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Abstract: This paper proposes a framework for modeling, simulation and formal 
verification of embedded real-time applications running over a real-time multitasking 
kernel. We extend a simple real time kernel (RTOS) with synchronous and 
asynchronous message passing interface to communicate between tasks and drivers. In 
the same time some embedded system’s specific drivers have been added, allowing 
unified resource access through these interfaces. The process engineer defines the 
control system as a set of tasks interacting with events occurring irregularly in time 
(alarms, user commands, communication) and regularly in time (sampled sensor data 
and actuator control signals). Taking into consideration both non-preemptive and 
preemptive scheduling, we propose two models consisting of networks of timed 
automata. Using a model-checker tool (UPPAAL), one can verify the timing and logical 
properties of an application, changing the time constrains and priorities. In a priority-
based scheduling scheme, tasks interact both through the scheduler and through the 
mutual exclusion mechanism, but there are hidden from the engineer by the framework. 
The framework also offers a solution for generating the source code skeleton of the 
modeled application. This reduces the risk of errors do to error-prone human coding and 
most importantly ensures that the task will have the same behavior as described in the 
model. 

 
Keywords: Formal verification, timed automata, real-time applications. 

1. Introduction 

Real-time embedded systems have become widely used in a large number of 
fields, especially in the industrial environment, playing an increasing role in 
modern society and are rapidly evolving, growing in complexity. Moreover they 
are often used not only by themselves, but in clusters and networks. An 
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embedded real-time system is in close relationship with the physical 
environment it interacts with, it is involved in monitoring and control of 
complex physical processes. The applications running on such systems face a 
set of constrains like memory, processing power, energy consumption, but 
mainly timing constraints. Consequently, a real-time system must exhibit a 
predictable behavior, under a given set of conditions the designer must be able 
to know if the system will meet its requirements. Developing and running 
embedded applications with predictable and controllable behavior requires a 
real-time operating system (RTOS). This allows for an application to be 
constructed as a collection of tasks managed by the RTOS according to the 
scheduling policy, the timing requirements being mapped as task deadlines.  

But the engineers that write embedded software are rarely computer 
scientists or experts in operating systems. It should be necessary to create an 
integrated framework for modeling, simulation, verification and code 
generation. On the other hand timeliness, concurrency, bounded response time, 
and heterogeneity need to be an integral part of the programming abstractions.  

The timed automata formalism is widely used and well-proven in the 
description and verification of real-time systems. In [1] timed automata are 
proposed for the description of task arrival patterns. The authors present a 
unified model for finite control structures, concurrency, synchronization, and 
tasks with combinations of timing, precedence and resource constraints.  

Another work [2] approaches the problem of formal modeling based on 
timed automata of a multitasking application running under a RTOS. The 
described model considers an operating system, the application tasks and the 
behavior of the controlled environment. In this approach the authors also model 
the internal structure, allowing for the verification of not only task 
schedulability, but other complex properties like safety and bounded liveness.  

In [3] the authors present a framework for modeling and verification of real- 
time embedded applications running under a multitasking RTOS kernel. The 
authors propose a model of a minimal operating system defined as a network of 
timed-automata developed in order to use it as a framework for simulation and 
verification of mini real-time applications. The authors chose and analyzed the 
FreeRTOS [4] mini real-time kernel either in a non-preemptive (cooperative) or 
a preemptive configuration. Access to resources is done using a unified resource 
access interface.  

In this paper we propose a framework for modeling, simulation and formal 
verification of embedded real-time applications and a solution for automatic 
source code generation of the modeled application. As in [3], the simulation and 
verification can be done using the UPPAAL [5] model checker. 

We extended the model described in [3] taking into consideration in more 
detail the internal structure of the tasks [6], adding synchronous and 
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asynchronous message passing interface to communicate between tasks and 
drivers, allowing the model to be more expressive. Access to resources is done 
using a unified resource access interface, fact that simplifies the task structure 
and facilitates automatic source code generation based on the model. The 
existing drivers were extended with these interfaces and new drivers were added 
for the SAM7-EX256 development board specific devices. For the 
implementation we chose the SAM7-EX256 development board. We improved 
the unified resource access interface, now consisting of three functions: 
Request(), Read() and Write(). This allows for a simplified structure of the 
modeled tasks and is necessary for the purpose of translating the tasks from the 
model into the corresponding source code.  

