
 
 Acta Universitatis Sapientiae 
 Electrical and Mechanical Engineering, 2 (2010) 166-176 
 

  

Kinematic Analysis of a 6 DOF 3-PRRS  
Parallel Manipulator 

 

Zoltán FORGÓ 
 

Department of Mechanical Engineering, Faculty of Technical and Human Sciences, 
Sapientia University, Tg. Mureş, e-mail: zforgo@ms.sapientia.ro 

 
Manuscript received October 14, 2010; revised November 08, 2010. 

Abstract: The number of parallel mechanism applications in the industry is growing 
and the interest of the academia to find new solutions and applications to implement 
such mechanisms is present all over the world. In this paper, after a summarised group 
theory presentation, a symmetrical six degrees of freedom mechanism (3-PRRS) will be 
defined using this theory. Enumerating some possible kinematic chains for Schoenflies-
motion, one solution is kept in order to build up the proposed mechanism. The easy way 
of mathematical modelling is given by the fact that the mechanism can be considered as 
an extended well known planar Delta manipulator. The double driven joints in each 
limb ensure the third translation and other two rotations of the moving platform 
complementing the planar motion of the Delta manipulator. After the kinematical 
modelling of the presented mechanism, the actuation of the links is considered. A new 
parallel driven actuation system is presented in order to fulfill the rotation and 
translation movements required for the PR

The number of applications in the industry which use parallel mechanisms 
are growing and the interest of the academia to find new solutions and 
applications to implement such mechanisms is present all over the world. The 
lower degree of freedom mechanisms which are suited for some specific tasks 

RS limb actuation. The aspects of singular 
configurations, which are similar to the planar Delta mechanism singular configurations 
with some extensions, are considered also in the presented paper. The paper closes by 
enumerating some major advantages of the proposed 6 degrees of freedom manipulator. 
 

Keywords: parallel mechanism, kinematics, group theory, Lie algebra. 

1. Introduction 
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are preferred because of the architecture simplicity and therefore the easy 
mathematical modeling and finally, but not at least for economical reasons. 

The 6 degrees of freedom (DOF) parallel mechanism is introduced by 
Steward and Gough [1] and since then many aspects of the mechanism and its 
application are revealed. During the last decades more attention has been paid to 
the study of 6 DOF parallel mechanisms, including synthesis and analysis on 
kinematics, dynamics, singularities, error and workspace. Some milestones in 
the analysis of those mechanisms are set by Earl and Rooney using a method for 
synthesis of new kinematic structures [2], Hunt studied the manipulators on the 
basis of screw theory [3], Tsai is using systematic methodology in [4] and 
Hervé discussed the structural synthesis of parallel robots using the 
mathematical group theory [5]. More recently Shen proposed a systematic type 
synthesis methodology for 6 DOF kinematic structures enumerating 29 parallel 
structures [6]. Hereby Shen defines the hybrid single-open chains (HSOC) 
which are able to generate three translations and three rotation angles. Using 
those HSOCs four 6 DOF manipulators are presented with symmetrical 
arrangement of the limbs (see No.3-No.6 architectures, Table 2. from [6]). 
According to Tsai [7], the symmetry implies the use of the same number of 
actuators on the same positions in each limb. Moreover he says that a parallel 
manipulator is symmetrical if it satisfies the condition that the number of limbs 
is equal to the number of degrees of freedom of the moving platform. In the 
case of double actuated limbs (with two actuated joints) the last presented 
condition can be omitted. So the HSOCs defined by Shen can be replaced by 
serial chains which enable three translations and three rotations also.  

This paper presents some kinematic structures according to the above 
mentioned criteria without the aim of full discussion about all the possible 
structures. The geometrical model of one architecture is presented as well. 

2. General motion generators 

The enumeration of serial topology limbs which enable the spatial motion 
(three translations and three rotations) is greatly simplified by using the Lie 
group of rigid body displacement as introduced by Hervé [8]. If each limb of a 
parallel manipulator generates a subset of possible displacements, which is a Lie 
subgroup, the intersection set is also a Lie subgroup of the mobile platform. 
According to this statement if the platform undergoes the spatial, general 
motion, each limb must ensure the three translations and three rotations. 
According to Table 1 {D} denotes the general rigid body motions for the 6 DOF 
mobile platform and {Li} denotes the displacement Lie subgroup of the ith limb. 
The relation between them is given by: 
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 1 2 3{ } { } { } { }L L L D∩ ∩ = . (1) 

It is obvious that the only possibility for a true equation (1) is: 

 1 2 3{ } { } { } { }L L L D= = = . (2) 

To obtain simple mechanical structures, better symmetry and good 
manufacturing for the three limbs the same architecture is considered. For this 
reason, the analysis of the {Li} displacement Lie subgroup is carried out. The 
notations for displacement Lie subgroups are recalled in Table 1 [9]. 

