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Abstract: Electroencephalography (EEG) or magneto-encephalography (MEG) are 
usual methods adopted in clinics and physiology to extract information relative to 
cortical brain activity. EEG/MEG signals are a measure of the collective neural cell 
activity on restricted regions of the cortex. The brain activities ensue from the 
interaction of excitatory and inhibitory populations of neurons. Their kinetics vary 
depending on a particular task to be fulfilled, on the particular region involved in that 
task, and in any instant during the task. In order to improve our understanding of 
EEG/MEG signals, and to gain a deeper comprehension of the neuro-physiological 
information contained, various mathematical models and methods have been proposed 
in previous years. Based on these concepts we develop procedures for an optimal, 
online and hardware based EEG signal processing. EEG recordings are analyzed in an 
event-related fashion when we want to gain insights into the relation of the EEG and 
experimental events. An approach is to concentrate on event-related oscillations 
(EROs). The method suited to analyze the temporal and spatial characteristics of EROs, 
is the time-frequency analysis namely wavelet transforms. Recently introduced wavelet-
based methods for studying dynamical interrelations between brain signals will be 
discussed. 
 

Keywords: brain-computer-interface (BCI), time frequency analysis, filters, EEG 
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1. Introduction 

We propose a novel framework to analyse electroencephalogram (EEG) 
biosignals from multi-trial visually-evoked potential (VEPs) signals recorded 
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with a brain-computer interface (BCI). Electromagnetic activities of the 
neuromuscular system, including electroencephalography (EEG), electro-
myography (EMG), and magneto-encephalography (MEG) signals, have been 
widely used in the study of motor control in humans. VEPs signals contain 
components of EMG, MEG and EEG [1], [2], [3], [4]. 

Oscillations are characterized by their amplitude, frequency and phase. The 
amplitude of a recorded oscillation is typically between 0 and 10 µV. The 
(cyclic) phase ranges are between 0 and 2π. At every scalp point at every time 
moment the amplitude and phase of an oscillation can be recorded. The 
frequency band of the typical recordable cortical oscillations range is usually 
from 0.1 Hz to 80 Hz (highly correlated to a 256 Hz sampling rate).  

Several methods exist to extract oscillations of biologically specific 
frequency bands from ERO data. Among the most used are band filtering, 
Fourier analysis, and wavelet analysis. Oscillating potentials derived from a 
specific scalp surface, originating from the outer layer of cortex (grouped 
neuron structures in the layer I cortical areas) are called visual-evoked potential 
(VEP) signals. These signals are related to the brain’s response to visual 
stimulation and have applications in numerous neuropsychological studies. 
EROs comprise exogenous and endogenous components. Exogenous 
components are obligatory responses which result on the presentation of 
physical stimuli. The endogenous components (say P300 component of an ERO 
signal) manifest the processing activities which depend on the stimuli’s role 
within the task being performed by the subject. Usually, EEG-signals are based 
on various phenomena like, for example, visual and P300 evoked potentials, 
slow cortical potentials, or sensory-motor cortical rhythms. The P300 shape is 
an event related potential, elicited by a generally stochastic, task related stimuli. 

2. Materials and methods 

We have used a BrainMaster recording system (BrainMaster AT-1 W2.5 
Clinical Pro Wideband System, see Fig. 1.), battery powered, portable, two 
channel 2E neurofeedback module hardware, with added cleaning gel and 
conductive paste. Recordings have been made with 5 gold plated electrodes (2 
recording electrodes, 2 reference electrodes and a ground electrode). The used 
sampling rate was 256 Hz, sufficient for the studied frequency bands.  

Recording areas were the left and right hand side of cortical surface at 
Primary Motor cortex and sometime on Pre-Motor and Supplementary Motor 
Cortex (Secondary Motor Cortex) on the scalp of young persons. The recorded 
and sampled signals from two channels (Ch1, Ch2) are stored in text type files 
and processed using MATLAB (The Math-Works Inc., Natick, MA.) platform. 
The software package is elaborated by the authors based on concepts presented 

http://en.wikipedia.org/wiki/Event_related_potential�
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in [5]. The test recordings are usually 1 to 1.5 minutes long. The ERO intervals 
alternate with relax state with a period of usually 10 seconds. The time-
frequency method used in this application is the continuous wavelet transform 
based on Morlet, Paul and DOG (m = 2 and m = 6) wavelet base functions. The 
Morlet and Paul bases are providing a complex continuous transform proper for 
time-frequency component analysis of the recordings. For the subjects of the 
experiments, during the recordings a deckchair was used to avoid extra EMG 
noise created by the body stability problems. 
 

 
Figure 1: The BrainMaster AT-1 System (Brain Master LTD company product image). 

In the EEG–EMG experiments, subjects are trained for two different motor 
tasks: a left-right or up-down movement of the closed or opened eye balls and 
right or left hand movement. The scenario of the performed task is recorded in 
the header of the generated file. The recording technique is a not invasive 
recording method. 

3. Data analysis tools 

A period of baseline EEG+MEG was recorded at the beginning of each 
experiment when the subjects rested. During the offline analysis, signals within 
an approximately 10 s epoch were selected from the rest period and averaged to 
obtain baseline EEG. Subsequently, the value of the baseline EEG+MEG was 
subtracted from the entire EEG+MEG data set to acquire baseline corrected 
signals. The corrected values were saved into files for further processing. 