This paper is organized as follows: section 2 will describe the general 
properties and behavior for the task templates; in section 3 we describe the 
properties of the resources and the unified resource access interface; section 4 
presents the cooperative model (tasks, cooperative scheduler, resources); the 
model constructed for the preemptive version of the FreeRTOS kernel is 
detailed in section 5; section 6 addresses the issue of simulation and formal 
verification of the applications; in section 7 we describe the process of 
automatically generating the source code of the application from the model and 
finally, in section 8 we state our conclusions. 

2. The application tasks 

Each task instance is modeled by a timed automaton that is synchronized 
using channels. In general, embedded tasks present the following behavior  
[1], [3]: 

 
INFINITE_LOOP  

- Request access to a resource (blocking call)           
- Perform a read/write operation 
- Perform a computation 
- Request access to another resource (blocking call) 
- Perform a read/write operation  

…… 
END_INFINITE_LOOP 

 
Resources are accessed by tasks through blocking request calls. The desired 

resource is explicitly specified through its RID (resource ID) [7]. After making 
a request call, the task enters in blocking state, where it waits for the resource to 
become available. 

The FreeRTOS tasks are prioritized. 
The computations performed by the tasks are characterized by a worst case 

execution time (WCET) and a best case execution time (BCET). This is a con-
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sequence of branching instructions in the computations. Also, the running task 
will be delayed by the occurrence of interrupts generated by the resources. The 
ISR execution time will be added to the current task's WCET and BCET [2]. 

3. The resources 

In constructing the general resource model, we considered that the 
following: resources are reusable and can be shared (but only one task can have 
access to a resource at any given time), a task can request a single resource at 
one time and in the request call the resource is explicitly specified through its 
resource ID. Every resource has a minimal inter-arrival time (the MIAT). A 
resource can unblock a waiting task and provide data at any time after its MIAT 
expires. 

3.1 The unified resource access interface 

In our implementation on the SAM7-EX256 development board, resources 
provide interrupts that are managed by drivers. Depending on the peripheral, 
data is read from registers and stored in queues when the interrupt occurs for an 
input peripheral or data is sent when an output peripheral is ready to accept it. A 
task that is waiting on the resource's queue will immediately be unblocked. 

As we mentioned in the previous sections, access to a particular resource is 
performed trough the unified access interface. Each resource has a state variable 
associated. The read and write operations are performed using the state 
variables (or any other user-defined data structure that corresponds). The 
interface is composed of the following functions: 

- Request ( RID ) 
- Read ( RID, var_rid, nr ) 
- Write ( RID, var_rid, nr ) 

 
When requesting a resource, it must be explicitly specified through its RID. 

If the resource is not available (is being held by another task) the calling task 
will block until the requested resource becomes available. The Read() and 
Write() are nonblocking calls, they will be performed after the access to the 
requested resource is granted and provide the means for read/write operations. 
Besides these resource RIDs, the function calls must also include the state 
variables associated with the resource (var_rid) and the number of bytes to be 
read or written. The functions implemented in the unified access module are 
also present in the model and permit a simple description of concurrent access 
to the desired resources and read/write operations. 
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4. The cooperative model 

4.1 The cooperative application tasks 
 

Considering the general task form described in the previous section, we 
present a simple task model that requests access to a resource (RID), performs a 
read operation and executes a computation. The task in pseudocode is: 

 
     Task1{   
           Loop 
           { Request(RID); 
             Read(RID, var_rid, nr); 
             computation(); 
           }} 
 

The task automaton (Fig. 1) is synchronized with the models of the 
scheduler and resources via channels.  

The RUN locations are characterized by a best-case and worst-case 
execution time (WCET, BCET). This is modeled by the location's invariant 
(y<=W), and the guard on the outgoing transition (y>=B). REQ_BCET[RID], 
REQ_WCET[RID], READ_BCET[RID] and READ_WCET[RID] are constants 
defined in the model and they are the BCET and WCET for requesting and 
reading data in the case of the resource represented by RID. While being in a 
running state, a task can be interrupted by a resource's interrupt service routine 
(ISR). The execution time of the ISR is added to the W and B variables. 

BLOCKED: the state is entered when the task requests a particular resource 
through the request[pid][RID]! channel. The state is left when the resource 
becomes available (the event_or_timer[RID]? channel is activated). 

schedule[pid]?

event_or_timer[RID]?

request[pid][RID]!

ready[pid]=1,t=0

W+=READ_WCET[RID],
B+=READ_BCET[RID],
running=1,y=0

ready[pid]=0,running=0,
W=0,B=0

Read (RID, var_rid, nr),
W=WCET3, B=BCET3,
y=0

schedule[pid]?

