transform
will not give back the original image. Each of the four files contains a vector
described above. The next step of the IMT is to read the first and last vectors of
the third and fourth MT files and put them in their place. So we have in all four
corners of the picture the valid pixel values filled up. See step 1, 2, 3 and 4 on
the following figure:

Figure 2: First 30 steps of the IMT.

After recreating the pixel values, we only need to add the new header for
the file and the restoration of the original image is already performed.

168 P. Szoboszlai, J. Turán, J. Vásárhelyi, P. Serfőző

The Second and Third Version: These solutions differ from the previous
one in such a way that these are applied on BMP images and in these cases we
perform the MT and IMT on the three different bitmap color tables. We use the
same algorithm for the three different color maps and collecting the bins into 3
separate files which differ in their extensions and of course in their content. On
the bitmap images we use the directions S1={(2,1),(-2,1)} and S2={(3,1),(-
3,1),(2,1)} for the block sizes 4 and 8. Although the MT is also prepared for the
block size 16 and 32, the implementation of the IMT isn’t done yet. In the
second version, we use simple addition and subtraction – different from the one
mentioned in the first version –, since here we have block sizes 4 and 8 and
there we perform the MT and IMT on the whole image at once and not step by
step. In the third version, instead of addition and subtraction, we use matrices
for the MT and IMT on the above mentioned block sizes. The MT with matrices
is implemented in the following way, where bi is the bin resulted from the
following equation:

1

2

3

4

5

6

7

8

9

10

15

16

17

18

19

20

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 1 0

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

1

0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0
*

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1

0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

a

a

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

10

123

37

137

254

319

433

68

6

234

125

267

312

8

45

178

a

a

a

a

a

a

a

a

a

a

a

a

a

a

   
   
   
   
   
   
   
   
   
   
   
      
   
   
   
   
   
   
   
   
   
   
   

  

 (6)

The inverse matrix for the previous example (for the 4x4 matrix size) is
implemented as it is shown in the next equation, where ai stands for the original
values of the matrix:

 The Mojette Transform Tool and Its Feasibility 169

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 1

0 0 0 1 0 0 0 1 0 0 1 0 0 0 1 0

0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1

0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0

0 0 0 0 1 0 0 0

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

 
 
 
   
    
  
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

1 0 0 0 0 1 0 0

0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

 
 
 
 
 
 
 
 
 
 
 

 
  
 
 
 






 

1

2

3

4

5

6

7

8

9

10

15

16

17

18

19

20

10

123

25

35

12

102

252

241
*

2

78

255

23

178

45

6

234

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

   
   
   
   
   
   
   
   
   
   
   
   

   
   
   
   
   
   
   
   
   
   
   
   

  

 (7)

4. MoTIMoT implementation

The ‘MoTIMoT’ co-processor denotes the hardware implementation of the
direct MT and IMT as co-processing elements of an embedded processor. The
advantage in using FPGAs for this is the flexibility of the development tools,
the hardware-software co-design solutions, and the compact hardware in the
loop simulation. The embedded reconfigurable hardware is based on Xilinx
ML310 board [10].

Starting from a 256x256 pixel size greyscale image, this requires 64KB
memory. In order to process all the projection lines in parallel (in the case of the
MT), one needs as many 64KB sized memory blocks (i.e. Block RAM) as many
projection lines we have for this image size. The bin vectors are stored in the
external memory in a so-called ‘MT memory file’. The division in slices of the
original image is motivated by the fact that this can be corrupted during the
transmission of the MT file. The image can not be reconstructed without the
damaged area from the corrupted MT file. While applying the MT to slices, the
effect of the MT corruption is diminished. Similarly, the memory necessary to
calculate the MT and IMT is smaller in the case of slices. The whole image
process would result in a need for reconfiguration in order to calculate all the
projections, because 256KB are needed to load the 256x256 image in the
embedded memory only for 4 projection lines (the XC2VP30 has 1.7Mb Block
RAM ≈ 212KB). For this reason the 256x256 pixel image is divided in 4 slices
(128x128).

170 P. Szoboszlai, J. Turán, J. Vásárhelyi, P. Serfőző

Figure 3: MoTIMoT co-Processor Block Scheme [1].

The main parts of the image processing systems are: the PowerPC as the
main processing unit, the MoT unit and the IMoT unit. Both MoT and IMoT
processors are connected to the PowerPC via the internal PLB bus, because
their work runs under the main processor control.

While processing the IMT (for the same image size and projection lines)
one needs to read the MT memory file from the external memory and to
reconstruct the image. The bin size means the maximum pixel numbers
contained by a bin and also defines the number of bits needed for the unary bins
of the unary MT file. Bins containing only one pixel value are placed to their
corresponding position during the back projection (IMT). These pixel values
contained by other bins (in other projections) as well and which bin values have
to be decreased with the current pixel value. To calculate the positions of the
bins in the projections and to calculate the correspondence in the image of a
single pixel bin we need the unary image. Thus when the value of a single pixel
bin is substituted and the other bin values are decreased, the changes have to be
validated as well in the unary MT file. The unary MT file contains unary bins.
These bins contain not only the current pixel number included in the bin in the
MT file, but the corresponding position in the image of these pixels too.

 The Mojette Transform Tool and Its Feasibility 171

5. Experiments and results with MTTool and MoTIMoT

MTTool: We can decrease the size of any vectors which are created from
the projections of MT with the built in ZIP and Huffman coding opportunities.
The Huffman lossless encoding and decoding algorithm was chosen due to its
binary block encoding attribute and not because of its compression capability.
Good data compression can be achieved with Zip and Unzip, which are also
implemented. The possibility of time measuring with simple tools, such as
labels or easily generated text files which include the test results, can give us a
good insight into the MT and IMT. From these results we can estimate and
predict the consumed time on hardware implementation and its cost as well.

