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On scattered subword complexity
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Abstract. Special scattered subwords, in which the gaps are of length
from a given set, are defined. The scattered subword complexity, which is
the number of such scattered subwords, is computed for rainbow words.

1 Introduction

Sequences of characters called words or strings are widely studied in combi-
natorics, and used in various fields of sciences (e.g. chemistry, physics, social
sciences, biology [2, 3, 4, 11] etc.). The elements of a word are called letters.
A contiguous part of a word (obtained by erasing a prefix or/and a suffix) is a
subword or factor. If we erase arbitrary letters from a word, what is obtained
is a scattered subword. Special scattered subwords, in which the consecutive
letters are at distance at most d (d ≥ 1) in the original word, are called
d-subwords [7, 8]. In [9] the super -d-subword is defined, in which case the
distances are of length at least d. The super-d-complexity, as the number of
such subwords, is computed for rainbow words (words with pairwise different
letters).

In this paper we define special scattered subwords, for which the distance
in the original word of length n between two letters which will be consecutive
in the subword, is taken from a subset of {1, 2, . . . , n− 1}.
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The complexity of a word is defined as the number of all its different sub-
words. Similar definitions are for d-complexity, super-d-complexity and scat-
tered subword complexity.

The scattered subword complexity is computed in the special case of rainbow
words. The idea of using scattered words with gaps of length between two given
values is from József Bukor [1].

Another point of view of scattered complexity in the case of non-primitive
words is given is [5].

2 Definitions

Let Σ be an alphabet, Σn, as usually, the set of all words of length n over Σ,
and Σ∗ the set of all finite word over Σ.

Definition 1 Let n and s be positive integers, M ⊆ {1, 2, . . . , n− 1} and u =

x1x2 . . . xn ∈ Σn. An M-subword of length s of u is defined as v = xi1xi2 . . . xis

where
i1 ≥ 1,
ij+1 − ij ∈M for j = 1, 2, . . . , s− 1,
is ≤ n.

Definition 2 The number of M-subwords of a word u for a given set M is
the scattered subword complexity, simply M-complexity.

The M-subword in the case of M = {1, 2, . . . , d} is the d-subword defined in
[7], while in the case of M = {d, d + 1, . . . , n − 1} is the super -d-complexity
defined in [9].
Examples. The word abcd has 11 {1, 3}-subwords: a, ab, abc, abcd, ad, b,
bc, bcd, c, cd, d. The {2, 3 . . . , n − 1}-subwords of the word abcdef are the
following: a, ac, ad, ae, af, ace, acf, adf, b, bd, be, bf, bdf, c, ce, cf, d, df,
e, f.

Hereinafter instead of {d1, d1 + 1, . . . , d2 − 1, d2}-subword we will use the
simple notation (d1, d2)-subword.

3 Computing the scattered complexity for rainbow
words

Words with pairwise different letters are called rainbow words. The M-comple-
xity of a rainbow word of length n does not depend on what letters it contains,
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and is denoted by K(n,M).
Let us recall two results for special scattered words, as d-subwords and

super-d-subwords.
For a rainbow word of length n the super-d-compexity [9] is equal to

K
(
n, {d, d+ 1, . . . , n− 1}

)
=
∑
k≥0

(
n− (d− 1)k

k+ 1

)
, (1)

and the (n− d)-complexity [8] is

K
(
n, {1, 2, . . . , n− d}

)
= 2n − (d− 2) · 2d−1 − 2, for n ≥ 2d− 2.

For special cases the following propositions can be easily proved.

Proposition 3 For n, d1 ≤ d2 positive integers

K
(
n, {d1, d1 + 1, . . . , d2}

)
≤ n+

∑
k≥1

(
n− (d1 − 1)k

k+ 1

)
−
∑
k≥1

(
n− d2k

k+ 1

)
.

Proof. This can be obtained from (1) and the formula

K
(
n, {d1, d1 + 1, . . . , d2}

)
≤ K

(
n, {d1, d1 + 1, . . . , n− 1}

)
− K

(
n, {d2 + 1, d2 + 2, . . . , n− 1}

)
+ n.

�

For example, K(7, {2, 3, 4, 5, 6}) = 33, K(7, {4, 5, 6}) = 13, and from the propo-
sition K(7, {2, 3}) ≤ 27. The exact value is K(7, {2, 3}) = 25, the two words acg
and aeg are not eliminated (here the original distances are 2 and 4 in acg,
and 4 and 2 in aeg).

Proposition 4 For the integers n, d ≥ 1, where n = hd+m

K(n, {d}) =
(h+ 1)(n+m)

2
.

Proof.

