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Abstract. This paper describes an implementation of a non-strict purely
functional language in JavaScript. This particular implementation is based
on the translation of a high-level functional language such as Haskell or
Clean into JavaScript via the intermediate functional language Sapl. The
resulting code relies on the use of an evaluator function to emulate the
non-strict semantics of these languages. The speed of execution is com-
petitive with that of the original Sapl interpreter itself and better than
that of other existing interpreters.

1 Introduction

Client-side processing for web applications has become an important research
subject. Non-strict purely functional languages such as Haskell and Clean have
many interesting properties, but their use in client-side processing has been
limited so far. This is at least partly due to the lack of browser support for
these languages. Therefore, the availability of an implementation for non-strict
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purely functional languages in the browser has the potential to significantly
improve the applicability of these languages in this area.

Several implementations of non-strict purely functional languages in the
browser already exist. However, these implementations are either based on
the use of a Java Applet (e.g. for Sapl, a client-side platform for Clean [8,
14]) or a dedicated plug-in (e.g. for HaskellScript [11] a Haskell-like functional
language). Both these solutions require the installation of a plug-in, which
is often infeasible in environments where the user has no control over the
configuration of his/her system.

1.1 Why switch to JavaScript?

As an alternative solution, one might consider the use of JavaScript. A
JavaScript interpreter is shipped with every major browser, so that the in-
stallation of a plug-in would no longer be required. Although traditionally
perceived as being slower than languages such as Java and C, the introduction
of JIT compilers for JavaScript has changed this picture significantly. Modern
implementations of JavaScript, such as the V8 engine that is shipped with the
Google Chrome browser, offer performance that sometimes rivals that of Java.

As an additional advantage, browsers that support JavaScript usually also
expose their HTML DOM through a JavaScript API. This allows for the as-
sociation of JavaScript functions to HTML elements through the use of event
listeners, and the use of JavaScript functions to manipulate these same ele-
ments.

This notwithstanding, the use of multiple formalisms complicates the devel-
opment of Internet applications considerably, due to the close collaboration
required between the client and server parts of most web applications.

1.2 Results at a glance

We implemented a compiler that translates Sapl to JavaScript expressions.
Its implementation is based on the representation of unevaluated expressions
(thunks) as JavaScript arrays, and the just-in-time evaluation of these thunks
by a dedicated evaluation function (different form the eval function provided
by JavaScript itself).

Our final results show that it is indeed possible to realize this translation
scheme in such a way that the resulting code runs at a speed competitive
with that of the original Sapl interpreter itself. Summarizing, we obtained the
following results:
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e We realized an implementation of the non-strict purely functional pro-
gramming language Clean in the browser, via the intermediate language
Sapl, that does not require the installation of a plug-in.

e The performance of this implementation is competitive with that of the
original Sapl interpreter and faster than that of many other interpreters
for non-strict purely functional languages.

e The underlying translation scheme is straightforward, constituting a one-
to-one mapping of Sapl onto JavaScript functions and expressions.

e The implementation of the compiler is based on the representation of
unevaluated expressions as JavaScript arrays and the just-in-time evalu-
ation of these thunks by a dedicated evaluation function.

e The generated code is compatible with JavaScript in the sense that the
namespace for functions is shared with that of JavaScript. This allows
generated code to interact with JavaScript libraries.

1.3 Organization of the paper

The structure of the remainder of this paper is as follows: we start with intro-
ducing Sapl, the intermediate language we intend to implement in JavaScript
in Section 2. The translation scheme underlying this implementation is pre-
sented in Section 3. We present the translation scheme used by our compiler
in two steps. In step one, we describe a straightforward translation of Sapl to
JavaScript expressions. In step two, we add several optimizations to the trans-
lation scheme described in step one. Section 4 presents a number of benchmark
tests for the implementation. A number of potential applications is presented
in Section 5. Section 6 compares our approach with that of others. Finally, we
end with our conclusions and a summary of planned future work in Section 7.

2 The Sapl programming language and interpreter

Sapl stands for Simple Application Programming Language. The original ver-
sion of Sapl provided no special constructs for algebraic data types. Instead,
they are represented as ordinary functions. Details on this encoding and its
consequences can be found in [8]. Later a Clean like type definition style was
adopted for readability and to allow for the generation of more efficient code
(as will become apparent in Section 3).