Figure 4: Logical system architecture of the MTTool.

The time measurement was applied on three different images with three

different image sizes and with three different periods. The images were black
and white PGM files with pixel values of 0 and 255 and the LENA.PGM. The
first test ran only once, after which the second test ran for 6 times in a row, and
the last test ran 24 times. Each test was performed with sizes of 16x16, 32x32
and 512x512. The results of the two smallest image sizes are nearly identical,
and the results were nearly always under 20 milliseconds for MT and IMT, but
we could see the following difference regarding the 512x512 image size:

172 P. Szoboszlai, J. Turán, J. Vásárhelyi, P. Serfőző

Table 3: Test result of the MT and IMT with the first version

IMAGE Black (512x512) White (512x512) Lena (512x512)

Minute:

Second:

Millisecond

MT and

IMT in

Millisecond

Minute:

Second:

Millisecond

MT and

IMT in

Millisecond

Minute:

Second:

Millisecond

MT and

IMT in

Millisecond

MT start 57:14:277 3:45:510 21:36:79

MT end

IMT
start

57:15:439 1162 3:47:403 1893 21:37:762 1683

IMT end 57:15:910 471 3:47:964 561 21:38:303 541

MT start 57:22:259 4:0:822 21:49:749

MT end

IMT
start

57:23:411 1152 4:2:555 1733 21:51:391 1642

IMT end 57:23:891 480 4:3:105 550 21:51:932 541

From this table we can see that the difference between black and white

images is more than 50 percent, when it comes to the MT, and only 20 percent
when we apply the IMT on the Mojette files. For a real time video surveillance
application which should capture at least 25 image per second (PAL) this result
is not enough.

MOTIMOT: The simulations were made on PC hardware environment using
a portable greymap 256x256 image (Lena) without transmission and no bit-
corrupted errors, just as in the MTTool. The simulation proved the correctness
of the implemented algorithms and the functionality of the proposed hardware.
In both implementation of the MT and IMT the images were restored with only
small differences. The original creation date of the image is replaced with the
date when the IMT was performed. All the header information is cut and isn’t
restored later on. Restoration of the image includes only the pixel values of the
original image. We also attach a new automatically generated header to these
pixels, so the restored image pixel values are exactly the same as the pixel
values in the original image. Therefore any information included in the image
itself such as watermark, time and date etc. can be restored later on easily.

 The Mojette Transform Tool and Its Feasibility 173

6. Conclusion

The paper outlines the different ways, how the Mojette Transform is
currently implemented in the MTTool and also gives an insight how the
hardware implementation of Mojette and inverse transformation in the
embedded system using FPGA has been done. The original contribution is the
calculation of the dimension of Mojette memory file, the definition and analysis
of the hardware structure as a whole with the simulation results. Future work is
needed both in the software and hardware versions. In the software version
(MTTool) more tests should be performed to get more accurate results, and by
comparing them to the results of the hardware, we should find an optimal way
to perform the Mojette Transform. In the hardware version (MoTIMoT),
finalizing the implementation of the co-processors as a whole with run-time
reconfiguration is needed.

Acknowledgements

The authors gratefully acknowledge the donations of Xilinx Inc. and
Celoxica Inc., which made it possible to start this research.
 Thanks for Ferenc Nagy who offered the necessary space and time for our
work.

References

[1] Serfőző, P., Vásárhelyi, J., “Development work of a Mojette transform based hardware
codec for distributed database systems”, in Proceedings of 8th Interational Caroathian
Control Conference ICCC2007, Strebske Pleso, Slovakia, 2007 May 24-27, pp. 631-635.

[2] Guédon, J.-P., Normand, N., “The Mojette transform: The first ten years”, in Proceedings
of DGCI 2005, LNCS 3429, 2005, pp. 79-91.

[3] Guédon, J.-P., Normand, N., “Spline Mojette transform application in tomography and
communication”, in EUSIPCO, Sep. 2002.

[4] Guédon, J.-P., Parrein, B., Normand, N., “Internet distributed image databases", Int. Comp.
Aided Eng., Vol. 8, pp. 205–214, 2001.

[5] Parrein, B., Normand, N., Guédon, J.-P., “Multimedia forward error correcting codes for
wireless LAN”, Annals of Telecommunications (3-4), pp. 448-463, March-April, 2003.

[6] Normand, N., Guédon, J.-P., “La transformee Mojette: une representation recordante pour
l’image”, Comptes Rendus Academie des Sciences de Paris, Theoretical Comp. SCI.
Section, 1998, pp. 124–127.

[7] Katz, M., “Questions of uniqueness and resolution in reconstruction from projections”,
Springer Verlag, Berlin, 1977.

174 P. Szoboszlai, J. Turán, J. Vásárhelyi, P. Serfőző

[8] Autrusseau, F., Guédon, J.-P., “Image watermarking for copyright protection and data
hiding via the Mojette transform”, in Proceedings of SPIE, Vol. 4675, 2002, pp. 378–386.

[9] Turán, J., Ovsenik, L., Benca, M., Turán, J. Jr., “Implementation of CT and IHT processors
for invariant object recognition system”, Radioengineering, Vol. 13, No. 4, pp. 65-71, Dec.
2004.

[10] Xilinx, ML310 User Guide, pp. 73, http://xilinx.com.

