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Abstract. In this paper we introduce the concept of generalized d-graph
(admitting cycles) as special dependency-graphs for modelling dynamic
programming (DP) problems. We describe the d-graph versions of three
famous single-source shortest algorithms (The algorithm based on the
topological order of the vertices, Dijkstra algorithm and Bellman-Ford
algorithm), which can be viewed as general DP strategies in the case of
three different class of optimization problems. The new modelling method
also makes possible to classify DP problems and the corresponding DP
strategies in term of graph theory.

1 Introduction

Dynamic programming (DP) as optimization method was proposed by Richard
Bellman in 1957 [1]. Since the first book in applied dynamic programming
was published in 1962 [2] DP has become a current problem solving method
in several fields of science: Applied mathematics [2], Computer science [3],
Artificial Intelligence [6], Bioinformatics [4], Macroeconomics [13], etc. Even
in the early book on DP [2] the authors drew attention to the fact that some
dynamic programming strategies can be formulated as graph search problems.
Later this subject was largely researched. As recent examples: Georgescu and
Ionescu introduced the concept of DP-tree [7]; Kátai [8] proposed d-graphs
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as special hierarchic dependency-graphs for modelling DP problems; Lew and
Mauch [14, 15, 16] used specialized Petri Net models to represent DP problems
(Lew called his model Bellman-Net).

All the above mentioned modelling tools are based on cycle free graphs.
As Mauch [16] states, circularity is undesirable if Petri Nets represent DP
problem instances. On the other hand, however, there are DP problems with
“cyclic functional equation” (the chain of recursive dependences of the func-
tional equation is cyclic). Felzenszwalb and Zabih [5] in their survey entitled
Dynamic programming and graph algorithms in computer vision recall that
many dynamic programming algorithms can be viewed as solving a shortest
path problem in a graph (see also [9, 11, 12]. But, interestingly, some shortest
path algorithms work in cyclic graphs too. Kátai, after he has been analyz-
ing the three most common single-source shortest path algorithms (The algo-
rithm based on the topological order of the vertices, Dijkstra algorithm and
Bellman-Ford algorithm), concludes that all these algorithms apply cousin DP
strategies [10, 17]. Exploiting this observation Kátai and Csiki [12] developed
general DP algorithms for discrete optimization problems that can be mod-
elled by simple digraphs (see also [11]). In this paper, modelling finite discrete
optimization problems by generalized d-graphs (admitting cycles), we extend
the previously mentioned method for a more general class of DP problems. The
presented new modelling method also makes possible to classify DP problems
and the corresponding DP strategies in term of graph theory.

Then again the most common approach taken today for solving real-world
DP problems is to start a specialized software development project for every
problem in particular. There are several reasons why is benefiting to use the
most specific DP algorithm possible to solve a certain optimization problem.
For instance this approach commonly results in more efficient algorithms. But
a number of researchers in the above mentioned various fields of applications
are not experts in programming. Dynamic programming problem solving pro-
cess can be divided into two steps: (1) the functional equation of the problem is
established (a recursive formula that implements the principle of the optimal-
ity); (2) a computer program is elaborated that processes the recursive formula
in a bottom-up way [12]. The first step is reachable for most researchers, but
the second one not necessary. Attaching graph-based models to DP problems
results in the following benefits:

• it moves DP problems to a well research area: graph theory,
• it makes possible to class DP strategies in terms of graph theory,
• as an intermediate representation of the problem (that hides, to some
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degree, the variety of DP problems) it enables to automate the program-
ming part of the problem-solving process by an adequately developed
software-tools [12],

• a general software-tool that automatically solves DP problems (getting
as input the functional equation) should be able to save considerable
software development costs [16].