The syntax of the language is the following:
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(program) ::= {(function) | (type)}+

(type) == i (ident) =" (ident) (ident)* {’|” (ident) (ident)*}*
(function) ::= (ident) (ident)* =’ (let-expr)

(let-expr) ::= [let’ (let-defs) ’in’] (main-expr)

(let-defs) ::= (ident) =" (application) {’, (ident) =" {application)}*
(main-expr) = (select-expr) | (if-expr) | {application)

(select-expr) ::= ’select’ (factor) {’(’ {{lambda-expr) | (let-expr)} ) }+
(if-expr) == "if” (factor) '’ (let-expr) ’)’ '’ (let-expr) ')’
(lambda-expr) ::= "\’ (ident)+ =" (let-expr)
(application) ::= (factor) (factor)*
(factor) ::= (ident) | (literal) | ’(’ (application) ’)’

An identifier can be any identifier accepted by Clean, including operator
notations. For literals characters, strings, integer or floating-point numbers
and boolean values are accepted.

We illustrate the use of Sapl by giving a number of examples. We start with
the encoding of the list data type, together with the sum function.

:: List =Nil | Cons x xs
sum xxs = select xxs 0 (Ax xs = x + sum xs)

The select keyword is used to make a case analysis on the data type of
the variable xxs. The remaining arguments handle the different constructor
cases in the same order as they occur in the type definition (all cases must be
handled separately). Each case is a function that is applied to the arguments
of the corresponding constructor.

As a more complex example, consider the mappair function written in Clean,
which is based on the use of pattern matching:
mappair f Nil zs =Nil
mappair f (Cons x xs) Nil =DNil
mappair f (Cons x xs) (Cons y ys) =Cons (f x y) (mappair f xs ys)

This definition is transformed to the following Sapl function (using the above
definitions for Nil and Cons).

mappair f as zs
= select as Nil (Ax xs = select zs Nil (A\y ys =Cons (f x y) (mappair f xs ys)))

Sapl is used as an intermediate formalism for the interpretation of non-strict
purely functional programming languages such as Haskell and Clean. The Clean
compiler includes a Sapl back-end that generates Sapl code. Recently, the Clean
compiler has been extended to be able to compile Haskell programs as well [5].
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2.1 Some remarks on the definition of Sapl

Sapl is very similar to the core languages of Haskell and Clean. Therefore,
we choose not to give a full definition of its semantics. Rather, we only say
something about its main characteristics and give a few examples to illustrate
these.

The only keywords in Sapl are let, in, if and select. Only constant (non-
function) let expressions are allowed that may be mutually recursive (for
creating cyclic expressions). They may occur at the top level in a function
and at the top level in arguments of an if and select. A-expressions may
only occur as arguments to a select. If a Clean program contains nested A-
expressions, and you compile it to Sapl, they should be lifted to the top-level.

3 A JavaScript based implementation for Sapl

Section 1 motivated the choice for implementing a Sapl interpreter in the
browser using JavaScript. Our goal was to make the implementation as efficient
as possible.

Compared to Java, JavaScript provides several features that offer opportuni-
ties for a more efficient implementation. First of all, the fact that JavaScript is
a dynamic language allows both functions and function calls to be generated
at run-time, using the built-in functions eval and apply, respectively. Second,
the fact that JavaScript is a dynamically typed language allows the creation
of heterogeneous arrays. Therefore, rather than building an interpreter, we
have chosen to build a compiler/interpreter hybrid that exploits the features
mentioned above.

Besides these, the evaluation procedure is heavily based on the use of the
typeof operator and the runtime determination of the number of formal pa-
rameters of a function which is another example of the dynamic properties of
the JavaScript language.

For the following Sapl constructs we must describe how they are translated
to JavaScript:

e literals, such as booleans, integers, real numbers, and strings;
e identifiers, such as variable and function names;

e function definitions;

e constructor definitions;

e let constructs;

e applications;
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e select statements;
e if statements;
e built-in functions, such as add, eq, etc.

Literals Literals do not have to be transformed. They have the same repre-
sentation in Sapl and JavaScript.

Identifiers Identifiers in Sapl and JavaScript share the same namespace, there-
fore, they need not to be transformed either.

However, the absence of block scope in JavaScript can cause problems. The
scope of variables declared using the var keyword is hoisted to the entire
containing function. This affects the let construct and the A-expressions, but
can be easily avoided by postfixing the declared identifiers to be unique. In
this way, the original variable name can be restored if needed.

With this remark we will neglect these transformations in the examples of
this paper for the sake of readability.

Function definitions Due to JavaScript’s support for higher-order functions,
function definitions can be translated from Sapl to JavaScript in a straightfor-
ward manner:

T[f x1 ... xn = body] = function f(x1, ..., xn) { T[body] }

So Sapl functions are mapped one-to-one to JavaScript functions with the same
name and the same number of arguments.

