

 Acta Universitatis Sapientiae
 Electrical and Mechanical Engineering, 2 (2010) 114-122

Localization of the Mobile Calls Based on SS7
Information and Using Web Mapping Service

Virgil CAZACU 1, Laura COBÂRZAN 2, Dan ROBU 3,
Florin SANDU 4

1 BitDefender, Bucharest, Romania, e-mail: virgil.cazacu@gmail.com
2 Softvision, Cluj-Napoca, Romania, e-mail: laura.cobarzan@gmail.com

3 Siemens Program and System Engineering, Brasov, Romania,
 e-mail: dan.robu@siemens.com

4 Faculty of Electrical Engineering & Computer Science, “Transilvania” University,
Brasov, Romania, e-mail: sandu@unitbv.ro

Manuscript received October 01, 2010; revised October 20, 2010.

Abstract: Localization of the calls is a topic that has been coming up even from the
early time of the telephony. Calls made from mobile phones were even more interested
to be localized due to their mobility. This paper presents a localization solution that uses
information from the mobile network, being a technical solution that ensures the
acquisition of the localization information of the calls from the terminals in the mobile
network and which is delivering this data to a localization server. The localization
solution that is presented has three major features: receiving calls’ information from
mobile networks and obtaining the localization information from the Signaling System
#7(SS7); data processing from signaling frame and IP-transmitting of this information
to a localization server; visualization of the call location on the map. Due to client-
server architecture, users of the system can access calls locations using digital maps.

Keywords: Localization, mobile networks, service, client-server, integration.

1. Introduction

Localization of the calls is useful not only from the legal point of view but
also in case of emergencies as is for example the usage of the short number 112
or 911. In this case, the localization of the person who is in possible danger is
vital.

Using SS7 localization approach has drawbacks which are treated in the
presented solution: each mobile phone service provider supplies the localization
information within the Initial Address Message (IAM) field of the ISDN User
Part (ISUP) protocol from SS7 frame in its’ own specific format [1]. Thus, the

 V. Cazacu, L. Cobârzan, D. Robu, F. Sandu 115

solution offers the possibility to configure the necessary parameters, depending
on the place of deployment.

From the design point of view, the solution ensures the service of
acquirement of the localization information for the terminals in the mobile
networks and it is delivering this information to a localization server for calls
that are selected to be localized. The call processing, localization information
extraction and delivering these on the interface to the localization server is
performed in almost-real time, delays appearing if the load of the system is
high. This solution is adaptable with minimal costs for future changes of the
architecture. These changes might include resizing the necessary input/output
traffic and the modification of the field from the SS7 signaling frame in which
the localization information is transmitted by using parameterized components.

SS7 localization data is sent using “Cell ID” type from ISUP protocol, in the
IAM message, “Location number” field and/or “Called number address”
field [1].

The next table presents an example of localization data format that is
specific for each mobile service provider.

Table 1: Localization data format.

Network code
(e.g.72,74 or
4072, 4074)

Services bit (reserved) Location area code Cell ID

2-4 digits 1 digit 5 digits 5 digits

Based on these frames, each mobile operator maintains a database with
geographic information that can offer information about the caller position
based on the positioning string. The database structure is different, according to
the telephony provider and contains the equivalent geographical coordinates for
the above data from SS7 ISUP frame as it is shown as an example in Table 2.

Table 2: Geographical coordinates database structure.

Cell
code District City Street

Lat
(Grade,
Minutes,
Seconds)

Long
(Grade,
Minutes,
Seconds)

Azimuth BSC LAC

Specific
Code String String String Int (6

digits)
Int (6
digits)

Int (3
digits)

Specific
Code

Int (4
digits)

116 Localiz. of the Mob. Calls Based On Ss7 Inform. and Using Web Mapping Service

The location of these databases is defined by each mobile operator, which
also manages and maintains it. These databases should be interfaced with a
solution like the one presented in this paper.

The general solution of the architecture is presented in Fig.1.

Figure 1: Overview of the solution architecture.

The solution, as the picture above shows, is divided into four modules and it
is targeted to be used in operational centers that can coordinate emergency
activities:

• Extracting Localization String modules from the Localization Server
presumes the definition of rules for parsing SS7 ISUP information.
The main service of the server is to define interaction protocols as
well as Geo Information Database Server interaction.