2 Modelling dynamic programming problems

DP can be used to solve optimization problems (discrete, finite space) that
satisfy the principle of the optimality: The optimal solution of the original
problem is built on optimal sub-solutions respect to the corresponding sub-
problems. The principle of the optimality implicitly suggests that the problem
can be decomposed into (or reduced to) similar sub-problems. Usually this
operation can be performed in several ways. The goal is to build up the optimal
solution of the original problem from the optimal solutions of its smaller sub-
problems. Optimization problems can often be viewed as special version of
more general problems that ask for all solutions, not only for the optimal one
(A so-called objective function is defined on the set of sub-problems, which
has to be optimized). We will call this general version of the problem, all-
solutions-version.

The set of the sub-problems resulted from the decomposing process can
adequately be modelled by dependency graphs (We have proposed to model
the problem on the basis of the previously established functional equation
that can be considered the output of the mathematical part and the input
of the programming part of the problem solving process). The vertices (con-
tinuous/dashed line squares in the optimization/all-solutions version of the
problem; see Figures 2.a,b,c) represent the sub-problems and directed arcs the
dependencies among them. We introduce the following concepts:

• Structural-dependencies: We have directed arc from vertex A to vertex
B if solutions of sub-problem A may directly depend on solutions of sub-
problem B (dashed arcs; see Figure 2.a).

• Optimal-dependencies: We have directed arc from vertex A to vertex B
if the optimal solution of sub-problem A directly depends on the optimal
solution of the smaller (respect to the optimization process) sub-problem
B (continuous arcs; see Figure 2.b).

• Optimization-dependencies: We have directed arc from vertex A to ver-
tex B if the optimal solutions of sub-problem A may directly depend on
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the optimal solution of the smaller (respect to the optimization process)
sub-problem B (dotted arcs; see Figure 2.c).

Since structural dependencies reflect the structure of the problem, the struc-
tural-dependencies-graph can be considered as input information (It can be
built up on the basis of the functional equation of the problem). This graph
may contain cycles (see Figure 2.a). According to the principle of the optimal-
ity the optimal-dependencies-graph is a rooted sub-tree (acyclic sub-graph) of
the structural-dependencies-graph. Representing the structure of the optimal
solution the optimal-dependencies-graph can be viewed as output informa-
tion. Since optimization-dependencies are such structural-dependencies that
are compatible with the principle of the optimality, the optimization-dependen-
cies-graph is a maximal rooted sub-tree of the structural-dependencies-graph
that includes the optimal-dependencies-tree. Accordingly, the vertices of the
optimization-dependencies-graph (and implicitly the vertices of the optimal-
dependencies-graph too) can be arranged on levels (hierarchic structure) in
such a way that all its arcs are directed downward. The original problem (or
problem-set) is placed on the highest level and the trivial ones on the lowest
level. We consider that a sub-problem is structurally trivial if cannot be de-
composed into, or reduced to smaller sub-sub-problems. A sub-problem is con-
sidered to be trivial regarding the optimization process if its optimal solution
trivially results from the input data. If the structural-dependencies-graph con-
tains cycles, then completing the hierarchic optimization-dependencies-graph
to the structural-dependencies-graph some added arcs will be directed upward.

Let us consider, as an example, the following problem: Given the weighted
undirected triangle graph OAB determine

• all paths from vertex O (origin) to the all vertices (O, A, B) of the graph
(Figure 1.a),

• the maximal length paths from vertex O (origin) to the all vertices of
the graph (|OA| = 10, |OB| = 10, |AB| = 100) (Figure 1.b),

• the minimal length paths from vertex O (origin) to the all vertices of the
graph (|OA| = 100, |OB| = 10, |AB| = 10) (Figure 1.c).

Since path (O,A,B) includes path (O,A) and, conversely, path (O,B,A) in-
cludes path (O,B) the structural-dependencies-graph that can be attached to
the problem is not cycle free (Figure 2.a). We have bidirectional arcs between
vertices representing sub-problems A (determine all paths to vertex A) and B
(determine all paths to vertex B). Since the maximizing version of the prob-
lem does not satisfy the principle of the optimality (the maximal path (O,B,A)
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Figure 1: The triangle graph

includes path (O,B) that is not a maximal path too), in case b the optimal-
dependencies-tree and the optimization-dependencies-tree are not defined. Fig-
ures 2.b and 2.c present the optimal- and optimization-dependencies-graphs
attached to the minimizing version of the problem.