According to the group theory it can be stated: 

 
{ } { } { }{ ( )}

{ ( )}{ ( )}{ ( )}{ ( , )}{ ( , )}{ ( , )} .
iL D T S N

T T T R N R N R N N
= = =

= ∀u v w u v w
 (3) 

Table 1: List of displacements Lie subgroups [4]. 

Lie subgroup Description of the subgroup 
{E} identity 
{T(u)} translations parallel to the u vector 
{R(N,u)} rotations around the axis determined by N and u 
{H(N,u,p)} helical motions with axis (N,u) and the pitch p 
{T(Pl)} translations parallel to the Pl plane 
{C(N,u)} cylindrical motions along an axis (N,u) 
{T} spatial translations 
{G(u)} planar gliding motions perpendicular to u 
{S(N)} spherical motions about point S 
{X(u)} Schoenflies motions 
{D} general rigid body motions or displacements 

 
Based on [9] a planar joint has 5 equivalencies as presented below: 

 { ( )} { ( , )}{ ( , )}{ ( , )};G R A R B R C=u u u u  (4) 
 { ( )} { ( , )}{ ( )}{ ( , )} ;G R A T R C= ⊥u u v u v u  (5) 
 { ( )} { ( )}{ ( , )}{ ( , )} ;G T R B R C= ⊥u v u u v u  (6) 
 { ( )} { ( )}{ ( , )}{ ( )} ;G T R B T= ⊥u v u w v,w u  (7) 

 { ( )} { ( )}{ ( )}{ ( , )} .G T T R C= ⊥u v w u v,w u  (8) 
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Considering equations (4) and (8) respectively equality N ≡ C the equation 
(3) becomes: 

 { } { ( )}{ ( , )}{ ( , )}{ ( , )}{ ( , )}{ ( , )} , , ;iL T R A R C R B R B R B A B C= ∀u u u u v w  (9) 
 { } { ( )}{ ( , )}{ ( , )}{ ( )} , , .iL T R A R C S B A B C= ∀u u u  (10) 

The above defined {Li} displacement Lie group variants are presented in Fig. 1.  

 
Figure 1: The {Li} displacement Lie group variants incorporating the X-motion 

generator. 

The X-motion (or Shoenflies motion) generator can be easily observed, due 
to equation (9) and Fig. 1a. Considering primitive Schoenflies-motion 
generators [10] equivalences can be applied. Extending those generator family 
members with the universal joint as seen in Fig. 1, new generators for {D} 
displacement Lie group can be introduced. However, this enumeration is out of 
the topic of this paper. Because of the reduced link number and simplicity, in 
further investigation, the Fig. 1b variant is preferred. Using other geometrical 
constraints the architecture is presented in [11] also. The schematic design of 
such a limb for a 6 DOF manipulator is presented in Fig. 2b. The index i is 
introduced because the same type of limbs are used for moving the manipulator 
platform. 

3. Kinematics of 3-PR

The general setup for the parallel mechanism having three translations and 
three rotations for the end effector (denoted by P) is presented in Fig. 2c. For 
simplicity the mechanism is presented from top view. The geometrical 
parameters used in the mathematical modelling are enumerated in sketches b) 
and c) from Fig. 2. Further the real number values xN, yN and zN are introduced 
as the coordinates of a point N in the Cartesian space 0x0y0z0.  

RS mechanism 

Using the equivalency between sketches a) and b) from Fig. 2 it can be stated: 
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 i i x i i y i iC D C D D B= + = ⋅ + ⋅ + ⋅i i i i i iC B C D D B i j k , (11) 
 ,i i x i i y i iC B C B D B= ⋅ + ⋅ + ⋅i iC B i j k  (12) 

where i, j and k are the unit vectors of the x0, y0 and z0 Cartesian axes. The setup 
of the mechanism (based on the projection of the manipulator on the 0x0y0 plan 
– top view from Fig. 2) suggests a planar Delta manipulator. 

 
Figure 2: Schematic design of ith limb of the 6 DOF manipulator (a, b), and the top view 

of the proposed mechanism (c). The shaded couplings are the active joints (one 
prismatic and one rotation for each limb), and the white ones are passive bonds. 