Constructor definitions Constructor definitions in Sapl are translated to
arrays in JavaScript, in such a way that they can be used in a select con-
struct to select the right case. A Sapl type definition containing constructors
is translated as follows:

T[:: typename = ... | Ck xk0 ... xkn | ...]
= ... function Ck(xk0, ..., xkn) { return [k, ‘Ck’, xk0, ..., xkn]; } ...

where k is a positive integer, corresponding to the position of the construc-
tor in the original type definition. The name of the constructor, ‘Ck’, is put
into the result for printing purposes only. This representation of the construc-
tors together with the use of the select statement allows for a very efficient
JavaScript translation of the Sapl language.

Let constructs Let constructs are translated differently depending on whether
they are cyclic or not. Non-cyclic lets in Sapl can be translated to var decla-
rations in JavaScript, as follows:
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T[let x = e in b] = var x = T[e]; T[b]

Due to JavaScript’s support for closures, cyclic lets can be translated from
Sapl to JavaScript in a straightforward manner. The idea is to take any occur-
rences of x in e and replace them with:

function () { return x; }

This construction relies on the fact that the scope of a JavaScript closure is
the whole function itself. This means that after the declaration the call of this
closure will return a valid reference. In Section 3.1 we present an example to
illustrate this.

Applications Every Sapl expression is an application. Due to JavaScript’s
eager evaluation semantics, applications cannot be translated from Sapl to
JavaScript directly. Instead, unevaluated expressions (or thunks) in Sapl are
translated to arrays in JavaScript:

T[x0 x1 .. x] = [T[x0], [T[x1], ..., T[xn]]]

Thus, a thunk is represented with an array of two elements. The first one
is the function involved, and the second one is an array of the arguments.
This second array is used for performance reasons. In this way one can take
advantage of the JavaScript apply () method and it is very straightforward
and fast to join such two arrays, which is necessary to do during evaluation.

select statements A select statement in Sapl is translated to a switch
statement in JavaScript, as follows:

T[select £ (\x0 ... x=n =b) ...]

var _tmp = Sapl.feval(T[f]);
switch(_tmp[0]) {
case 0: var x0 = _tmp[2], ..., xn = _tmp[n+2];
T[b];
break;

h

Evaluating the first argument of a select statement yields an array repre-
senting a constructor (see above). The first argument in this array represents
the position of the constructor in its type definition, and is used to select
the right case in the definition. The parameters of the A- expression for each
case are bound to the corresponding arguments of the constructor in the var
declaration (see also examples).
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if statements An if statement in Sapl is translated to an if statement in
JavaScript straightforwardly:

T[if p t £f] = if (Sapl.feval(T[p])){ T[t]; } else { T[f]; }

This translation works because booleans in Sapl and JavaScript have the same
representation.

Built-in functions Sapl defines several built-in functions for arithmetic and
logical operations. As an example, the add function is defined as follows:
function add(x, y) { return Sapl.feval(x) + Sapl.feval(y); }

Unlike user-defined functions, a built-in function such as add has strict evalu-
ation semantics. To guarantee that they are in normal form when the function

is called, the function Sapl.feval is applied to its arguments (see Section
3.2).

3.1 Examples
The following definitions in Sapl:

:: List = Nil | Cons x xs

ones = let os =Cons 1 os in os
facn=if (eqn 0) 1 (mult n (fac (subn 1)))
sum xxs = select xxs 0 (Ax xs = add x (sum xs))

are translated to the following definitions in JavaScript:

function Nil() { return [0, °Nil’]; }
function Cons(x, xs) { return [1, ’Cons’, x, xs]; }

function ones() { var os = Cons(1, function() { return os; }); return os; }

function fac(n) {
if (Sapl.feval(n) == 0) {
return 1;
} else {
} return [mult, [n, [fac, [[sub, [n, 1]]]]]];
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function sum(as) {
var _tmp = Sapl.feval(as);
switch (_tmp[0]) {
case 0: return 0;
case 1: var x = _tmp[2], xs = _tmp[3];
]

lxs]))];

return [add, [x, [sum, [xs]]]

}

The examples show that the translation is straightforward and preserves the
structure of the original definitions.