Figure 2: Structural/Optimal/Optimization-dependencies-graphs

3 d-graphs as special dependency graphs

Since decomposing usually means that the current problem is broken down
into two or more immediate sub-problems (1 → N dependency) and since
this operation can often be performed in several ways, Kátai [8] introduced
d-graphs as special dependency graphs for modelling such problems. In this
paper we define a generalized form of d-graphs as follows:
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Definition 1 The connected weighted bipartite finite digraph Gd(V, E, C) is a
d-graph if:

• V = Vp
⋃

Vd and E = Ep
⋃

Ed, where

– Vp is the set of the p-vertices,

– Vd is the set of the d-vertices,

– all in/out neighbours of the p-vertices (excepting the source/sink
vertices) are d-vertices; each d-vertex has exactly one p-in-neighbour;
each d-vertex has at least one p-out-neighbour,

– Ep is the set of p-arcs (from p-vertices to d-vertices),

– Ed is the set of d-arcs (from d-vertices to p-vertices),

• function C : Ep → R associates a cost to every p-arc. We consider d-arcs
of zero cost.

If a d-graph is cycle-free, then its vertices can be arranged on levels (hi-
erarchic structure) (see Figure 3). In [8] Kátai defines, respect to hierarchic
d-graphs, the following related concepts: d-sub-graph, d-tree, d-sub-tree, d-
spanning-tree, optimal d-spanning-tree and optimally weighted d-graph.

4 Modelling optimization problems by d-graphs

According to Kátai [8] a hierarchic d-graph can be viewed as representing the
optimization-dependences-graph corresponding to the original problem and d-
sub-graphs to the sub-problems. Since there is a one-to-one correspondence
between p-vertices and d-sub-graph [8], these vertices also represent the sub-
problems. The source p-vertex (or vertices) is attached to the original problem
(or original problem-set), and the sink vertices to the structurally trivial sub-
problems. A p-vertex has as many d-sons as the number of possibilities to
decompose the corresponding sub-problem into its smaller immediate sub-
sub-problems. A d-vertex has as many p-sons as the number of immediate
smaller sub-problems (N) resulted through the corresponding breaking-down
step (1 → N dependency between the p-grandfather-problem and the corre-
sponding p-grandson-problems). We will say that a grandfather-problem is
reduced to its grandson-problem if the intermediary d-vertex has a single p-
son (1 → 1 dependency). Parallel decomposing processes may result in iden-
tical sub-problems, and, consequently, the corresponding p-vertex has multi-
ple p-grandfathers (through different d-fathers). Due to this phenomenon the
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Figure 3: Hierarchic d-graph. p- and d-vertices are represented by rectangles
and circles, respectively (We used bolded lines to emphasize the optimal d-
spanning-(sub)trees)

number of the sub-problems may depend on the size of the input polynomi-
ally. The d-spanning-trees of the d-(sub)graphs represent the corresponding
(sub)solutions, more exactly their tree-structure. The number of all solutions
of the problem usually depends on the size of the input exponentially.

For example, if a p-vertex has n d-sons, these d-sons have m1, m2, . . . , mn p-
sons, and these p-son-problems have (r1,1, r1,2, . . . , r1,m1), (r1,1, r1,2, . . . , r1,m2),

(r1,1, r1,2, . . . , r1,mn) solutions, respectively, then from the
∑ ∑

rij solution of
the p-grandson-problems results

∑ ∏
rij solution for the common p-grandfa-

ther-problem. The number of solutions exponentially exceeds the number of
sub-problems. The

∑
-operator reflects the OR-connection between d-brothers

and the
∏

-operator the AND-connection between p-brothers.