• Geographic Information Database Server is maintaining the geo-
coordination of the radio cells.

• Client side module is handling communication between Graphical
User Interface (GUI) module and Localization Server.

• GUI module is handling specific interface functions and the digital
maps using web mapping service available on the market at the
solution’s implementation time.

 V. Cazacu, L. Cobârzan, D. Robu, F. Sandu 117

2. Description of the main components

This section presents the technical implementation of the solution modules
using as examples the case when mobile users are using the Emergency Service
112 and are customers of one of the Romanian mobile operators.

A. Localization Server

In this module, there are two major functionalities: SS7 frame parsing and
communication protocols between the client and the Geo Database Server.

The parsing module consists of two parts, one dealing with the SS7
Integrated Services Digital Network User Part (ISUP) communication, while
the other being responsible for the protocol message parsing. It is out of the
paper’s scope to detail the SS7 communication between our solution and the
mobile network. The technical approach taken is to use the JAIN ISUP API that
gives the possibility to exchange ISUP messages in the form of Java Event
Objects [2], [3].

One rule for parsing SS7 information is the fact that independently of the
mobile operator, SS7 frames are in standard format and the relevant parameters
for our solution can be found under the Initial Address heading. The relevant
parameters are presented in the Table 3.

Table 3: IAM parameters used for localization.

Parameter Name Explanation

Calling party number

Nature of address: either National or International.
Calling address signal: the telephone number of the
caller party (with a 2 digit prefix for international
calls).

Called party number Called address signals. For Emergency cases, the
called telephone number is 112.

Location number The localization string, that contains all the
localization information for the given provider.

Cell ID The mobile operator internal ID for the radio cell
where the call is made from.

The phone numbers are received without the prefix digits, so in this

implementation the “Calling party number” parameter is taken into account. For
national calls a 0 digit and for international calls two 0 digits are inserted at the
beginning of the caller number. Also, to determine from which mobile operator
the call is performed and knowing that every telephone number begins for
example with 07XY, where depending on the XY digits, the solution can extract

118 Localiz. of the Mob. Calls Based On Ss7 Inform. and Using Web Mapping Service

the provider of the call based on a table correspondence and on interrogating the
portability server, if available.

In the implementation of the module, the extracted information is stored in
an object called SS7Object with fields like String callingNumber, String
calledNumber, String Nature, String LocalizationString, Date dateCreated,
String Provider. SS7Objects are sent to the Localization Server module for
further processing.

The communication protocol with the client uses sockets and when new
localization objects are received from the SS7 parsing module, the server will
send the object to the client in order to use it on the GUI. After sending the
localization object, the server is waiting for an answer from the client. If the
client does not confirm the reception of the object in the previously defined time
frame, the localization server will resend this information. The Localization
objects that are not confirmed are maintained in a waiting list. When the
localization server receives a message from GUI/Google Maps, it will delete the
corresponding object from the “waiting list”, meaning that it will not wait for
the confirmation for that object.

The communication protocol between Localization Server and the Geo
Information Database Server is done by calling the getCoordinatesBy
LocalizationString (localization_string) method which takes a string parameter,
representing the localization string and as returned value, an object which
contains the coordinates of the area from which the call was made. The
coordinates will be the latitude and the longitude, each one containing 3 fields:
degrees, minutes and seconds. The calling of the class is done using Remote
Method Invocation (RMI).

B. Geographical Information Database Server

As it was mentioned earlier in the paper, this server has to be located at each
mobile operator since it contains internal information about the place where
radio cells are deployed from geographical point of view. For completeness of
the solution description, the RMI Database Server will be presented, that has
several classes in order to extract the coordinates from the local database.

The Coordinate class is common with the RMI client, the
CoordinateInterface class which contains the remote method and the
CoordinateImplementation class, which implements the remote method as
shown below:

public Coordinate getCoordinatesByLocalizationString(String localization_string)

The Provider class has a static method String getProvider(String
localization_str), which returns the provider, based on the localization string and

 V. Cazacu, L. Cobârzan, D. Robu, F. Sandu 119

the ExtractCoordinate class has a static method that returns the coordinates,
based on the provider and the localization string, as it can be seen next capture.

public static Coordinate getCoordinatesByProvider(String provider, String
localization_str)

The ExtractFromDatabase class contains one static method for each
provider, to extract the coordinates from the local database, based on the
localization string, as shown below:

public static Coordinate ExtractVodafone(String localization_string)

A database structure example for this server is presented in Fig. 2.