3.2 The feval function

To emulate Sapl’s non-strict evaluation semantics for function applications,
we represented unevaluated expressions (thunks) as arrays in JavaScript. Be-
cause JavaScript treats these arrays as primitive values, some way is needed to
explicitly reduce thunks to normal form when their value is required. This is
the purpose of the Sapl.feval function. It reduces expressions to weak head
normal form. Further evaluation of expressions is done by the printing rou-
tine. Sapl.feval performs a case analysis on an expression and undertakes
different actions based on its type:

Literals If the expression is a literal or a constructor, it is returned immedi-
ately. Literals and constructors are already in normal form.

Thunks If the expression is a thunk of the form [f, [xs]], it is transformed
into a function call f (xs) with the JavaScript apply function, and Sapl.feval
is applied recursively to the result (this is necessary because the result of a
function call may be another thunk).

Due to JavaScript’s reference semantics for arrays, thunks may become
shared between expressions over the course of evaluation. To prevent the same
thunk from being reduced twice, the result of the call is written back into the
array. If this result is a primitive value, the array is transformed into a boxed
value instead. Boxed values are represented as arrays of size one. Note that in
JavaScript, the size of an array can be altered in-place.

If the number of arguments in the thunk is smaller than the arity of the
function, it cannot be further reduced (is already in normal form), so it is
returned immediately. Conversely, if the number of arguments in the thunk is
larger than the arity of the function, a new thunk is constructed from the result
of the call and the remainder of the arguments, and Sapl.feval is applied
iteratively to the result.
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Boxed values If the expression is a boxed value of the form [x], the value
x is unboxed and returned immediately (only literals and constructors can be
boxed).

Curried applications If the expression is a curried application of the form
[[f, [xs]], [ysl],itistransformedinto [f, [xs ++ ys]], and Sapl.feval
is applied iteratively to the result.

More details on evaluation For the sake of deeper understanding we also
give the full source code of feval:

feval = function (expr) {
var y, f, xs;

while (1) {
if (typeof(expr) == "object") { // closure
if (expr.length == 1) return expr|[0]; // bozed value

else if (typeof(expr[0]) == "function") { // application -> make call
f = expr[0]; =xs = expr[l];

if (f.length == xs.length) { // most often occurring case
y = f.apply(null, xs); // turn chunk into call
expr[0] = y; // overwrite for sharing!
expr.length = 1; // adapt size

} else if (f.length < xs.length) {  //less likely case
y = f.apply(null,xs.splice(0, f.length));

expr[0] = y; // slice of arguments
} else
return expr; // not enough arguments
} else if (typeof(expr[0])=="object") { // curried app -> uncurry
y = expr[0];
expr[0] = y[0);
expr[l] = y[1].concat(expr[1]);
} else
return expr; // constructor
} else if (typeof(expr) == "function") // function
oxpr = [expr, []];
else // literal

return expr;

3.3 Further optimizations

Above we described a straightforward compilation scheme from Sapl to
JavaScript, where unevaluated expressions (thunks) are translated to arrays.
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The Sapl.feval function is used to reduce thunks to normal form when their
value is required. For ordinary function calls, our measurements indicate that
the use of Sapl.feval is more than 10 times slower than doing the same call
directly. This constitutes a significant overhead. Fortunately, a simple compile
time analysis reveals many opportunities to eliminate unnecessary thunks in
favor of such direct calls. Thus, expressions of the form:

Sapl.feval([f, [x1, ..., xn])

are replaced by:
f(x1, ..., xn)

This substitution is only possible if f is a function with known arity at compile-
time, and the number of arguments in the thunk is equal to the arity of the
function. It can be performed wherever a call to Sapl.feval occurs:

e The first argument to a select or if;

e The arguments to a built-in function;

e Thunks that follow a return statement in JavaScript. These expressions
are always evaluated immediately after they are returned.

As an additional optimization, arithmetic operations are inlined wherever
they occur. With these optimizations added, the earlier definitions of sum and
fac are now translated to:

function fac(n) {
if (Sapl.feval(n) == 0) {
return 1;
} else {
return Sapl.feval(n) * fac(Sapl.feval(n) - 1);
}

}

function sum(xxs) {
var _tmp = Sapl.feval(xxs);
switch(_tmp[0]){
case 0: return 0;
case 1: var x = _tmp[2], xxs = _tmp[3];
return Sapl.feval(x) + sum(xs);

}

Moreover, let’s consider the following definition of the Fibonacci function, £ib,
in Sapl:
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fibn=if (gt 2n) 1 (add (fib (subn 1)) (fib (sub n 2)))
This is translated to the following function in JavaScript:
function fib(n) {
if (2 > Sapl.feval(n)) {
return 1;

} else {
} return (fib([sub, [n, 1]]) + fib([sub, [n, 2]]));