5 Dynamic programming strategy on the
optimization-dependencies d-graph

In the case of optimization problems we are interested only in the optimal
solution of the original problem. Dynamic programming means building up
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the optimal solutions of the larger sub-problems from the optimal solution
of the already solved smaller sub-problems (starting with the optimal solu-
tion of the trivial sub-problems). Accordingly, (1) DP works on the hierarchic
optimization-dependencies d-graph that can be attached to the problem, and
(2) it deals with one solution per sub-problem, with the optimal one (DP
strategies usually result in polynomial algorithms).

In line with this Kátai [8] defines two weight-functions (wp : Vp → R, wd :

Vd → R) on the sets of p- and d-vertices of the attached hierarchic d-graph.
Whereas the weight of a p-vertex is defined as the optimum (minimum/maxi-
mum) of the weights of its d-sons, the weight of a d-vertex is a function (de-
pending on the problem to be modelled) of the weights of its p-sons. We con-
sider the weight of a d-vertex to be optimal if is based on optimal the weights
of its p-sons. The optimal weight of a p-vertex (excluding the sink vertices)
is equal with the minimum/maximum of the optimal weights of its d-sons.
The optimal weights of the p-sinks trivially result from the input data of the
problem. Accordingly: the optimal weights of the p-vertices are computed (1)
in optimal way, (2) on the basis of the optimal weights of their p-descendents.
This means bottom-up strategy. Computing the optimal weights of the p-
vertices we implicitly have their optimal d-sons (It is characteristic to DP
algorithms that during the bottom-up building process it stores the already
computed optimal p-weights in order to have them at hand in case they are
needed to compute further optimal p-weights. If we also store the optimal d-
sons of the p-vertices, then this information allows a quick reconstruction of
the optimal d-spanning-tree in top-down way [17, 18]).

Defining the costs of the p-arcs as the absolute value of the weight-difference
of its endpoints we get an optimally weighted d-graph with zero-cost mini-
mal d-spanning-tree. We denote these kinds of p-arc-cost-functions by C∗ [8].
Modelling optimization problems by a d-graphs Gd(V, E, C∗) includes choosing
functions wp and wd in such a way as the optimal weights of the p-vertices to
represent the optimum values of the objective function respect to the corre-
sponding sub-problems (These functions can be established on the basis of the
functional equation of the problem; input information regarding the modelling
process).

Proposition 2 If an optimization problem can be modelled by a hierarchic
d-graph Gd(V, E, C∗) (as we described above), then it can be solved by dynamic
programming.

Proof. Since in an optimally weighted d-graph d-sub-trees of an optimal d-
spanning-tree are also optimal d-spanning-trees respect to the d-sub-graphs
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defined by their root-vertices, computing the optimal p- and d-weights ac-
cording to a reverse topological order of the vertices (based on optimization-
dependencies) implicitly identifies the optimal d-spanning-tree of the d-graph.
This bottom-up strategy means DP and the optimal solution of the original
problem will be represented by the weight of the source vertex (as value) and
by the minimal d-spanning-tree (as structure). �

Computing the optimal weight of a p-vertex (expecting vertices representing
trivial sub-problems) can be implemented as a gradual updating process based
on the weights of its d-sons. The weights of p-vertices representing trivial
sub-problems receive as starting-value their input optimal value. For other
p-vertices we choose a proper starting-value according to the nature of the
optimization problem (The weights of d-vertices are recomputed before every
use). We define the following types of updating operations along p-arcs (if the
weight of a certain d-son is “better” than the weight of his p-father, then the
father’s weight is replaced with the son’s weight):

• Complete: based on the optimal value of the corresponding d-son.
• Partial: based on an intermediate value of the corresponding d-son.
• Effective: effectively improves the weight of the corresponding p-vertex.
• Null: dose not adjusts the weight of the corresponding p-vertex.
• Optimal: sets the optimal weight for the corresponding p-vertex. Optimal

updates are complete and effective too.