Figure 2: Structure example of geo coordinates database.

C. Client side including GUI

As the communication between the client and the Localization Server is
detailed in section B, this part is focused on the usage of web mapping service
and user interface.

The graphical user interface presented in this paper has a proof of concept
oriented design. The GUI of the solution is composed of two frames: one frame
with 4 tabs: View Calls, View Archive, Options and Help. The other frame is
displaying the digital map with all its options.

120 Localiz. of the Mob. Calls Based On Ss7 Inform. and Using Web Mapping Service

Only one tab is presented in this paper, the View Calls tab which contains
the recent calls information in a list. The call information contains the exact
time of the call, the caller number, the provider and the location of the call as it
is received from the Location Server. Each call has its own checkbox, which
will specify if the call was processed or not. When a call is selected in the list,
the application is marking automatically the location of the call in the map
frame. More calls can be selected simultaneously, so the map can be marked in
more locations. Calls that are checked (processed) are deleted from the list and
the marks from the map disappear.

In order to integrate a digital map into the solution, Google Maps API was
chosen due to several considerations [5].

Google Static Maps API embeds a Google Maps image without requiring
JavaScript but the problem is that it returns the map as an image (GIF, PNG or
JPEG) in response to a HTTP request via a URL. This way, the benefits of the
zoom and navigation facilities disappear.

JXMapViewer embeds mapping abilities into Java application, but at the
solution’s development time it was not possible to use it with Google Maps or
Yahoo since there were legal restrictions.

One other strong reason why the Google Maps API was chosen for
integrating the web mapping service was the possibility to control the zoom and
navigation features from the application’s back-end.

Since Google Maps API uses JavaScript, the JWebBrowser class from the
chrriis.dj.nativeswing.components package has been used in the development of
the Java client application; this offers the possibility to have a native web
browser component in the application [4]. Because the client application has to
be operating system independent, the web browser component was developed to
use the Mozilla engine.

NSOption opt = new NSOption(JWebBrowser.useXULRunnerRuntime());
web_browser = new JWebBrowser(opt);
JWebBrowser.useXULRunnerRuntime();

The digital map from Google is loaded using the following code line [5].

web_browser.navigate(gmapfilelocation.getAbsolutePath());

The parameter gmapfilelocation points to the file containing the script which
loads the map.

In Fig. 3, the client GUI is shown together with the calls markers, each
marker descriptor containing a string defining the location to place the marker
and the visual attributes to use when displaying the mark.

 V. Cazacu, L. Cobârzan, D. Robu, F. Sandu 121

Figure 3: Calls markers on the map.

Figure 4: Zoom on caller location.

122 Localiz. of the Mob. Calls Based On Ss7 Inform. and Using Web Mapping Service

Figure 4 shows a case when one call is selected from the list and
automatically the application zooms in on the location where the caller is
positioned. If another call is selected, so that two calls are on the map, the
application automatically zooms out exactly as it is necessary to display both
callers on the map.

3. Conclusion

The solution of call localization presented in this paper is still under
development since topics like high degree of availability or the ability to work
in load-balanced and failed-over conditions between locations are not
implemented. The application’s architecture has been implemented by the
authors of the paper and solution allows further improvements, in order to
enable features like accepted input traffic of a high number of simultaneous
voice calls to be implemented as easy as possible.

But the goal of the research, at least in this phase, was achieved, since the
usage of a web mapping service for calls location has been demonstrated by the
solution presented in this paper.

Acknowledgements

The authors wish to thank their colleagues who contributed with their effort
to achieve the results presented in this paper, especially the colleagues located
at the Cluj-Napoca Siemens PSE site.

References

[1] Dryburgh, L., Hewett, J., “Signaling System No. 7 (SS7/C7): protocol, architecture, and
services”, Cisco Press, 2005.

[2] Jepsen, T. C., Anjum, F., “Java in telecommunications: solutions for next generation
networks”, John Wiley & Sons, 2001.

[3] *** http://jcp.org/en/jsr/summary?id=ISUP.
[4] *** http://djproject.sourceforge.net/ns/documentation/javadoc/index.html.
[5] *** http://code.google.com/apis/maps/documentation/reference.html.