K(n, {d}) = n+

n−d∑
i=1

⌊
n− i

d

⌋
= n+ d(1+ 2+ . . .+ h− 1) +mh

= n+
dh(h− 1)

2
+mh =

(h+ 1)(n+m)

2
.

�
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Figure 1: Graph for (2, n− 1)-subwords when n = 6.

To compute the M-complexity of a rainbow word of length n we will use
graph theoretical results. Let us consider the rainbow word a1a2 . . . an and
the correspondig digraph G = (V, E), with
V =

{
a1, a2, . . . , an

}
,

E =
{
(ai, aj) | j− i ∈M, i = 1, 2, . . . , n, j = 1, 2, . . . , n

}
.

For n = 6,M = {2, 3, 4, 5} see Figure 1.
The adjacency matrix A =

(
aij

)
i=1,n,j=1,n

of the graph is defined by:

aij =

{
1, if j− i ∈M,
0, otherwise,

for i = 1, 2, . . . , n, j = 1, 2, . . . , n.

Because the graph has no directed cycles, the entry in row i and column j in
Ak (where Ak = Ak−1A, with A1 = A) will represent the number of directed
paths of length k from ai to aj. If I is the identity matrix (with entries equal to
1 only on the first diagonal, and 0 otherwise), let us define the matrix R = (rij):

R = I+A+A2 + · · ·+Ak, where Ak+1 = O (the null matrix).

The M-complexity of a rainbow word is then

K(n,M) =

n∑
i=1

n∑
j=1

rij.

Matrix R can be better computed using a variant of the well-known Warshall
algorithm (for the original Warshall algorithm see for example [12]):
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Warshall(A,n)

1 W ← A

2 for k← 1 to n
3 do for i← 1 to n
4 do for j← 1 to n
5 do wij ← wij +wikwkj

6 return W

From W we obtain easily R = I+W.
For example let us consider the graph in Figure 1. The corresponding adjacency
matrix is:

A =



0 0 1 1 1 1

0 0 0 1 1 1

0 0 0 0 1 1

0 0 0 0 0 1

0 0 0 0 0 0

0 0 0 0 0 0


After applying the Warshall algorithm:

W =



0 0 1 1 2 3

0 0 0 1 1 2

0 0 0 0 1 1

0 0 0 0 0 1

0 0 0 0 0 0

0 0 0 0 0 0

 , R =



1 0 1 1 2 3

0 1 0 1 1 2

0 0 1 0 1 1

0 0 0 1 0 1

0 0 0 0 1 0

0 0 0 0 0 1


and then K

(
6, {2, 3, 4, 5}

)
= 20, the sum of elements in R.

The Warshall algorithm combined with the Latin square method can be
used to obtain all nontrivial (with length at least 2) M-subwords of a given
rainbow word a1a2 · · ·an. Let us consider a matrix A with the entries Aij,
which are set of words. Initially this matrix is defined as:

Aij =

{
{aiaj}, if j− i ∈M,
∅, otherwise,

for i = 1, 2, . . . , n, j = 1, 2, . . . , n.

If A and B are sets of words, AB will be formed by the set of concatenation
of each word from A with each word from B:

AB =
{
ab
∣∣a ∈ A, b ∈ B}.

If s = s1s2 · · · sp is a word, let us denote by ′s the word obtained from s by
erasing the first character: ′s = s2s3 · · · sp. Let us denote by ′Aij the set Aij
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in which we erase the first character from each element. In this case ′A is a
matrix with entries ′Aij.

Starting with the matrix A defined as before, the algorithm to obtain all
nontrivial M-subwords is the following:

Warshall-Latin(A, n)

1 W ← A
2 for k← 1 to n
3 do for i← 1 to n
4 do for j← 1 to n
5 do if Wik 6= ∅ and Wkj 6= ∅
6 then Wij ←Wij ∪Wik

′Wkj

7 return W

The set of nontrivial M-subwords is
⋃

i,j∈{1,2,...,n}

Wij.

For n = 8, M = {3, 4, 5, 6, 7} the initial matrix is:

∅ ∅ ∅ {ad} {ae} {af} {ag} {ah}

∅ ∅ ∅ ∅ {be} {bf} {bg} {bh}

∅ ∅ ∅ ∅ ∅ {cf} {cg} {ch}

∅ ∅ ∅ ∅ ∅ ∅ {dg} {dh}

∅ ∅ ∅ ∅ ∅ ∅ ∅ {eh}

∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅
∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅
∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅


.