BLOCKED

RUN2 READY2

RUN3

RUN1

READY1

W+=REQ_WCET[RID],
B+=REQ_BCET[RID],
y=0,running=1,t=0

y>=B

y>=B

y<=W

y>=B
computation(),
W+=REQ_WCET[RID],
B+=REQ_BCET[RID],
y=0

y<=W y<=W

 
 

Figure 1: Simple cooperative task model. 
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If there is no task running or ready, the FreeRTOS kernel schedules the Idle 
Task (Fig. 2), which is always available for scheduling. Following the general 
task form, the Idle Task periodically requests the NULL resource, yielding 
processor control. 

 

schedule[pid]?

W=0,
B=0

request[pid][RESOURCE_NULL]!

READY RUNy = 0,
W+=WCET,
B+=BCET

y >= B

y <= W

 
 

Figure 2: The Idle Task model. 

4.2 The cooperative scheduler 

In the cooperative behavior the running task has full control of the processor, 
regardless of its priority, until it makes a blocking call. The task can explicitly 
invoke the scheduler by calling the taskYIELD() macro or by requesting access 
to a resource (the Request(RID) function).  

The cooperative scheduler is described by a timed automaton that presents 
three states: INIT, SELECT and IDLE (Fig. 3). 
 

schedule[pid]!

x = 0,
res_all[f] = 1,
Rotate(pid)

Init(),
x=0request[pid][f]?

SELECTIDLE INIT

pid == GetNextTask()
pid : id_task

pid : id_task,
f : id_all

x<=5  
 

Figure 3: The cooperative scheduler model. 
 

INIT: the necessary hardware settings and initialization of task priorities and 
data structures take place. Because the state is committed, the scheduler will 
leave this state immediately at startup. 

SELECT: the ready task with the highest priority is chosen for scheduling 
(the GetNextTask() function). The invariant x<=5 specifies the time needed to 
select the next task; the value can be changed to match the actual physical time, 
which is hardware-dependant.  
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IDLE: the previously chosen task is running. In order to have an equal 
chance at scheduling for the tasks with the same priority, the Rotate() function 
is called when the scheduler exits from the IDLE state. 

4.3 The system resources 

 
Fig. 4 illustrates the general resource model.  

 

x=0,
W+=RES_WCET[rid],
B+=RES_BCET[rid]

event_or_timer[rid]!
x>all_period[rid]

RESOURCE

 
 

Figure 4: Resource model. 
 

The MIAT values for all of the system's resources are stored in the array 
all_period[NR_RESOURCES]. The MIAT is modeled by the guard 
x>all_period[rid]. The waiting task is unblocked via the event_or_timer[rid]! 
channel. The RES_WCET[pid] and RES_BCET[pid] constants are used to delay 
the task interrupted by the resource ISR. 

In case a task must execute an action periodically, at strict interval, it can 
utilize the timer resource (Fig. 5). The timer unblocks a waiting task when the x 
clock has the same value as all_period[tid]. The constant tid represents the 
timer's RID. 

 

x = 0, missed_timer[tid]++,
W+=RES_WCET[tid],
B+=RES_BCET[tid]

x=0, W+=RES_WCET[tid],
res_all[tid]=0, B+=RES_BCET[tid]

x >= all_period[tid]

event_or_timer[tid]!

SYNC

TIMER
res_all[tid] == 0

res_all[tid] == 1

x <= all_period[tid]

 

 
Figure 5: Timer model. 

 
The initial state TIMER is left when the predefined period expires. The 

SYNC state is committed so it is left immediately, the automaton unblocking 
any waiting task. In order to avoid system deadlock, the timer is allowed to 
expire even if none of the tasks are blocked waiting for it. 
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The resource model is identical for both preemptive and cooperative 
systems. 

