

 Acta Universitatis Sapientiae
 Electrical and Mechanical Engineering, 2 (2010) 51-62

Framework for Modeling, Verification and
Implementation of Real-Time Applications

Liviu HAŢEGAN 1, Piroska HALLER 2

1Technical University of Cluj-Napoca, Cluj-Napoca, România,
 e-mail: liviu.hategan@yahoo.com,

2“Petru Maior” University of Tîrgu Mureş, Tîrgu Mureş, România,
e-mail: phaller@upm.ro

Manuscript received October 01, 2010; revised October 30, 2010.

Abstract: This paper proposes a framework for modeling, simulation and formal
verification of embedded real-time applications running over a real-time multitasking
kernel. We extend a simple real time kernel (RTOS) with synchronous and
asynchronous message passing interface to communicate between tasks and drivers. In
the same time some embedded system’s specific drivers have been added, allowing
unified resource access through these interfaces. The process engineer defines the
control system as a set of tasks interacting with events occurring irregularly in time
(alarms, user commands, communication) and regularly in time (sampled sensor data
and actuator control signals). Taking into consideration both non-preemptive and
preemptive scheduling, we propose two models consisting of networks of timed
automata. Using a model-checker tool (UPPAAL), one can verify the timing and logical
properties of an application, changing the time constrains and priorities. In a priority-
based scheduling scheme, tasks interact both through the scheduler and through the
mutual exclusion mechanism, but there are hidden from the engineer by the framework.
The framework also offers a solution for generating the source code skeleton of the
modeled application. This reduces the risk of errors do to error-prone human coding and
most importantly ensures that the task will have the same behavior as described in the
model.

Keywords: Formal verification, timed automata, real-time applications.

1. Introduction

Real-time embedded systems have become widely used in a large number of
fields, especially in the industrial environment, playing an increasing role in
modern society and are rapidly evolving, growing in complexity. Moreover they
are often used not only by themselves, but in clusters and networks. An

52 L. Hategan, P. Haller

embedded real-time system is in close relationship with the physical
environment it interacts with, it is involved in monitoring and control of
complex physical processes. The applications running on such systems face a
set of constrains like memory, processing power, energy consumption, but
mainly timing constraints. Consequently, a real-time system must exhibit a
predictable behavior, under a given set of conditions the designer must be able
to know if the system will meet its requirements. Developing and running
embedded applications with predictable and controllable behavior requires a
real-time operating system (RTOS). This allows for an application to be
constructed as a collection of tasks managed by the RTOS according to the
scheduling policy, the timing requirements being mapped as task deadlines.

But the engineers that write embedded software are rarely computer
scientists or experts in operating systems. It should be necessary to create an
integrated framework for modeling, simulation, verification and code
generation. On the other hand timeliness, concurrency, bounded response time,
and heterogeneity need to be an integral part of the programming abstractions.

The timed automata formalism is widely used and well-proven in the
description and verification of real-time systems. In [1] timed automata are
proposed for the description of task arrival patterns. The authors present a
unified model for finite control structures, concurrency, synchronization, and
tasks with combinations of timing, precedence and resource constraints.

Another work [2] approaches the problem of formal modeling based on
timed automata of a multitasking application running under a RTOS. The
described model considers an operating system, the application tasks and the
behavior of the controlled environment. In this approach the authors also model
the internal structure, allowing for the verification of not only task
schedulability, but other complex properties like safety and bounded liveness.

In [3] the authors present a framework for modeling and verification of real-
time embedded applications running under a multitasking RTOS kernel. The
authors propose a model of a minimal operating system defined as a network of
timed-automata developed in order to use it as a framework for simulation and
verification of mini real-time applications. The authors chose and analyzed the
FreeRTOS [4] mini real-time kernel either in a non-preemptive (cooperative) or
a preemptive configuration. Access to resources is done using a unified resource
access interface.

In this paper we propose a framework for modeling, simulation and formal
verification of embedded real-time applications and a solution for automatic
source code generation of the modeled application. As in [3], the simulation and
verification can be done using the UPPAAL [5] model checker.