}

A simple strictness analysis reveals that this definition can be turned into:
function fib(n) {

if (2>n){
return 1;
} else {

return (fib(n - 1) + fib(n - 2));
} }

The calls to feval are now gone, which results in a huge improvement in
performance. Indeed, this is how fib would have been written, had it been
defined in JavaScript directly. In this particular example, the use of eager eval-
uation did not affect the semantics of the function. However, this is not true in
general. For the use of such an optimization we adopted a Clean like strictness
annotation. Thus, the above code can be generated from the following Sapl
definition:

fib 'n=if (gt 2 n) 1 (add (fib (subn 1)) (fib (sub n 2)))

But strictly defined arguments also have their price. In case one does not know
if an argument in a function call is already in evaluated form, an additional
wrapper function call is needed that has as only task to evaluate the strict
arguments:

function fib$eval(a0) {
return fib(Sapl.feval(a0));
}

As a possible further improvement, a more thorough static analysis on the
propagation of strict arguments could help to avoid some of these wrapper
calls.

Finally, the Sapl to JavaScript compiler provides simple tail recursion opti-
mization, which has impact on not only the execution time, but also reduces
stack use.
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The optimizations only affect the generated code and not the implementa-
tion of feval. In the next section an indication of the speed-up obtained by
the optimizations is given.

4 Benchmarks

In this section we present the results of several benchmark tests for the
JavaScript implementation of Sapl (which we will call Sapljs) and a comparison
with the Java Applet implementation of Sapl. We ran the benchmarks on a
MacBook 2.26 MHz Core 2 Duo machine running MacOS X10.6.4. We used
Google Chrome with the V8 JavaScript engine to run the programs. At this
moment V8 offers one of the fastest platforms for running Sapljs programs.
However, there is a heavy competition on JavaScript engines and they tend
to become much faster. The benchmark programs we used for the compari-
son are the same as the benchmarks we used for comparing Sapl with other
interpreters and compilers in [8]. In that comparison it turned out that Sapl
is at least twice as fast (and often even faster) as other interpreters like He-
lium, Amanda, GHCi and Hugs. Here we used the Java Applet version for the
comparison. This version is about 40% slower than the C version of the in-
terpreter described in [8] (varying from 25 to 50% between benchmarks), but
is still faster than the other interpreters mentioned above. The Java Applet
and JavaScript version of Sapl and all benchmark code can be found at [2]. We
briefly repeat the description of the benchmark programs here:

1. Prime Sieve The prime number sieve program, calculating the 2000th
prime number.

2. Symbolic Primes Symbolic prime number sieve using Peano numbers,
calculating the 160th prime number.

3. Interpreter A small Sapl interpreter. As an example we coded the prime
number sieve for this interpreter and calculated the 30th prime number.

4. Fibonacci The (naive) Fibonacci function, calculating fib 35.

5. Match Nested pattern matching (5 levels deep) repeated 160000 times.

6. Hamming The generation of the list of Hamming numbers (a cyclic def-
inition) and taking the 1000th Hamming number, repeated 1000 times.

7. Sorting Tree Sort (3000 elements), Insertion Sort (3000 elements), Quick
Sort (3000 elements), Merge Sort (10000 elements, merge sort is much
faster, we therefore use a larger example)

8. Queens Number of placements of 11 Queens on a 11 x 11 chess board.
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Pri |Sym |Inter|Fib |Match|Ham|Qns |Kns |Sort |Plog |Parse

Sapl 1200 {4100 |500 |8700 |1700 {2500 9000 |3200 |1700|1500 1100

Sapljs 2200|4000 |220 [280 [2200 |3700 |11500|3950 |[2450|2750 |4150

Sapljs nopt |4500 | 11000 | 1500 | 36000 | 6700 {5500 | 36000 | 11000 | 4000 | 5200 | 6850

perc. mem. |58 |68 38 0 21 31 37 35 45 |53 |41

Figure 1: Speed comparison (time in miliseconds).

9. Knights Finding a Knights tour on a 5 x 5 chess board.

10. Prolog A small Prolog interpreter based on unification only (no arith-
metic operations), calculating ancestors in a four generation family tree,
repeated 100 times.

11. Parser Combinators A parser for Prolog programs based on Parser Com-
binators parsing a 3500 lines Prolog program.

For sorting a list of size n a source list is used consisting of numbers 1 to n.
The elements that are 0 modulo 10 are put before those that are 1 modulo 10,
etc.