5. The preemptive model 

5.1 The preemptive application tasks 

 
In addition to the READY, RUN and BLOCKED states presented by the 

cooperative tasks, the preemptive versions also have a SUSPENDED state. This 
state is entered when the task is preempted (via the suspend[pid]? channel). The 
invariant y'==0 will stop the y clock while the automaton is in a suspended 
location. Upon rescheduling, the clock is restarted (the y'==1 expression). Fig. 
6 presents the preemptive version of the simple read-request-computation task 
model described in section 4.1. 
 

suspend[pid]?

schedule[pid]?

schedule[pid]?

suspend[pid]?

schedule[pid]?

suspend[pid]?

y=0,running=1,
W[pid]+=READ_WCET[RID], 
B[pid]+=READ_BCET[RID]

Read(RID, var_rid, nr),
W[pid]=WCET,
B[pid]=BCET, y=0

W[pid]+=REQ_WCET[RID],
B[pid]+=REQ_BCET[RID],
y=0,running=1,t=0

ready[pid]=1,t=0

ready[pid]=0,
running=0, W[pid]=0, B[pid]=0

running=0

schedule[pid]?

request[pid][RID]!

event_or_timer[RID]?

schedule[pid]?

RUN1

BLOCKED

READY2

READY1

y'==0y'==0
SUSPENDED3 SUSPENDED1

RUN2

SUSPENDED2

RUN3

running=1

y>=B[pid]

running=1

y>=B[pid]

y>=B[pid]

running=0

computation(),y=0, 
W[pid]=REQ_WCET[RID],
B[pid]=REQ_BCET[RID]

running=0

running=1

y'==0

(y<=W[pid])&&(y'==1)

(y<=W[pid])&&(y'==1)(y<=W[pid])&&(y'==1)

 
 

Figure 6: Simple preemptive task model. 
 

The Idle Task is the same as in the case of the cooperative model, except for 
the fact that it doesn't suspend itself by requesting the NULL resource, but it is 
preempted by the scheduler. 
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5.2 The preemptive scheduler 

 
The preemptive scheduler model is illustrated in Fig. 7. 

 

suspend[current_pid]!

tick?

y = 0,
res_all[f] = 1,
Rotate(pid),
current_pid=GetNextTask()

current_pid = pid

Init(),
y = 0

schedule[pid]!

request[pid][f]?

SELECT

IDLE

y<=2

INIT

SUSPEND

y=0

pid == GetNextTask()

pid : id_task,
f : id_all

y = 0,
Rotate(current_pid),
current_pid=GetNextTask()

y<=2

pid : id_task

 
                       (a)                                                                       (b)  
 

Figure 7: The preemptive scheduler model (a) and the tick interrupt model (b).  
 

The preemptive scheduler can periodically perform a context switch, 
temporarily suspending the running task in favor of an equal or higher priority 
one. It does so by using the tick interrupt. Each time the interrupt occurs, the 
kernel determines if a context switch must take place. This action is performed 
in the SUSPEND state. 

6. Simulation and formal verification 

Simulation and formal verification can be performed using the UPPAAL [8] 
integrated simulation and verification tools. For formal verification, the 
properties required for an application to function according to requirements 
must be expressed in UPPAAL's CTL subset [9]. The verifiable properties are: 
reachability, safety, liveness, bounded liveness and deadlock-freeness. 

Reachability properties are checked to see if it is possible to reach a state 
where a formula p is satisfied, for example: 

- E<> Task1.RUN1 - checks if Task1 can ever reach the RUN1 state; 
- E<> Task1.SUSPENDED1 - verifies if there is a possibility that 

Task1 will ever be suspended, a context switch taking place. 
Safety properties require that a formula p is satisfied in all reachable states 

or, that there is a path in which p is always true: 
- A[] not (Task1.running and Task2.running) - two different tasks can 

not be running at the same time; 

x=0
tick!TICK
x >= iTickRate

x <= iTickRate



60 L. Hategan, P. Haller 
 

- E[] Task1.READY2 imply Task1.t<=500 - there is a path where 
Task1 will not spend more than 500 time units in the READY2 state. 

 
Liveness properties require that, in all cases, the system will eventually reach 

a state where a formula p is true. Another form is that if a formula p is true, 
another formula q will become true eventually: 

- A<> Task1.RUN1 - Task1 will inevitably be in the RUN1 state at 
some point; 

- Timer(1).SYNC --> Task5.RUN2 - considering a blocked task 
waiting for a timer, if Timer(1) expires then Task5 will inevitably be 
scheduled. 

 
Bounded liveness properties can be formulated “whenever p becomes true, q 

becomes true within the time limit t”: 
- Timer(1).SYNC --> (Task5.RUN2 and Task5.t<=200) - when 

Timer(1) expires Task5 will be scheduled within 200 time units. 
 