We extended the model described in [3] taking into consideration in more
detail the internal structure of the tasks [6], adding synchronous and

 Framework for Modeling, Verification and Implementation of Real-Time Applications 53

asynchronous message passing interface to communicate between tasks and
drivers, allowing the model to be more expressive. Access to resources is done
using a unified resource access interface, fact that simplifies the task structure
and facilitates automatic source code generation based on the model. The
existing drivers were extended with these interfaces and new drivers were added
for the SAM7-EX256 development board specific devices. For the
implementation we chose the SAM7-EX256 development board. We improved
the unified resource access interface, now consisting of three functions:
Request(), Read() and Write(). This allows for a simplified structure of the
modeled tasks and is necessary for the purpose of translating the tasks from the
model into the corresponding source code.

This paper is organized as follows: section 2 will describe the general
properties and behavior for the task templates; in section 3 we describe the
properties of the resources and the unified resource access interface; section 4
presents the cooperative model (tasks, cooperative scheduler, resources); the
model constructed for the preemptive version of the FreeRTOS kernel is
detailed in section 5; section 6 addresses the issue of simulation and formal
verification of the applications; in section 7 we describe the process of
automatically generating the source code of the application from the model and
finally, in section 8 we state our conclusions.

2. The application tasks

Each task instance is modeled by a timed automaton that is synchronized
using channels. In general, embedded tasks present the following behavior
[1], [3]:

INFINITE_LOOP

- Request access to a resource (blocking call)
- Perform a read/write operation
- Perform a computation
- Request access to another resource (blocking call)
- Perform a read/write operation

……
END_INFINITE_LOOP

Resources are accessed by tasks through blocking request calls. The desired

resource is explicitly specified through its RID (resource ID) [7]. After making
a request call, the task enters in blocking state, where it waits for the resource to
become available.

The FreeRTOS tasks are prioritized.
The computations performed by the tasks are characterized by a worst case

execution time (WCET) and a best case execution time (BCET). This is a con-

54 L. Hategan, P. Haller

sequence of branching instructions in the computations. Also, the running task
will be delayed by the occurrence of interrupts generated by the resources. The
ISR execution time will be added to the current task's WCET and BCET [2].

3. The resources

In constructing the general resource model, we considered that the
following: resources are reusable and can be shared (but only one task can have
access to a resource at any given time), a task can request a single resource at
one time and in the request call the resource is explicitly specified through its
resource ID. Every resource has a minimal inter-arrival time (the MIAT). A
resource can unblock a waiting task and provide data at any time after its MIAT
expires.

3.1 The unified resource access interface

In our implementation on the SAM7-EX256 development board, resources
provide interrupts that are managed by drivers. Depending on the peripheral,
data is read from registers and stored in queues when the interrupt occurs for an
input peripheral or data is sent when an output peripheral is ready to accept it. A
task that is waiting on the resource's queue will immediately be unblocked.

As we mentioned in the previous sections, access to a particular resource is
performed trough the unified access interface. Each resource has a state variable
associated. The read and write operations are performed using the state
variables (or any other user-defined data structure that corresponds). The
interface is composed of the following functions:

- Request (RID)
- Read (RID, var_rid, nr)
- Write (RID, var_rid, nr)

When requesting a resource, it must be explicitly specified through its RID.

If the resource is not available (is being held by another task) the calling task
will block until the requested resource becomes available. The Read() and
Write() are nonblocking calls, they will be performed after the access to the
requested resource is granted and provide the means for read/write operations.
Besides these resource RIDs, the function calls must also include the state
variables associated with the resource (var_rid) and the number of bytes to be
read or written. The functions implemented in the unified access module are
also present in the model and permit a simple description of concurrent access
to the desired resources and read/write operations.