The benchmarks cover a wide range of aspects of functional programming;:
lists, laziness, deep recursion, higher order functions, cyclic definitions, pattern
matching, heavy calculations, heavy memory usage. The programs were chosen
to run at least for a second, if possible. This helps eliminating start-up effects
and gives the JIT compiler enough time to do its work. In many cases the
output was converted to a single number (e.g. by summing the elements of a
list) to eliminate the influence of slow output routines.

4.1 Benchmark tests

We ran the tests for the following versions of Sapl:

e Sapl: the Java Applet version of Sapl;

e Sapljs: the Sapljs version including the normal form optimization, the
inlining of arithmetic operations and the tail recursion optimization.
The strictness optimization is only used for the fib benchmark;

e Sapljs nopt: the version not using these optimizations.

We also included the estimated percentage of time spent on memory manage-
ment for the Sapljs version. The results can be found in Figure 1.
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4.2 Evaluation of the benchmark tests

Before analysing the results we first make some general remarks about the
performance of Java, JavaScript and the Sapl interpreter which are relevant for
a better understanding of the results. In general it is difficult to give absolute
figures when comparing the speeds of language implementations. They often
also depend on the platform (processor), the operating system running on it
and the particular benchmarks used to compare. Therefore, all numbers given
should be interpreted as global indications.

According to the language shoot-out site [3] Java programs run between
3 and 5 times faster than similar JavaScript programs running on V8. So a
reimplementation of the Sapl interpreter in JavaScript is expected to run much
slower as the Sapl interpreter.

We could not run all benchmarks as long as we wished because of stack
limitations for V8 JavaScript in Google Chrome. It supports a standard (not
user modifiable) stack of only 30k at this moment. This is certainly enough
for most JavaScript programs, but not for a number of our benchmarks that
can be deeply recursive. This limited the size of the runs of the following
benchmarks: Interpreter! all sorting benchmarks, and the Prolog and Parser
Combinator benchmark. Another benchmark that we used previously, and that
could not be ran at all in Sapljs is: twice twice twice twice inc O.

For a lazy functional language the creation of thunks and the re-collection
of them later on, often takes a substantial part of program run-times. It is
therefore important to do some special tests that say something about the
speed of memory (de-)allocation. The Sapl interpreter uses a dedicated mem-
ory management unit (see [8]) not depending on Java memory management.
The better performance of the Sapl interpreter in comparison with the other
interpreters partly depends on its fast memory management. For the JavaScript
implementation we rely on the memory management of JavaScript itself. We
did some dedicated tests that showed that memory allocation for the Java
Sapl interpreter is about 5-7 times faster than the JavaScript implementation.
Therefore, we included an estimation of the percentage of time spent on mem-
ory management for all benchmarks ran in Sapljs. The estimation was done
by counting all memory allocations for a benchmark (all creations of thunks)
and multiplying it with an estimation of the time to create a thunk, which
was measured by a special application that only creates thunks.

IThe latest version of Chrome has an even more restricted stack size. We can now run
Interpreter only up to the 18th prime number.
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Results The Fibonacci and Interpreter benchmarks run (30 and 2 times resp.)
significantly faster in Sapljs than in the Sapl interpreter. Note that both these
benchmarks profit significantly from the optimizations with Fibonacci being
more than 100 times faster and Interpreter almost 7 times faster than the
non-optimized version. The addition of the strictness annotation for Fibonacci
contributes a factor of 3 to the speed-up. With this annotation the compiled
Fibonacci program is equivalent to a direct implementation of Fibonacci in
JavaScript and does not use feval anymore. The original Sapl interpreter does
not apply any of these optimizations. The Interpreter benchmark profits much
(almost a factor of 2) from the tail recursion optimization that applies for a
number of often used functions that dominate the performance of this bench-
mark.

Symbolic Primes, Match, Queens and Knights run at a speed comparable
to the Sapl interpreter. Hamming and Sort are 40 percent slower, Primes and
Prolog are 80 percent slower. Parser Combinators is the worst performing bench-
mark and is almost 4 times slower than in Sapl.

All benchmarks benefit considerably from the optimizations (between 1.5
and 120 times faster), with Fibonacci as the most exceptional.

The Parser Combinators benchmark profits only modestly from the optimiza-
tions and spends relatively much time in memory management operations. It
is also the most ‘higher order’ benchmark of all. Note that for the original
Sapl interpreter this is one of the best performing benchmarks (see [8]), per-
forming at a speed that is even competitive with compiler implementations.
The original Sapl interpreter does an exceptionally good job on higher order
functions.

We conclude that the Sapljs implementation offers a performance that is
competitive with that of the Sapl interpreter and therefore with other inter-
preters for lazy functional programming languages.

