

 Acta Universitatis Sapientiae
 Electrical and Mechanical Engineering, 2 (2010) 63-72

Application Development in Database-Driven
Information Systems

Marius MUJI

Department of Electrical Engineering, Faculty of Engineering, Petru Maior University
of Tîrgu Mures, Tg. Mureş, e-mail: marius_muji@yahoo.com

Manuscript received October 1, 2010; revised October 18, 2010.

Abstract: The relational model provides extensive support for data integrity
constraints (i.e. business rules) specification, as an integral part of the data model.
Current Relational Database Management Systems (RDBMS), however, cover just
partially the various categories of data integrity constraints, mostly those directly related
with the database structure (e.g. entity integrity, referential integrity). The rest of them
are delegated to the application languages. Consequently, they are usually defined in a
function-oriented approach (e.g. the object-oriented technology), loosing their direct
link with the data model – with all the negative consequences in terms of system
scalability and logical data independence. The present paper proposes a data-oriented
approach for the development of the external level of database systems. Under the
proposed model, the external data is structured only by means of ordered sets of tuples
(i.e. arrays of tuples), and the corresponding business rules (i.e. the presentation rules)
are treated as external schema integrity constraints. Consequently, the application
developer is able to define the user views of the system in a declarative fashion, similar
to the relational database design. The immediate advantage is that he or she gains a data
designer perspective, rather than one of a programmer. The essentiality (i.e. the unique
data constructor) of the model facilitates a seamless integration with the relational
model, an entity-relationship graphical representation, and the complete automation of
the user interface development.

Keywords: Logical design– data models, schema and subschema.

mailto:marius_muji@yahoo.com�

64 M. Muji

1. Introduction

Database-driven information systems are developed around an integrated
and shared source of data. The integration is important when somebody needs a
general view of the system: for example, a manager who wants to track an item
from the supplier to the end-client, spanning the procurement, production and
sales activities of a company. This is why, regardless how many individual
views we have about an organization’s data, there is always needed an
integrated, general view of the entire database. On the other hand, it is also
important for initial system development and for long-term data management
purposes to work with data representations which are not dependent on the
physical storage equipment.

These requirements led to the ANSI/SPARC three levels architecture [2, 3]
(see Fig. 1), which makes a clear distinction between the physical and the
conceptual (i.e. logical) representation of the system, and between the general,
integrated community view and the individual views of the system, respectively.
The physical-logical separation provide physical data independence, which
basically means that the applications would not be affected by changes at the
physical data representations (for hardware upgrade purposes, for example); the
community-individual views separation provides logical data independence,
which means that the system could grow (through some new user views or
modification of the existent ones) without affecting the applications
corresponding to the user views that remain unchanged.

Physical view

User view 1

Community view

User view NUser view 2
EXTERNAL
LEVEL

INTERNAL LEVEL

CONCEPTUAL
LEVEL

...

Figure 1: The three levels architecture.

The relational model provides the theoretical support for the development of

information systems in accordance with the three levels architecture. Thus,
Relational Database Management Systems are currently the technology of
choice for the development of the physical and conceptual level, sharing with
the application languages the development of the external level.

 Application Development in Database-Driven Information Systems 65

In this context, the database professionals are traditionally responsible for:
• the data structures at the conceptual and physical level;
• some of the integrity constraints at the conceptual level (i.e. the database

rules), like: type constraints, entity integrity constraints, referential
integrity constraints;

• some of the data structures of the external level (e.g. relational views,
parameterized relation-valued operators [7]/stored procedures).

The application professionals are, in turn, responsible for:
• the remaining part of the integrity constraints for the

conceptual/community data (i.e. the application rules);
• all the data structures of the external views – even when the DBMS

provides a layer of data at the external level (e.g. relational views), the
application languages need to redefine the entire external view using their
own data constructs;

• the presentation rules [6] implementation, i.e. the end-user interface,
including CRUD (create, retrieve, update, and delete) operations, and
display customization (e.g. field labels, field alignment, background and
foreground colors, etc.).

The current trend in application development is determined by a significant
pressure coming from the programming community, which promotes an object
oriented approach for the entire architecture of the information system.
Consequently, the data structures and the business rules are usually defined in a
function-oriented approach [12], loosing their direct link with the data model
[6] – with all the negative consequences in terms of system flexibility and
logical data independence [7].

By contrast, we propose a data-oriented approach for the development of the
information systems, including the external level of the ANSI/SPARC
architecture. Thus, we defined a presentation model, which preserves the
essentiality of the relational model [4], i.e. the existence of a unique data
constructor (in our case, the array of tuples), and prescribes a declarative
solution for the presentation rules specification, perceived as external view
integrity constraints.