 Framework for Modeling, Verification and Implementation of Real-Time Applications 55

4. The cooperative model

4.1 The cooperative application tasks

Considering the general task form described in the previous section, we
present a simple task model that requests access to a resource (RID), performs a
read operation and executes a computation. The task in pseudocode is:

 Task1{
 Loop
 { Request(RID);
 Read(RID, var_rid, nr);
 computation();
 }}

The task automaton (Fig. 1) is synchronized with the models of the
scheduler and resources via channels.

The RUN locations are characterized by a best-case and worst-case
execution time (WCET, BCET). This is modeled by the location's invariant
(y<=W), and the guard on the outgoing transition (y>=B). REQ_BCET[RID],
REQ_WCET[RID], READ_BCET[RID] and READ_WCET[RID] are constants
defined in the model and they are the BCET and WCET for requesting and
reading data in the case of the resource represented by RID. While being in a
running state, a task can be interrupted by a resource's interrupt service routine
(ISR). The execution time of the ISR is added to the W and B variables.

BLOCKED: the state is entered when the task requests a particular resource
through the request[pid][RID]! channel. The state is left when the resource
becomes available (the event_or_timer[RID]? channel is activated).

schedule[pid]?

event_or_timer[RID]?

request[pid][RID]!

ready[pid]=1,t=0

W+=READ_WCET[RID],
B+=READ_BCET[RID],
running=1,y=0

ready[pid]=0,running=0,
W=0,B=0

Read (RID, var_rid, nr),
W=WCET3, B=BCET3,
y=0

schedule[pid]?

BLOCKED

RUN2 READY2

RUN3

RUN1

READY1

W+=REQ_WCET[RID],
B+=REQ_BCET[RID],
y=0,running=1,t=0

y>=B

y>=B

y<=W

y>=B
computation(),
W+=REQ_WCET[RID],
B+=REQ_BCET[RID],
y=0

y<=W y<=W

Figure 1: Simple cooperative task model.

56 L. Hategan, P. Haller

If there is no task running or ready, the FreeRTOS kernel schedules the Idle
Task (Fig. 2), which is always available for scheduling. Following the general
task form, the Idle Task periodically requests the NULL resource, yielding
processor control.

schedule[pid]?

W=0,
B=0

request[pid][RESOURCE_NULL]!

READY RUNy = 0,
W+=WCET,
B+=BCET

y >= B

y <= W

Figure 2: The Idle Task model.

4.2 The cooperative scheduler

In the cooperative behavior the running task has full control of the processor,
regardless of its priority, until it makes a blocking call. The task can explicitly
invoke the scheduler by calling the taskYIELD() macro or by requesting access
to a resource (the Request(RID) function).

The cooperative scheduler is described by a timed automaton that presents
three states: INIT, SELECT and IDLE (Fig. 3).

schedule[pid]!

x = 0,
res_all[f] = 1,
Rotate(pid)

Init(),
x=0request[pid][f]?

SELECTIDLE INIT

pid == GetNextTask()
pid : id_task

pid : id_task,
f : id_all

x<=5

Figure 3: The cooperative scheduler model.

INIT: the necessary hardware settings and initialization of task priorities and
data structures take place. Because the state is committed, the scheduler will
leave this state immediately at startup.

SELECT: the ready task with the highest priority is chosen for scheduling
(the GetNextTask() function). The invariant x<=5 specifies the time needed to
select the next task; the value can be changed to match the actual physical time,
which is hardware-dependant.

 Framework for Modeling, Verification and Implementation of Real-Time Applications 57

IDLE: the previously chosen task is running. In order to have an equal
chance at scheduling for the tasks with the same priority, the Rotate() function
is called when the scheduler exits from the IDLE state.

4.3 The system resources

Fig. 4 illustrates the general resource model.

x=0,
W+=RES_WCET[rid],
B+=RES_BCET[rid]

event_or_timer[rid]!
x>all_period[rid]

RESOURCE

Figure 4: Resource model.

The MIAT values for all of the system's resources are stored in the array
all_period[NR_RESOURCES]. The MIAT is modeled by the guard
x>all_period[rid]. The waiting task is unblocked via the event_or_timer[rid]!
channel. The RES_WCET[pid] and RES_BCET[pid] constants are used to delay
the task interrupted by the resource ISR.