6 d-graph versions of three famous single-source
shortest-path algorithms

As we mentioned above, Kátai concludes that the three famous single-source
shortest-path algorithms in digraphs (The algorithm based on the topological
order of the vertices, Dijkstra algorithm and Bellman-Ford algorithm) apply
cousin DP strategies [10, 17]. The common representative core of these DP
algorithms is that the optimal weights (representing the optimal lengths to
the corresponding vertices) are computed on account of updating these values
along the arcs of the shortest-paths-tree according to their topological order
(optimal-updating-sequence). Since this optimal tree is unknown (it repre-
sents the solution of the problem) all the three algorithms generate updating-
sequences which contain, as subsequence, an optimal-updating-sequence nec-
essary for the dynamic programming building process. The basic difference
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Figure 4: The strategies of the (a) Topological, (b) Dijkstra and (c) Bellman-
Ford algorithms (we bolded the optimal-arc-subsequence of the generated arc-
sequences)
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among the three algorithms is the way they generate a proper arc-sequence
and the corresponding updating-sequence.

In case the input digraph is acyclic we get a proper arc-sequence by ordering
all the arcs of the graph topologically (this order can even be determined in
advance). Dijkstra algorithm (working in cyclic graphs too, but without neg-
ative weighted arcs) determines the needed arc-sequence on the fly (parallel
with the updating process). After the current weight of the next closest vertex
has been confirmed as optimal value (greedy decision), the algorithm performs
updating operations along the out-arcs of this vertex (This greedy choice can
be justified as follows: if other out-neighbours of the growing shortest-paths-
tree are farther - from the source vertex - than the currently closest one, then
through these vertices cannot lead shortest paths to this). Bellman-Ford algo-
rithm (working in cyclic graphs with negative weighted arcs too, but without
feasible negative weighted cycles) goes through (in arbitrary order) all the
arcs of the graph again and again until the arc-sequence generated in this way
finally will contains, as sub-sequence, an optimal-updating-sequence (see Fig-
ure 4, [10]). The following d-graph algorithms implement DP strategies that
exploit the core idea behind the above described single-source shortest-paths
algorithms.

6.1 Building-up the optimization-dependencies d-graph in
bottom-up way

Our basic goal is to perform updating operation along the p-arcs of the
optimal-dependencies-tree according to their reverse topological order. We will
call such arc sequences optimal-arc-sequence and the corresponding updating
sequences optimal-updating-sequence. An optimal-updating-sequence surely
results in building up the optimal value representing the optimal solution of
the problem. Since the optimal-dependencies-tree is unknown (it represents
the structure of the optimal solution to be determined), we should try to
elaborate complete arc sequences that includes the desired optimal-updating-
sequence (gratuitous updating operations have, at the worst, null effects).

We introduce the following colouring-convention:

• Initially all vertices are white.
• A p-vertex changes its colour to grey after the first attempt to update

its weight. d-vertices automatically change their colour to grey if they
do not have any more white p-sons.

• When the weight of a vertex riches its optimal value its colour is auto-
matically changed to black.
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We are facing a gratuitous updating operation if:

• along the corresponding p-arc was previously performed a complete up-
date,

• the corresponding p-father is already black,
• the corresponding d-son is still grey or white.

Since the optimal values of trivial sub-problems automatically results from
the input data of the problem, the corresponding p-vertices are automatically
coloured with black.

The following propositions can be viewed as theoretical support for the be-
low strategies that build up the optimal-dependencies d-graph (on the basis of
the structural-dependencies-graph that can be considered input information)
level-by-level in bottom-up way (At the beginning all p-vertices are places at
level 0. All effective updates along the corresponding p-arcs move their p-end
to higher level than the highest p-son of their d-end.).

Proposition 3 If the structural-dependencies d-graph attached to an opti-
mization problem that satisfies the principle of the optimality has no black
p-sources, then there exists at least one p-arc corresponding to an effective
complete updating operation.