The model introduces a clear separation between the display-related
presentation rules (e.g. field labels, field alignment, background and foreground
colors, etc.), and data-related presentation rules (e.g. data filtering, master-detail
navigation, data ordering). CRUD operations are accomplished through the
standard behavior of the array constructor. For any CRUD operation initiated by
the end user, the system initiates automatically the invocation of some operators
from the underlying levels, which actually realize the mapping between the
presentation level and the lower levels of the system (i.e. the lower external sub-
levels and/or the conceptual level – see Fig. 2).

66 M. Muji

Section 2 provides a discussion about the external level of a database-driven
system. Section 3 presents our presentation level modeling approach, followed
by an example in Section 4. We conclude with the advantages of the proposed
approach, and some possible applications.

2. The external level - a closer look

While the external level of the three levels architecture is usually split in
multiple sub-levels [3] (see Fig.2), the presentation level of the system is
actually the outermost sublevel, which contains the external data as seen by the
end user (i.e. the external views of the system).

Physical view

External
 sub-level 1.1

Community view

External
 sub-level n.1

External
 sub-level 2.1

EXTERNAL
LEVEL

INTERNAL LEVEL

CONCEPTUAL
LEVEL

...

External
 sub-level 1.m1

User view 1

External
 sub-level 2.m2

User view 2

External
 sub-level n.mn

User view NExternal
View

GUI 1 GUI 2 GUI N
Graphical
User
Interface

...

...

...

P
R

E
S

E
N

TA
TI

O
N

 L
E

V
E

L

Figure 2: The external sub-levels of the system.

Some of the external sub-levels, i.e. those closer to the conceptual level, are
usually implemented under the relational model, through relational views and/or
relational operators (e.g. stored procedures). The external sub-levels closer to
the end user are built under the theoretical model employed by the application
languages (in most cases, object-oriented). The well-known impedance
mismatch issue is in fact a measure for the lack of compatibility between the
two theoretical models. The major difference is determined by the switch of
focus from data to function: the data constructs defined by the database

 Application Development in Database-Driven Information Systems 67

designers are spread among multiple function-oriented software constructs by
the application developers [13].

The majority of the mapping solutions employed today to overcome the
impedance mismatch have the aim to provide the application developer with the
means for accessing the lower (relational) levels of the system transparently,
using only the concepts and tools specific to the application languages. Even
when some specific concepts of the conceptual level models are introduced (e.g.
data entities and relationships) [1], the main purpose is to ‘push’ the mapping
layer as ‘low’ as possible.

We follow the opposite approach, which considers that the relational model
is better suited not only to design the persistent data structures of the conceptual
level, but also to build and manipulate the data structures of the external level.

However, the end user’s perception of data often implies the existence of a
current element and a certain inspection order for a given set of data. It follows
that, at least for the presentation level, there is a need for some non-relational
features. At the same time, we consider that the essentiality of the relational
model (i.e. the existence of a unique, essential, data constructor [4]) would
provide, also, at the presentation level important advantages related to
impedance mismatch and interface automation. Consequently, our model
considers the array of tuples as its unique data constructor. It could have been a
list, or any other collection type, as well – to cite from reference [7], any
preference is just “a purely psychological decision – there is no logical reason
for preferring (say) an array over a list”.

3. The user view from a data oriented perspective

From the end user’s point of view, the general behavior of a typical
application consists on a limited set of actions related to data entities. In fact,
there are just four basic actions, or data-function interfaces [12], classically
known as CRUD operations: create, retrieve, update, and delete.

Since it requires a more complex analysis, we’ll discuss first the issues
related to data retrieval. In this regard, the end user can take the following
typical actions:

1. to identify one element in a set, by means of some unique property or
set of properties which distinguishes that particular element from all the
rest in the set;

2. to determine a subset of a set, based on some filtering criteria, namely
some common properties of the subset elements;

3. given one element in a set A, and an existing relationship defined from
A to B, to identify all the related elements in B, under the rule that
defines the relationship (e.g. master-detail navigation);

68 M. Muji

4. to display the elements of a set in a particular order.

Let us consider that all the data ‘seen’ by the end user through one particular
user view, is composed at any given time by ordered sets of tuples (i.e. arrays of
tuples). The user may also be aware about some existing relationships between
two sets, under the definition provided on the reference [5]: “Let A and B be
sets, not necessarily distinct. Then the relationship from A to B is a rule pairing
elements of A with elements of B.” Note that we discuss about directed
relationships, so a relationship defined from A to B will be different from
another relationship defined from B to A.

If we consider that any filtering value, which is to be applied to the set X, is
seen as an element of another set Y, when a relationship was defined from Y to
X, then the rule which defines the relationship is the filter itself. Similarly, a
change of the display order of a set A may be also accomplished by changing
the current element of another set B (which contains the ordering sequences of
choice), when a relationship is defined from B to A. Based on the relationship
definition, and on the current element of B, the system will reorder the set A
accordingly (more accurate: the ordered collection representing A is (re)created
based on the relationship definition).