In case a task must execute an action periodically, at strict interval, it can
utilize the timer resource (Fig. 5). The timer unblocks a waiting task when the x
clock has the same value as all_period[tid]. The constant tid represents the
timer's RID.

x = 0, missed_timer[tid]++,
W+=RES_WCET[tid],
B+=RES_BCET[tid]

x=0, W+=RES_WCET[tid],
res_all[tid]=0, B+=RES_BCET[tid]

x >= all_period[tid]

event_or_timer[tid]!

SYNC

TIMER
res_all[tid] == 0

res_all[tid] == 1

x <= all_period[tid]

Figure 5: Timer model.

The initial state TIMER is left when the predefined period expires. The

SYNC state is committed so it is left immediately, the automaton unblocking
any waiting task. In order to avoid system deadlock, the timer is allowed to
expire even if none of the tasks are blocked waiting for it.

58 L. Hategan, P. Haller

The resource model is identical for both preemptive and cooperative
systems.

5. The preemptive model

5.1 The preemptive application tasks

In addition to the READY, RUN and BLOCKED states presented by the

cooperative tasks, the preemptive versions also have a SUSPENDED state. This
state is entered when the task is preempted (via the suspend[pid]? channel). The
invariant y'==0 will stop the y clock while the automaton is in a suspended
location. Upon rescheduling, the clock is restarted (the y'==1 expression). Fig.
6 presents the preemptive version of the simple read-request-computation task
model described in section 4.1.

suspend[pid]?

schedule[pid]?

schedule[pid]?

suspend[pid]?

schedule[pid]?

suspend[pid]?

y=0,running=1,
W[pid]+=READ_WCET[RID],
B[pid]+=READ_BCET[RID]

Read(RID, var_rid, nr),
W[pid]=WCET,
B[pid]=BCET, y=0

W[pid]+=REQ_WCET[RID],
B[pid]+=REQ_BCET[RID],
y=0,running=1,t=0

ready[pid]=1,t=0

ready[pid]=0,
running=0, W[pid]=0, B[pid]=0

running=0

schedule[pid]?

request[pid][RID]!

event_or_timer[RID]?

schedule[pid]?

RUN1

BLOCKED

READY2

READY1

y'==0y'==0
SUSPENDED3 SUSPENDED1

RUN2

SUSPENDED2

RUN3

running=1

y>=B[pid]

running=1

y>=B[pid]

y>=B[pid]

running=0

computation(),y=0,
W[pid]=REQ_WCET[RID],
B[pid]=REQ_BCET[RID]

running=0

running=1

y'==0

(y<=W[pid])&&(y'==1)

(y<=W[pid])&&(y'==1)(y<=W[pid])&&(y'==1)

Figure 6: Simple preemptive task model.

The Idle Task is the same as in the case of the cooperative model, except for
the fact that it doesn't suspend itself by requesting the NULL resource, but it is
preempted by the scheduler.

 Framework for Modeling, Verification and Implementation of Real-Time Applications 59

5.2 The preemptive scheduler

The preemptive scheduler model is illustrated in Fig. 7.

suspend[current_pid]!

tick?

y = 0,
res_all[f] = 1,
Rotate(pid),
current_pid=GetNextTask()

current_pid = pid

Init(),
y = 0

schedule[pid]!

request[pid][f]?

SELECT

IDLE

y<=2

INIT

SUSPEND

y=0

pid == GetNextTask()

pid : id_task,
f : id_all

y = 0,
Rotate(current_pid),
current_pid=GetNextTask()

y<=2

pid : id_task

 (a) (b)

Figure 7: The preemptive scheduler model (a) and the tick interrupt model (b).

The preemptive scheduler can periodically perform a context switch,
temporarily suspending the running task in favor of an equal or higher priority
one. It does so by using the tick interrupt. Each time the interrupt occurs, the
kernel determines if a context switch must take place. This action is performed
in the SUSPEND state.