Previously [8] we also compared Sapl with the GHC and Clean compilers. It
was shown that the C version of the Sapl interpreter is about 3 times slower
than GHC without optimizer. Extrapolating this result using the figures men-
tioned above we conclude that Sapljs is about 6-7 times slower than GHC
(without optimizer). In this comparison we should also take into account that
JavaScript applications run at least 5 times slower than comparable C appli-
cations. The remaining difference can be mainly attributed to the high price
for memory operations in Sapljs.



92 L. Domoszlai, E. Bruél, J. M. Jansen

4.3 Alternative memory management?

For many Sapljs examples a substantial part of their run-time is spent on mem-
ory management. They can only run significantly faster after a more efficient
memory management is realized or after other optimizations are realized. It is
tempting to implement a memory management similar to that of the Sapl in-
terpreter. But this memory management relies heavily on representing graphs
by binary trees, which does not fit with our model for turning thunks into
JavaScript function calls which depends heavily on using arrays to represent
thunks.

5 Applications

Developing rich client-side applications in Clean We can use the Sapljs
compiler to create dedicated client-side applications in Clean that make use of
JavaScript libraries. We can do this because JavaScript and code generated by
Sapljs share the same namespace. In this way it is possible to call functions
within Sapl programs that are implemented in JavaScript. The Sapljs compiler
doesn’t check the availability of a function, so one has to rely on the JavaScript
interpreter to do this. Examples of such functions are the built-in core functions
like add and eq, but they can be any application related predefined function.

Because we have to compile from Clean to Sapl before compiling to JavaScript,
we need a way to use functions implemented in JavaScript within Clean pro-
grams. Clean does not allow that programs contain unknown functions, so we
need a way to make these functions known to the Clean compiler. This can be
realized in the following way. If one wants to postpone the implementation of
a function to a later time, one can define its type and define its body to be
undef. E.g., example is a function with 2 integer arguments and an integer
result with an implementation only in JavaScript.

example :: Int Int — Int
example = undef

The function undef is defined in the StdMisc module. An undef expressions
matches every type, so we can use this definition to check if the written code
is syntactically and type correct. We adapted the Clean to Sapl compiler not
to generate code for functions with an undefined body. In this way we have
created a universal method to reference functions defined outside the Clean
environment.
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We used these techniques to define a library in Clean for manipulating the
HTML DOM at the client side. The following Clean code gives a demonstration
of its use:

import StdEnv, SaplHtml

onKeyUp :: !HtmlEvent !'#HtmlDocument — *(*HtmlDocument, Bool)
onKeyUp e d
# (d, str) = getDomAttr d "textarea" "value"
# (d, str) = setDomAttr d "counter" "innerHTML" (toString (size str))

= (d, True)
Start
= toString (Div [] [] [TextArea [Id "textarea", Rows 15, Cols 50)]
[OnKeyUp onKeyUp| ,
Div [Id "counter"] [] []])

It is basically a definition of a piece of HTML using arrays and ADT's defined
in the SaplHtml module. What is worth to notice here are the definitions of
the event handler function and the DOM manipulating functions, getDomAttr
and setDomAttr, which are also defined in SaplHtml, but are implemented
in JavaScript using the above mentioned techniques. The two parameters of
the event handler function are effectively the related JavaScript Event and
Document objects, respectively.

Compiling the program to JavaScript and running it returns the following
string, which is legal HTML:

<div><textarea id="textarea"
rows="15"
cols="50"
onKeyUp="Sapl . execEvent (event, ’onKeyUp$eval’)">
</textarea>
<div id="counter"></div>
</div>

The event handler call is wrapped by the Sapl.execEvent function which is
responsible for passing the event related parameters to the actual event han-
dler. Including this string into an HTML document along with the generated
JavaScript functions we get a client side web application originally written in
Clean. Despite this program is deliberately very simple, it demonstrates al-
most all the basics necessary to write any client side application. Additional
interface functions, e.g. calling methods of a JavaScript object, can be found
in the SaplHtml module.
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iTask integration Another possible application is related to the iTask system
[13]. iTask is a combinator library written in Clean, and is used for the realiza-
tion of web-based dynamic workflow systems. An iTask application consists of
a structured collection of tasks to be performed by users, computers or both.

To enhance the performance of iTask applications, the possibility to handle
tasks on the client was added [14], accomplished by the addition of a simple
OnClient annotation to a task. When this annotation is present, the iTask
runtime automatically takes care of all communication between the client and
server parts of the application. The client part is executed by the Sapl inter-
preter, which is available as a Java applet on the client.