The result of the algorithm Warshall-Latin in this case is:

∅ ∅ ∅ {ad} {ae} {af} {ag, adg} {ah, adh, aeh}

∅ ∅ ∅ ∅ {be} {bf} {bg} {bh, beh}

∅ ∅ ∅ ∅ ∅ {cf} {cg} {ch}

∅ ∅ ∅ ∅ ∅ ∅ {dg} {dh}

∅ ∅ ∅ ∅ ∅ ∅ ∅ {eh}

∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅
∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅
∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅


.

The algorithm Warshall-Latin can be used for nonrainbow words too,
with the remark that repeating subwords must be eliminated. For the word
aabbbaaa and M = {3, 4, 5, 6, 7} the result is: aa, ab, aba, ba.
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4 Computing the (d1, d2)-complexity

Let us denote by ai the number of (d1, d2)-subwords which terminate at po-
sition i in a rainbow word of length n. Then

ai = 1+ ai−d1
+ ai−d1−1 + · · ·+ ai−d2

, (2)

with the remark that for i ≤ 0 we have ai = 0. Subtracting ai−1 from ai we
get the following simpler equation.

ai = ai−1 + ai−d1
− ai−1−d2

.

The (d1, d2)-complexity of a rainbow word of length n is

K
(
n, {d1, d1 + 1, . . . , d2}

)
=

n∑
i=1

ai (3)

For example, if d1 = 2, d2 = 4, the following values are obtained

n 1 2 3 4 5 6 7 8 9 10 11 12 13
an 1 1 2 3 5 7 11 16 24 35 52 76 112

K(n, {2, 3, 4}) 1 2 4 7 12 19 30 46 70 105 157 233 345

If we denote by A(z) =
∑
n≥1

anz
n the generating function of the sequence

an, then from (2) we obtain∑
n≥1

anz
n =
∑
n≥1

zn +
∑
n≥1

an−d1
zn−d1 + · · ·+

∑
n≥1

an−d2
zn−d2 ,

and
A(z) =

z

1− z
+ zd1A(z) + · · ·+ zd1A(z).

From this we obtain

A(z) =
z

zd2+1 − zd1 − z+ 1
. (4)

For d1 = 2, d2 = 4 the sequence (an)n≥0 ([10] sequence A023435) corre-
sponds to a variant of the dying rabbits problem [6].
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To compute the generating function for the complexity K
(
n, {d1, d1 +1, . . . ,

d2}
)
, let us denote this complexity simply by Kn only, and its generating

function by K(z) =
∑
n≥1

Knz
n. We remark that Kn = 0 for n ≤ 0, and K1 = 1.

From (3) and (4) we can immediately conclude that

K(z) =
1

1− z
A(z) =

z

(1− z)(zd2+1 − zd1 − z+ 1)
.

5 Correspondence between (d, n + d − 1)-subwords
and {1, d}-subwords

The following result is inspired from the sequence A0502281 of [10].

Proposition 5 The number of {1, d}-subwords of a rainbow word of length n
is equal to the number of {d, d + 1, . . . , n + d − 1}-subwords of length at least
2 of a rainbow word of length n+ d.

Proof. By the generalization of the sequence A050228 [10] the number of the
{1, d}-subwords of a rainbow word of length n is equal to

K
(
n, {1, d}

)
=
∑
k≥0

(
n+ 1− (d− 1)k

k+ 2

)
.

From (1) we have

K
(
n+ d, {d, d+ 1, . . . , n+ d− 1}

)
− (n+ d) =

∑
k≥1

(
n+ d− (d− 1)k

k+ 1

)
.

By changing k to k + 1 in the sum, we obtain
∑
k≥0

(
n+ 1− (d− 1)k

k+ 2

)
, and

this proves the theorem. �

Example. For abcde the 19 {1, 3}-subwords are:
a, b, c, d, e, ab, abc, abcd, ad, ade, abcde, abe, bc, bcd, bcde, be, cd, cde, de.

For abcdefgh the 19 {3, 4, 5, 6, 7}-subwords of length at least 2 are:
ad, ae, af, ag, adg, ah, adh, aeh, be, bf, bg, bh, beh, cf, cg, ch, dg, dh, eh.

1A050228: an is the number of subsequences {sk} of {1, 2, 3, ...n} such that sk+1 − sk is 1
or 3.
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Conclusions

A special scattered subword, the so-called M-subword is defined, in which the
distances (gaps) between letters are from the set M. The number of the M-
subwords of a given word is the M-complexity. Graph algorithms are used to
compute the M-complexity and to determine all M-subwords of a rainbow
word. This notion of M-complexity is a generalization of the d-complexity [7]
and of the super-d-complexity [9]. If M consists of successive numbers from d1

to d2 then the so-called (d1, d2)-complexity is computed by recursive equations
and generating functions.
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