Deadlock-freeness [7]: A[] not deadlock. 
To verify the time constrains, the execution time of the elements regarding 

our implementation for the SAM7-EX256 development board (task scheduling 
time, resource ISR execution time, resource access and read/write operations 
time, etc.) were measured using the system's physical timers and were 
introduced in the models. 
The interrupt service routine execution time: 

- Analog/digital converter: RES_BCET=RES_WCET=4,8 μs; 
- Key pressed: RES_BCET=5,2 μs; RES_WCET=10,2 μs; 
- Joystick: RES_BCET=5,5 μs; RES_WCET=10,4 μs; 
- Timer0 ÷ Timer2: RES_BCET=RES_WCET=2.5 μs. 

 
Driver unified resource access: 

- Analog/digital converter:  RES_BCET=RES_WCET=26,5 μs; 
- Display: RES_BCET=RES_WCET=30 μs; 
- External storage: RES_BCET=RES_WCET=30 μs; 
- Keys:  RES_BCET=RES_WCET=15,4 μs; 
- Joystick: RES_BCET=RES_WCET=15,4 μs. 

 
Write operation: 

- Display: RES_BCET=390 μs (1 char.); RES_WCET≈7 ms (20 char.); 
- External storage: RES_BCET=54 μs (1 char.) ;RES_WCET ≈100 μs (128 char.). 

Read operation: 
- Analog/digital converter: RES_BCET=RES_WCET=26,5 μs; 
- Keys: RES_BCET=27,2 μs; RES_WCET=28 μs; 
- Joystick: RES_BCET=27,2 μs; RES_WCET=28 μs. 
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7. Source code generation 

We have developed a code generator application that, based on the model 
presented as input (XML file), recognize the states and functions calls of each 
task and output the corresponding source code skeleton. In the case of the 
simple request-read-computation task presented in the previous sections the 
following code is generated: 

 
void Task1( void *pvParameters ) 
 { 
        for( ;; ) 
        { 
            Request(RID); 
            Read(RID, var_rid, nr); 
            //!!computation();        
        } 
 } 

 
The generator creates a header file containing the declarations for all the 

tasks and a C source code file with their implementation. These resulting files 
can be compiled in a project along with the FreeRTOS source code. Before 
compilation, all that remains is to add the computational blocks containing the 
algorithms that manipulate the data. The task code is identical in both cases, 
cooperative and preemptive. 

Alongside the models and source code generator, we constructed a source 
code project that contains the FreeRTOS source, drivers including interrupt 
mechanisms for the system's resources and the module for unified peripheral 
access. 

The source code project also includes a special task that can be used to 
directly measure the time necessary for a sequence of code to execute on this 
physical system (for use in the model). Also, we included functions to facilitate 
the conversion of data from the type specific to a particular resource to another 
resource's type. For example, to convert and copy the data from the state 
variable associated with the system's analog-to-digital converter to the state 
variable of the LCD display, one can use the function ADCtoLCD(res_adc, 
res_lcd ). The available functions and they execution time is: 

- INTtoLCD( Integer, res_lcd ); RES_BCET=7,8 μs; RES_WCET=44,1 μs; 
- INTtoSD( Integer, res_sd ); RES_BCET=66,5 μs; RES_WCET=305 μs; 
- ADCtoSD( res_adc, res_sd ); RES_BCET=45,3 μs; RES_WCET=333 μs; 
- ADCgetINT(res_adc); RES_BCET=RES_WCET=31,4 μs; 
- ADCgetSTR( res_adc); RES_BCET=17,5 μs; RES_WCET=350 μs; 
- LCDgetSTR( res_lcd); RES_BCET=RES_WCET=18 μs; 
- SDgetSTR( res_sd); RES_BCET=RES_WCET=47,2 μs. 
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These functions are also present in the model, allowing it to be more 
expressive and further simplifying the code of application tasks. 

8. Conclusions 

This paper presents a framework that can be used to model, verify and 
implement real-time multitasking applications. The operating system, resources 
and application tasks are modeled by timed automata. This approach allows for 
the system's simulation and verification before the actual implementation, 
permitting the early detections of any undesirable behavior. The unified 
resource access interface and the code generator make possible the automatic 
generation of the modeled (and verified) application's source code, avoiding 
most of the error-prone human coding. Because the method is susceptible to 
state space explosion, the model must be abstract as much as possible, making a 
compromise between model complexity and its state space size. 
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