For this reason the mathematical modelling of the proposed mechanism is 
made easily and it is like a well known planar Delta manipulator modelling [7] 
with some completions. These completions must be made due to the fact, that it 
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is possible to rotate the platform around the x0 and y0 axes too, and so the 
projections of the BiBi+1 platform length are variable. Through these paragraphs 
the inverse and direct kinematics of the proposed mechanism is defined, and 
issues about singular configurations are presented as well.  

At the beginning the closure equation is considered for the three limbs: 

 where 1,2,3i+ + = + =i i i i i iOA A C C B OP PB . (13) 

In case of inverse kinematic modelling the right side of equation (13) is 
given through the coordinates of the characteristic point (denoted by P) and 
through the three rotation angles around the axes of the fixed 0x0y0z0 system: 

T[ ]P P Px y z= α β γX . The task is to determine the robot parameters 
T

1 2 3 4 5 6[ ]q q q q q q=q from the left side of the equation. Assuming that 
vector a has the components axy parallel to the 0x0y0 plan and az parallel to the 
z0 axis, equation (13) becomes: 

 where 1,2,3
iz

i+ + = + = + + = +
ixy i ixy i ixy xy ixy

i iz i iz z iz

OA A C C B OP PB
OA A C C B OP PB . (14) 

In order to determine the qi translational parameters (i=1,2,3), introduced in 
Fig. 2b, the second equation from (14) is considered: 

 i Pq z⋅ + = ⋅ +i iz izk C B k PB , respectively in scalar form (15) 
 i P iz i izq z PB C B= + +  (16) 

Hence CiBiz is a constant geometrical parameter of the manipulator, the first 
two terms from the right side of equation (16) contain the general parameters 
because ( , , )iz izPB PB= α β γ . 

To obtain the qi+3 rotation joints parameters (i=1,2,3) the first equation from 
(14) is recalled and presented in scalar form: 

 
( ) ( )
( ) ( )

3 3

3 3

cos cos cos

sin sin sin
i i i i i i i i i i i P ix

i i i i i i i i i i i P iy

OA A C q C B q x PB

OA A C q C B q y PB
+ +

+ +

 α + +α −π + +α −π−β = +


α + +α −π + +α −π−β = +
,(17) 

where ( , , )ix ixPB PB= α β γ  and ( , , )iy iyPB PB= α β γ  respectively i=1,2,3. To 
eliminate the iβ  parameter belonging to a passive joint, the equations are 
rearranged, and summing the square of the two equations in (17) yields: 

 ( ) ( )1 3 2 3 3sin cos 0i i i i i i ie q e q e+ +⋅ +α −π + ⋅ +α −π + = , (18) 
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where 

 

( )
( )

( ) ( )

1

2
22 2 2

3

2 sin ;

2 cos ;

cos sin .

i i i P iy i i

i i i P ix i i

i P ix i i P iy i i i i i i

e A C y PB OA

e A C x PB OA

e x PB OA y PB OA A C C B

 =− ⋅ ⋅ + − α
 =− ⋅ ⋅ + − α

 = + − α + + − α + −

 (19) 

Solving equation (18) by using the substitutions: 

 

( )

( )

3 2
3

2

3 2

2
sin

1
where tan 21

cos
1

i
i i

i i i
i

i
i i

i

tq
t qt
tq
t

+
+

+

 +α −π = + +α −π =
− +α −π = +

, (20) 

the qi+3 parameters (i=1,2,3) are given by: 

 
2 2 2

1 1 2 31
3

1 2
2 tan .i i i i

i i
i i

e e e e
q e e

−
+

− ± + −
= π −α +

−
 (21) 

Equations (16) and (21) define the robot parameters in case of inverse 
kinematics. To obtain the general coordinates of the mechanism it is necessary 
to calculate the position of the Bi(xBi,yBi,zBi) joints (i=1,2,3) in Cartesian space 
and knowing the geometrical dimensions of the mobile platform the 

T[ ]P P Px y z= α β γX vector is obvious. The xBi, yBi, and zBi values are 
defined through the following nine equations: 

 

( ) ( )

( ) ( ) ( )

2 2 2

2 2 22
1,2,3

for 1, 1,2
1 , 3

Ci Bi Ci Bi i i

Bi Bj Bi Bj Bi Bj

Bi Ci i i

x x y y C B i
x x y y d z z i if ij

if iz z D B

 − + − =
 =
 − + − = − − + = = == − 

 (22) 

where 3 3( ), ( ), ( )Ci Ci i Ci Ci i Ci Ci ix x q y y q z z q+ += = =  respectively i iC B and i iD B  
are constant geometrical dimensions using i = 1,2,3. It is important to mention, 
that in present case the forward kinematics deals with only 8 solutions (as by 
the planar Delta robot). 