However, the approachability of JavaScript is much better compared to Java.
The Java runtime environment, the Java Virtual Machine might not even be
available on certain platforms (on mobile devices in particular). Besides that,
it exhibits significant latency during start-up. For these reasons, a new im-
plementation of this feature is recommended using Sapljs instead of the Sapl
interpreter written in Java. Several feature were made to foster this modifica-
tion:

e The Sapl language was extended with some syntactic sugar to allow
distinguishing between constructors and records.

e Automatic conversion of data types like records, arrays, etc, between
Sapl and JavaScript was added. In this way full interaction between Sapl
and existing libraries in JavaScript became possible.

e Automatic conversion of JSON data structures to enable direct interfac-
ing with all kinds of web-services was added.

6 Related work

Client-side processing for Internet applications is a subject that has drawn
much attention in the last years with the advent of Ajax based applications.

Earlier approaches using JavaScript as a client-side platform for the execu-
tion of functional programming languages are Hop [15, 10], Links [1] and Curry
[7].

Hop is a dedicated web programming language with a HTML-like syntax
build on top of Scheme. It uses two compilers, one for compiling the server-
side program and one for compiling the client-side part. The client-side part is
only used for executing the user interface. The application essentially runs on
the client and may call services on the server. Syntactic constructions are used
for indicating client and server part code. In [10] it is shown that a reasonably
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good performance for client-side functions in Hop can be obtained. However,
contrary to Haskell and Clean, both Hop and the below mentioned Links are
strict functional languages, which simplifies their translation to JavaScript
considerably.

Links [1] and its extension Formlets is a functional language-based web pro-
gramming language. Links compiles to JavaScript for rendering HTML pages,
and SQL to communicate with a back-end database. Client-server communi-
cation is implemented using Ajax technology, like this is done in the iTask
System.

Curry offers a much more restricted approach: only a very restricted subset
of the functional-logic language Curry is translated to JavaScript to handle
client-side verification code fragments only.

A more recent approach is the Flapjax language [12], an implementation of
functional reactive programming in JavaScript. Flapjax can be used either as
a programming language, compiling to JavaScript, or as a JavaScript library.
Entire applications can be developed in Flapjax. Flapjax automatically tracks
dependencies and propagates updates along dataflows, allowing for a declara-
tive style of programming.

An approach to compile Haskell to JavaScript is YCR2JS [4] that com-
piles YHC Core to JavaScript, comparable to our approach compiling Sapl to
JavaScript. Unfortunately, we could not find any performance figures for this
implementation.

Another, more recent approach, for compiling Haskell to JavaScript is HS2JS
[6], which integrates a JavaScript backend into the GHC compiler. A comparison
of JavaScript programs generated by this implementation indicate that they
run significantly slower than their Sapljs counterparts.

7 Conclusion and future work

In this paper we evaluated the use of JavaScript as a target language for lazy
functional programming languages like Haskell or Clean using the intermediate
language Sapl. The implementation has the following characteristics:

e It achieves a speed for compiled benchmarks that is competitive with
that of the Sapl interpreter and is faster than interpreters like Amanda,
Helium, Hugs and GHCi. This is despite the fact that JavaScript has a
3-5 times slower execution speed than the platforms used to implement
these interpreters.
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e The execution time of benchmarks is often dominated by memory oper-

ations. But in many cases this overhead could be significantly reduced
by a simple optimization on the creation of thunks.

The implementation tries to map Sapl to corresponding JavaScript con-
structs as much as possible. Only when the lazy semantics of Sapl re-
quires this, an alternative translation is made. This opens the way for
additional optimizations based on compile time analysis of programs.

The implementation supports the full Clean (and Haskell) language, but
not all libraries are supported. We tested the implementation against a
large number of Clean programs compiled with the Clean to Sapl com-
piler.

7.1 Future work

We have planned the following future work:

Implement a web-based Clean to Sapl (or to JavaScript) compiler (exper-
imental version already made).

Experimenting with supercompilation optimization by implementing a
Sapl to Sapl compiler based on whole program analysis.

Encapsulate JavaScript libraries in a functional way, e.g. using generic
programming techniques.

Attach client-side call-backs written in Clean to iTask editors. It can be
implemented using Clean-Sapl dynamics [9] which make it possible to
serialize expressions at the server side and execute them at the client
side.

Use JavaScript currying instead of building thunks. Our preliminary
results indicate that using JavaScript currying would be significantly
slower, but further investigation is needed for proper analysis.
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