Proof. Since the optimization problem satisfies the principle of the optimality
the optimal-updating-sequence there exists and continuously warrants (while
no black p-sources still exist) the existence of optimal updating operations,
which are effective and complete too. �

Proposition 4 Any p-arcs sequence (of the structural-dependencies d-graph
attached to an optimization problem that satisfies the principle of the optimal-
ity) that continuously applies non-repetitive complete updates (while such up-
dating operations still exist) warrants that all p-sources become black-coloured.
These p-arcs sequences contain arcs representing optimization-dependencies
and surely include an optimal-arc-sequence.

Proof. Since the optimization problem satisfies the principle of the optimal-
ity the optimal-updating-sequence there exists and warrants the continuous
existence of optimal updating operations (which are also effective and com-
plete) while no black p-sources still exist. Accordingly any p-arcs sequence that
continuously applies non-repetitive complete updates includes an optimal-arc-
sequence, and consequently results in colouring all p-sources with black. �
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Proposition 5 If the structural-dependencies d-graph attached to an opti-
mization problem that satisfies the principle of the optimality is cycle-free,
then any reverse topological order of the all p-arcs continuously applies non-
repetitive complete updates, and consequently, results in building up the optimal
solution of the problem.

Proof. Since the colours of the d-vertices surely become black after all their p-
sons have already become black, any reverse topological order of all p-arcs con-
tinuously applies non-repetitive complete updates. According to the previous
proposition these arc-sequences surely include an optimal-arc-sequence, and
consequently results in building up the optimal solution of the problem. �

Proposition 6 If an optimization problem satisfies the principle of the op-
timality, then there exists a finite multiple complete arc-sequence of the at-
tached structural-dependencies d-graph that includes an optimal-arc-sequence,
and consequently, the corresponding updating-sequence results in building up
the optimal solution of the problem.

Proof. The existence of such an arc-sequence immediately results from the
facts that: (1) Any complete arc-sequence contains all arcs of the optimal-
dependencies-tree; (2) The optimal-dependencies-tree is finite. If we repeat a
complete arc-sequence that includes the arcs of the optimal-dependencies-tree
according to their topological order (worst case), then we need as many upda-
ting-tours as the number of the p-arcs of the optimal-dependencies-tree is. �

6.1.1 Algorithm d-TOPOLOGICAL

If the structural-dependencies d-graph attached to the problem is cycle free
(called: structurally acyclic DP problems), then this input graph can also be
viewed as optimization-dependencies-graph. Considering a reverse topological
order of the all vertices, all updating operations (along the corresponding p-
arc-sequence) will be complete (see Proposition 5). Additionally, along the
arcs of the optimal d-spanning-tree we have optimal updates. Accordingly,
this algorithm (called d-TOPOLOGICAL) results in determining the optimal
solution of the problem.

6.1.2 Algorithm d-DIJKSTRA

If the structural-dependencies d-graph contains cycles a proper vertices or-
der involving complete updates along the corresponding p-arc-sequence can-
not be structurally established. In this case we should try to build up the
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optimization-dependencies d-graph (more exactly a reverse topological order
of its all p-arcs) on the fly, parallel with the bottom-up optimization process.

Implementing a sequence of continuous complete updates presumes to iden-
tify at each stage of the building process the black d-vertices based on which
we have not performed complete updating operations (Proposition 3 guar-
anties that such d-vertices exist continuously). A d-vertex is black only if
all its p-sons are already black. Consequently, the basic question is: Can we
identify the black p-vertices at each stage of the building process? As we men-
tioned above a p-vertex is certainly black after we have performed complete
updates based on all its d-sons (The last effective update was performed on
the basis of optimal d-son). Algorithms based on the topological order of the
all arcs exploit this structural condition. However, a p-vertex may have be-
come black before we have performed complete updating operation along all
its p-out-arcs. Conditions making perceptible such black p-vertices may also
be deduced from the principle of the optimality. For example, if the DP prob-
lem has a greedy character too, then it may work the following condition: the
“best” d-vertex (having relatively optimal weight) among those based on which
we have not performed complete updating operations can be considered black
(Called: Cyclic DP problems characterized by greedy choices). Since Dijkstra
algorithm applies this strategy, we call this algorithm: d-DIJKSTRA.