To complete the kinematic calculations the relation between the actuated 
joints and the platform velocities is needed and obtained through: 

 x qJ J⋅ = ⋅X q  , (23) 
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where the matrices: 

 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

x y z y z z y z x x z x y y x
x x y z y z z y z x x z x y y x

x y z y z z y z x x z x y y x

b b b e b e b e b e b e b e b
J b b b e b e b e b e b e b e b

b b b e b e b e b e b e b e b

 − − −
 = − − − 

− − −  

, (24) 

 
1 1 1 1 1

2 2 2 2 2
3 3 3 3 3

0 0 0 0
0 0 0 0
0 0 0 0

z x y y x
q z x y y x

z x y y x

b a b a b
J b a b a b

b a b a b

 −
 = − 

−  

, (25) 

can be written using the notations = i ia A C , = i ib C B  and = ie PB . Equation (23) 
can be considered for calculation of direct and inverse kinematics. 

4. Parallel drive actuation of a manipulator limb 

To assure the parallel mechanism concept for the 3-PRRS manipulator the 
parallel drive of the three limbs must be realized. Therefore a toothed belt drive 
H-shaped system can be applied as it can be seen in Fig. 3. At the bottom of the 
mechanism the actuated pulleys (gray color fill) induce the motion in the 
mechanism by the M

iq  and M
iq 3+  driving parameters. The values iq  and 3+iq  are 

set as the output parameters.  
Using the parallel drive system two rotation inputs are transformed into 

translation and rotation output. The relation between them is given by the 
following equation: 

 
3 3

2 2

2 2

M
i i

M
i i

r r
q q

q r r q
R R

+ +

 −    
= ⋅    

     − −  

. (26) 

The inverse geometry calculus can be performed using the following 
equation: 

 
33

1

1

M
ii

M
ii

R
qq r r

qRq
r r

++

 −    
= ⋅    

    − −  

. (27) 

Using the above formulation and considering equations (16) and (21) the 
inverse geometry is obtained in the following form: 
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1 1

2 2

3 3

4 4

5 5

6 6

1 0 0 0 0
10 0 0 0

10 0 0 0
1 0 0 0 0

10 0 0 0
10 0 0 0

M

M

M
M

M

M

M

R
r r

R
q qr r
q qR
q qr rq A qRq q
q qr r

Rq q
r r

R
r r

 − 
 

−    
    
 −   
 = = ⋅ = ⋅   
    − −    
       − − 
 

− − 
 

. (28) 

Due to the characteristic setup of the driving mechanism the equations for 
the kinematics are obtained in similar way: 

 Mq A q= ⋅   and 1 Mq A q−= ⋅  . (29) 

In accordance with the formulated equations the dynamics of the manipulator 
can be calculated easily, and will be presented in a further paper. 

Ei

Ai

C i

O y0 x0

z0

qi

Ei

O

E’i
q i+3

qi

q i+3

qi+3qi
MM

r

R

z0

 
Figure 3: Schematic design of the belt mechanism for one, double drive link. 
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5. Singular configurations  

The singularity analysis of this mechanism can be done based on the 
matrices from (24) and (25). Inverse kinematic singularities occure in case of  

0ix iy iy ixa b a b− =  (i=1,2,3) which defines the workspace boundaries. An other 
possibility is 0izb =  (i=1,2,3) but it can be avoided through geometrical design, 
because it is a constant value. Direct kinematic singularities occure when at the 
same time it can be stated that 0ixb = or 0iyb =  (i=1,2,3), which means that the 
CiBi links are parallel. The same type of singularities can be found for 
coexistence of 0ix iy iy ixe b e b− = (i=1,2,3) in case of coliniar i iC B and 

iPB vectors. Both direct kinematic singularity cases can be avoided by careful 
geometrical design. The implemented parallel drive mechanisms have no 
singular configurations, and this kind of calculations can be omitted. 

6. Conclusions 

This paper deals with a 6 degrees of freedom manipulator architecture using 
the group theory. The mobile platform is connected to the base through three 
PRRS limbs, each being double actuated on the first and second joint levels. 
The inverse geometrical calculations are performed through equations (16) and 
(21), hence the direct modelling is presented through the equation system (22). 
The relation between the robot and general velocities is stated by the equation 
(23). Some aspects about the singular configurations are introduced in the paper 
based on the equation mentioned before. As it can be seen in the figures 
presented in this paper the architecture is the extension of the well known planar 
Delta robot to a 6 DOF mechanism. The mathematical model of the spatial 
manipulator reflects this fact very well. The simple setup of the presented 
mechanism assures a good manufacturability and needs a relatively easy control 
algorithm considering some other 6 DOF manipulators. 
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