Under this approach, we are able to design the entire presentation level only
by means of (ordered) sets and relationships between sets. The processing of all
the data requests at the presentation level is hidden inside the defining rules for
set relationships. The only functionality kept at the presentation level is related
to the automatic enforcement of the relationship rules, i.e. the automatic recall
of the defining operator attached to the dependent array, when the current
element of the parent array changed its value.

Considering the update operations (i.e. insert, update, and delete), our
presentation model does not require special features, other than the existing data
access solutions employed by the application languages. However, in order to
preserve the uniformity of the model, and to increase the level of logical data
independence, the recommended solution implies the existence of a level of
update operators (e.g. stored procedures, or any other application procedures), at
the interface with the underlying levels of the system. At the presentation level,
we’ll have to declare the procedure’s name, and the name and type of its
parameters.

4. An example

The following example is inspired from the chapter about presentation rules
in reference [6]. Some details were added to enable a better presentation of our
approach (see Fig. 3).

 Application Development in Database-Driven Information Systems 69

Suppose that we have a user view that exposes to the end user data about
customers, orders, and order details. Suppose that the user will have to be able
to see at any time all the customers which simultaneously satisfy the following
conditions:

• they have a credit limit less than a certain value;
• they are located in a specific region;
• they can be ordered by name, by credit limit, or by the total value of

their orders;
• customers whose accounts are overdue must be displayed in red.

Likewise, the user should be able to see, also, at any time, the orders which
simultaneously satisfy the following conditions:

• they belong to the current customer;
• their issuing date is in a certain period, say after a start_date and before

an end_date, specified by the user;
• they can be ordered by date, value-ascending, or value-descending;
• rush orders must be displayed before regular orders.

When the user inspects a specific order, the system should provide all the
order_details that belong to that particular order. Those details should be
displayed in their part number order.

Order

Credit limit

Customer

Region Customer
sequence

Time frame Order
sequence

Order details

Figure 3: A user view example.

In Figure 3, all data structures are arrays. Some of them represent

application data (i.e. filtering and/or ordering conditions), like credit limit,
customer sequence, time frame, order sequence. They are not dependent on
other data, so their defining functions don’t have parameters.

70 M. Muji

The array named region takes its values from the conceptual level (possibly
through a relational view), but its content doesn’t depend on any other data
structure from the user view.

The customer data contained by the customer array depends on the current
region chosen by the user from the region array, on the current customer
sequence chosen by the user in the customer sequence array, and also on the
value provided by the user in the credit limit array (the credit limit array will be
a special case of an array with one tuple and one attribute, but still an array and
not a simple scalar variable, in order to preserve the essentiality of the external
view model). This is why the defining operator of the customer array should
have three parameters, which will automatically take their values at run time
from the current tuples in the region, customer sequence, and credit limit arrays,
respectively, at any refresh of the customer data.

The list of customer orders exposed to the user at a given moment, contained
by the order array, depends on the current elements of the customer array, the
time frame array, and the order sequence array. Consequently, the defining
operator of the order array should have at least three parameters, one for every
parent array. In fact, for the present example, we may consider four parameters:
one for the link with the customer array (e.g. customer_id), two for the link with
the time frame array (e.g. start date, and end date), and one for the link with the
order sequence array (e.g. order_sequence_no).

As required, the order details array will contain at any moment all the details
of the current order from the order array. The rule that the details should always
be ordered by their part number is specified inside the defining function of the
order details array, and will remain transparent at the user view design level.

We should also be able to provide solutions for the presentation rules that are
not related with relationship definitions:

• “customers whose accounts are overdue must be displayed in red” – for
this rule, we need to introduce an attribute in the customer array, which
would allow the distinction of the ‘red’ customers, so that, at the display
level, while defining the graphical object (e.g. the grid, or the list)
which displays the customers data, we’ll be able to incorporate this
presentation rule in a straightforward manner (i.e. declaratively, if
possible);

• “rush orders must be displayed before regular orders” – this rule is
implemented inside the defining function of the order array (which is
completely transparent for our model) .

So, under the proposed model, the developer is able to design the
presentation level declaratively, just specifying:

• the declaration of all the array structures: array name, attribute names,
data types;

 Application Development in Database-Driven Information Systems 71

• the defining operator of every array;
• the link between every parameter of any defining operator and its

corresponding attribute from the parent array;
• the update procedures, their triggering events, and the links of their

parameters with the corresponding attributes.
Our user view’s dependency graph was represented graphically in Fig. 3

using arrows, oriented from parent to child, but it could have been used any
other entity relationship graphical notation (e.g. crow foot, IDEF1X, IE, etc.).
Thus, the user views will have the same (E-R like) graphical representation as
the conceptual level. The only difference is that instead of foreign key
relationships, we have pairs of defining operator parameters and attributes of
the parent array(s).