6.1.3 Algorithm d-BELLMAN-FORD

If we cannot establish one complete arc-sequence including an optimal-arc-
sequence (we will call such problems: DP problems without ’negative cycles’),
we are forced to repeat the updating-tour along a complete (even arbitrary)
arc-sequence of the input graph (structural-dependencies d-graph) until this
multiple arc-sequence will include the desired optimal updating sequence (see
Proposition 6). An extra tour without any effective updates indicates that
the optimal solution has been built up. If the arbitrary arc-sequence we have
chosen includes the arcs of the optimal-dependencies-tree in topological order
(worst case), then we need as many updating-tours as the number of the p-arcs
of the optimal-dependencies-tree is. Since Bellman-Ford algorithm applies this
strategy, we call this algorithm: d-BELLMAN-FORD.
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Figure 5: (a) Acyclic digraph; (b) Structural-dependencies d-graph; (c) Opti-
mally weighted optimization-dependencies d-graph (bolded lines represent the
arcs of the optimal-dependencies d-graph)
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Figure 6: (a) Cyclic digraph without negative weighted arcs; (b) Cyclic
structural-dependencies d-graph; (c) The bottom-up building-up process of
the optimally weighted optimization-dependencies d-graph (bolded lines rep-
resent the arcs of the optimal-dependencies d-graph)
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Figure 7: (a) Cyclic digraph with negative weighted arcs, but without negative
cycles; (b) Cyclic structural-dependencies d-graph; The bottom-up building-up
process of the optimally weighted optimization-dependencies d-graph (bolded
lines represent the arcs of the optimal-dependencies d-graph): (c1–c4) first
updating-tour, (d) second updating-tour



228 Z. Kátai

6.1.4 A relevant sample problem

As an example we consider the single-source shortest problem: Given a weighted
digraph determine the shortest paths from a source vertex to all the other
vertices (destination vertices). The attached figures (see Figures 5, 6, 7) il-
lustrate the level by level building process of the optimization-dependencies
d-graph concerning to the algorithms d-TOPOLOGICAL, d-DIJKSTRA and
d-BELLMAN-FORD (Regarding this problem we have only 1 → 1 dependen-
cies between neighbour p-vertices).

7 Conclusions

Introducing the generalized version of d-graphs we received a more effective
tool for modelling a larger class of DP problems (Hierarchic d-graphs intro-
duced in [8] and Petri-net based models [14, 15, 16] work only in the case of
structurally acyclic problems; Classic digraphs [11, 12] can be applied when
during the decomposing process at each step the current problem is reduced
to only one sub-problem). The new modelling method also makes possible
to classify DP problems (Structurally acyclic DP problems; Cyclic DP prob-
lems characterized by greedy choices; DP problems without ’negative cycles’)
and the corresponding DP strategies (d-TOPOLOGICAL, d-DIJKSTRA, d-
BELLMAN-FORD) in term of graph theory.

If we have proposed to develop a general software-tool that automatically
solves DP problems (getting as input the functional equation) we should com-
bine the above algorithms as follows:

• We represent explicitly the d-graph described implicitly by the functional
equation.

• We try to establish the reverse topological order of the vertices by a DFS
like algorithm (d-DFS). This algorithm can also detect possible cycles.

• If the graph is cycle free, we apply algorithm d-TOPOLOGICAL, else
we try to apply algorithm d-DIJKSTRA.

• If no mathematical guarantees that we reached the optimal solution, then
choosing as complete arc-sequence for algorithm d-BELLMAN-FORD
the arc-sequence generated by algorithm d-DIJKSTRA (completed with
unused arcs) in the first updating-tour we verify the d-DIJKSTRA result.
We repeat the updating tours until no more effective updates.

Such a software-application should be able to save considerable software
development costs.
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[11] Z. Kátai, Dynamic programming as optimal path problem in weighted
digraphs, Acta Math. Acad. Paedagog. Nyházi, 24, 2 (2008) 201–208. ⇒
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