6. Simulation and formal verification

Simulation and formal verification can be performed using the UPPAAL [8]
integrated simulation and verification tools. For formal verification, the
properties required for an application to function according to requirements
must be expressed in UPPAAL's CTL subset [9]. The verifiable properties are:
reachability, safety, liveness, bounded liveness and deadlock-freeness.

Reachability properties are checked to see if it is possible to reach a state
where a formula p is satisfied, for example:

- E<> Task1.RUN1 - checks if Task1 can ever reach the RUN1 state;
- E<> Task1.SUSPENDED1 - verifies if there is a possibility that

Task1 will ever be suspended, a context switch taking place.
Safety properties require that a formula p is satisfied in all reachable states

or, that there is a path in which p is always true:
- A[] not (Task1.running and Task2.running) - two different tasks can

not be running at the same time;

x=0
tick!TICK
x >= iTickRate

x <= iTickRate

60 L. Hategan, P. Haller

- E[] Task1.READY2 imply Task1.t<=500 - there is a path where
Task1 will not spend more than 500 time units in the READY2 state.

Liveness properties require that, in all cases, the system will eventually reach

a state where a formula p is true. Another form is that if a formula p is true,
another formula q will become true eventually:

- A<> Task1.RUN1 - Task1 will inevitably be in the RUN1 state at
some point;

- Timer(1).SYNC --> Task5.RUN2 - considering a blocked task
waiting for a timer, if Timer(1) expires then Task5 will inevitably be
scheduled.

Bounded liveness properties can be formulated “whenever p becomes true, q

becomes true within the time limit t”:
- Timer(1).SYNC --> (Task5.RUN2 and Task5.t<=200) - when

Timer(1) expires Task5 will be scheduled within 200 time units.

Deadlock-freeness [7]: A[] not deadlock.
To verify the time constrains, the execution time of the elements regarding

our implementation for the SAM7-EX256 development board (task scheduling
time, resource ISR execution time, resource access and read/write operations
time, etc.) were measured using the system's physical timers and were
introduced in the models.
The interrupt service routine execution time:

- Analog/digital converter: RES_BCET=RES_WCET=4,8 μs;
- Key pressed: RES_BCET=5,2 μs; RES_WCET=10,2 μs;
- Joystick: RES_BCET=5,5 μs; RES_WCET=10,4 μs;
- Timer0 ÷ Timer2: RES_BCET=RES_WCET=2.5 μs.

Driver unified resource access:

- Analog/digital converter: RES_BCET=RES_WCET=26,5 μs;
- Display: RES_BCET=RES_WCET=30 μs;
- External storage: RES_BCET=RES_WCET=30 μs;
- Keys: RES_BCET=RES_WCET=15,4 μs;
- Joystick: RES_BCET=RES_WCET=15,4 μs.

Write operation:

- Display: RES_BCET=390 μs (1 char.); RES_WCET≈7 ms (20 char.);
- External storage: RES_BCET=54 μs (1 char.) ;RES_WCET ≈100 μs (128 char.).

Read operation:
- Analog/digital converter: RES_BCET=RES_WCET=26,5 μs;
- Keys: RES_BCET=27,2 μs; RES_WCET=28 μs;
- Joystick: RES_BCET=27,2 μs; RES_WCET=28 μs.

 Framework for Modeling, Verification and Implementation of Real-Time Applications 61

7. Source code generation

We have developed a code generator application that, based on the model
presented as input (XML file), recognize the states and functions calls of each
task and output the corresponding source code skeleton. In the case of the
simple request-read-computation task presented in the previous sections the
following code is generated:

void Task1(void *pvParameters)
 {
 for(;;)
 {
 Request(RID);
 Read(RID, var_rid, nr);
 //!!computation();
 }
 }

The generator creates a header file containing the declarations for all the

tasks and a C source code file with their implementation. These resulting files
can be compiled in a project along with the FreeRTOS source code. Before
compilation, all that remains is to add the computational blocks containing the
algorithms that manipulate the data. The task code is identical in both cases,
cooperative and preemptive.