5. Conclusions

There is a clear need for a data-oriented approach in application engineering.
The software engineering field is now dominated by the new trend introduced
by the OMG’s Model Driven Architecture [14], which has a strong object
oriented bias. The position sustained by this paper is that the application
development should be not only model-driven, but data-model-driven [10, 11].
The paper introduces a data-oriented model for the development of the external
level of database systems, which considers the presentation level as the only
required data layer above the relational data model. Moreover, this should be a
thin layer, with the unique purpose of data presentation, which doesn’t need to
address any business logic other than the presentation rules [6].

The standard behavior and the essentiality of our model enable the
automation of the presentation level development. At the same time, the
mapping operators (defined at the lower levels and called at the presentation
level to promote the CRUD operations to the conceptual level) are the key for
the provision of logical data independence at the presentation level. This
constitutes the major step forward from the previous attempts to automate the
interface, which failed to provide an appropriate degree of logical data
independence at the external level of the system. Trying to generate the
interface based on various entity-relationship patterns existent at the conceptual
level, and assuming that the user views are just sub-schemas of the conceptual
level [15, 16, 18], they become useless as soon the external level has multiple
sublevels, i.e. the presentation data is obtained from the conceptual data through
a series of complex operations – which is always the case for large, integrated
information systems.

The foreseen applications of the presentation model are related primarily to
the application development for database-centric systems (e.g. enterprise

72 M. Muji

resource planning systems, e-commerce systems, etc.). CASE tools which
support entity-relationship diagrams represent, also, an important area for our
model implementation.

Future work will concentrate primarily on the development of interface
automation tools, designed in an object-oriented approach, and implemented
with general purpose third-generation languages (e.g. Java, C#). In a long term
vision, the presented model could be used in data-model driven methodologies
for declarative development of database-centric applications.

References

[1] Adya, A., Blakeley, J. A., Melnik, S., and Muralidhar, S., “Anatomy of the ADO.NET
entity framework”, ACM SIGMOD International Conference On Management Of Data.
Beijing, China, 2007, pp. 877-888.

[2] ANSI/X3/SPARC Study Group on Data Base Management Systems. “Interim Report”,
ACM SIGMOD Bulletin, no. 2, 1975.

[3] Date, C. J., “An Introduction to Database Systems (8th edition)”, Addison-Wesley, 2003.
[4] Date, C. J., “Date on Database: Writings 2000-2006”, Apress, 2006.
[5] Date, C. J., “Logic and Databases: The Roots of Relational Theory”, Trafford Publishing,

2007.
[6] Date, C. J., “What Not How: The Business Rules Approach to Application Development”,

Addison-Wesley, 2000.
[7] Date, C. J., and Darwen, H., “Foundation for Future Database Systems: The Third

Manifesto (2nd Edition)”, Addison-Wesley, 2000.
[8] Halle, B., “Business Rules Applied: Building Better Systems Using the Business Rules

Approach”, Wiley, 2001.
[9] Hay, D. C., “Data Model Views”, The Data Administration Newsletter - TDAN.com, Apr.

2000.
[10] Lewis, B., “Data Lineage: The Next Generation”, The Data Administration Newsletter -

TDAN.com, Aug. 2008.
[11] Lewis, B., “Data-Oriented Application Engineering: An Idea Whose Time Has Returned”,

The Data Administration Newsletter - TDAN.com, Jan. 2007.
[12] Lewis, W. J., “Data Warehousing and E-Commerce”, Prentice Hall PTR, 2001.
[13] Lewis, W. J., “E-Commerce Vs. Data Management”, The Data Administration Newsletter –

TDAN.com, Jan. 2002.
[14] Model Driven Architecture. http://www.omg.org/mda/
[15] Pizano, A., Yukari, S., and Atsushi, I., “Automatic generation of graphical user interfaces

for interactive database applications”, Conference on Information and Knowledge
Management, Washington, D.C., 1993, pp. 344-355.

[16] Rollinson, S. R., and Roberts, S. A., “A mechanism for automating database interface
design, based on extended E-R modelling”, Advances in Databases. s.l. : Springer Berlin /
Heidelberg, 1997, pp. 133-134.

[17] Ross, R. G., “Principles of the Business Rule Approach”, Addison-Wesley Professional,
2003.

[18] Rowe, L. A., and Shoens, K. A., “A form application development system”, ACM SIGMOD
International Conference On Management Of Data., Orlando, Florida, 1982, pp. 28-38.