Alongside the models and source code generator, we constructed a source
code project that contains the FreeRTOS source, drivers including interrupt
mechanisms for the system's resources and the module for unified peripheral
access.

The source code project also includes a special task that can be used to
directly measure the time necessary for a sequence of code to execute on this
physical system (for use in the model). Also, we included functions to facilitate
the conversion of data from the type specific to a particular resource to another
resource's type. For example, to convert and copy the data from the state
variable associated with the system's analog-to-digital converter to the state
variable of the LCD display, one can use the function ADCtoLCD(res_adc,
res_lcd). The available functions and they execution time is:

- INTtoLCD(Integer, res_lcd); RES_BCET=7,8 μs; RES_WCET=44,1 μs;
- INTtoSD(Integer, res_sd); RES_BCET=66,5 μs; RES_WCET=305 μs;
- ADCtoSD(res_adc, res_sd); RES_BCET=45,3 μs; RES_WCET=333 μs;
- ADCgetINT(res_adc); RES_BCET=RES_WCET=31,4 μs;
- ADCgetSTR(res_adc); RES_BCET=17,5 μs; RES_WCET=350 μs;
- LCDgetSTR(res_lcd); RES_BCET=RES_WCET=18 μs;
- SDgetSTR(res_sd); RES_BCET=RES_WCET=47,2 μs.

62 L. Hategan, P. Haller

These functions are also present in the model, allowing it to be more
expressive and further simplifying the code of application tasks.

8. Conclusions

This paper presents a framework that can be used to model, verify and
implement real-time multitasking applications. The operating system, resources
and application tasks are modeled by timed automata. This approach allows for
the system's simulation and verification before the actual implementation,
permitting the early detections of any undesirable behavior. The unified
resource access interface and the code generator make possible the automatic
generation of the modeled (and verified) application's source code, avoiding
most of the error-prone human coding. Because the method is susceptible to
state space explosion, the model must be abstract as much as possible, making a
compromise between model complexity and its state space size.

References

[1] Fersman, E., “A generic approach to schedulability analysis of real-time systems”, Ph.D.
Thesis, Faculty of Science and Technology, Uppsala University, November 2003.

[2] Waszniowski, L., and Hanzalek, Z., “Formal verification of multitasking applications based
on timed automata model”, Real-Time Systems, vol. 38, no. 1, Springer-Verlag, pp. 39-65,
2008.

[3] Zaharia, T., and Haller, P., “Formal verification and implementation of real time operating
system based applications”, in Proc. of the 4th IEEE International Conference on Intelligent
Computer Communication and Processing, Cluj-Napoca, Romania, pp. 299-302, 2008.

[4] FreeRTOS – portable, open source, mini Real Time Kernel; http://www.freertos.org
[5] UPPAAL – tool box for modeling and verification of real-time systems modeled as

networks of timed automata; http://www.uppaal.com
[6] Liu, J.W., “Real-time systems”, Prentice-Hall, Inc., Upper Saddle River, New Jersey 2000.
[7] Li, P., Ravindran, B., Suhaib, S., and Feizabadi, S., “A formally verified application-level

framework for real-time scheduling on POSIX real-time operating systems”, IEEE Trans.
Software Eng. vol. 9, no. 30, pp. 613-629, 2004.

[8] Hessel, A., Larsen, K. G., Mikucionis, M., Nielsen, B., Pettersson, P., and Skou, A.,
“Testing real-time systems using UPPAAL”, Formal Methods and Testing, Springer-
Verlag, pp. 77-117, 2008.

[9] Behrmann, G., David, A., and Larsen, K. G., “A tutorial on UPPAAL”, In Proceedings of
the 4th International School on Formal Methods for the Design of Computer, Communi-
cation, and Software Systems (SFM-RT'04). LNCS 3185, Springer-Verlag, 2004.