An important fact is that the magnitudes of cyclic visual-evoked potential 
components are much more detectable in the 0–10 Hz frequency range. This is 
important for the further analysis. 
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From the experimental studies of VEPs, relative to the recorded oscillations, the 
literature clearly depicts the delta (1–4 Hz) and theta (4–10 Hz) ranges as 
containing main components of power in frequency domain for the waves. We 
will consider these bands for further identification of the activity patterns [1]. 
Now, we are considering the important details of wavelet transform used in 
these processings. 

By decomposing a time series into time–frequency space, one is able to 
determine both the dominant modes of variability and how those modes vary in 
time. The first tested method was the Windowed Fourier Transform (WFT). The 
WFT represents one of analysis tool for extracting local-frequency information 
from a signal. The WFT represents a method of time–frequency localization, as 
it imposes a scale or ‘response interval’ T into the analysis. An inaccuracy 
arises from the aliasing of high- and low-frequency components that do not fall 
within the frequency range of T window. Several window lengths must be 
usually analyzed to determine the most appropriate choice of window size to be 
sure to contain within the window the main, but unknown basic oscillatory 
components. To avoid this difficult task, in our analysis finally we have used 
wavelet transform (WT) methods. 

The WT can be used to analyze time series that contain nonstationary power 
at many different frequencies. The term ‘wavelet function’ is generically used to 
refer to either orthogonal or nonorthogonal wavelets. The term “wavelet basis” 
refers only to an orthogonal set of functions. The use of an orthogonal basis 
implies the use of the discrete wavelet transform (DWT), while a nonorthogonal 
wavelet function can be used with either the discrete or the continuous wavelet 
transform (CWT). 

A brief description of CWT is following. Assume that the recorded time 
series, xn, is with equal time spacing δt (sampling period) and n = 0…N-1. Also 
assume that one has a wavelet function, Ψ0(η), which depends on a non-
dimensional ‘time’ parameter η. 

To be ‘admissible’ as a wavelet, this function must have zero mean and must 
be localized in both time and frequency space. An example is the Morlet 
wavelet, consisting of a plane wave modulated by a Gaussian function: 
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This is a wavelet basis function, where w0 is the non-dimensional frequency, 
here taken to be 6 to satisfy admissibility condition. 
The continuous wavelet transform of a discrete sequence xn is defined as the 
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where the (*) indicates the complex conjugate. By varying the wavelet scale s 
and translating along the localized time index n, one can construct a picture 
showing both the amplitude of any features versus the scale and how this 
amplitude varies with time. The subscript 0 on Ψ  has been dropped to indicate 
that this Ψ  has also been normalized. It is possible to calculate the wavelet 
transform using (2), and it is considerably faster to do the calculations in 
Fourier space. By choosing N points, the convolution theorem allows us to do 
all N convolutions simultaneously in Fourier space using discrete Fourier 
transform (DFT). To ensure that the wavelet transforms at each scale s are 
directly comparable to each other and to the transforms of other time series, the 
wavelet function at each scale s was normalized to have unit energy. 
Normalization is an important step in time-series analysis and is used at each 
scale s. 

Morlet wavelet function )(ηΨ  is a complex function, the wavelet transform 
Wn(s) is also complex. The transform can then be divided into the real and 
imaginary part, or amplitude and phase. Finally, one can define the wavelet 
power spectrum as |Wn(s)|2. The expectation value for |Wn(s)|2 is equal to N times 
the expectation value for the discrete Fourier transform of the time series. For a 
white-noise time series, this expectation value is σ2/N, where σ2

 is the variance 
of the noise. Thus, for a white-noise process, the expectation value for the 
wavelet transform is |Wn(s)|2 = σ2

 at all n and s. Based on this knowledge, the 
same logic is used to calculate the expected value of red noise. The |Wn(s)|2 / σ2 
is the measure of the normalized signal value relative to white noise. As the 
biological background noise is a red noise type, the normalization method is 
relative to red noise as it is described in [5] (in a way as it was used in the 
results of this paper). 

An important concept of this study is the so called Cone of influence (COI). 
The cone of influence is the region of the wavelet spectrum in which edge 
effects become important because of the finite length of signal and used 
window. The significance of the edge effect is defined as the e-factor (power 
spectrum edge drops by a factor e−2) time of wavelet power at each scale. The 
edge effects are negligible beyond the COI region. This must be considered for 
an accurate analysis. In each figure, COI is represented at the edge of the 
wavelet transforms (lighter area in figures). 

Another important factor we have added to this analysis is the significance 
level of the correlation studies. The theoretical white/red noise wavelet power 
spectra are derived and compared to Monte Carlo simulation results. These 
spectra are used to establish a null hypothesis for the significance of a peak in 
the wavelet power spectrum (the question to be answered: is a power peak from 
a wavelet figure the result of biological events or it is a result of stochastic 
red/white noise effect?). 
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The null hypothesis is defined for the wavelet power spectrum as follows. It is 
assumed that the time series has a mean power spectrum, if a peak in the 
wavelet power spectrum is significantly above this background spectrum, then it 
can be assumed to be a true feature with a certain percent of confidence. 
(‘significant at the 5% level’ is equivalent to ‘the 95% confidence interval’). 

Our application is highlighting the biological events, with surrounding the 
significant peaks of correlations at the confidence interval of 95%. It is 
important that in biological studies the background noise can be modeled by a 
red (or pink) noise. A simplest model for a red noise is the lag-1 autoregressive 
[AR (1), or Markov] process. In the following figures, all significant 
localization of a biological event (VEPs) in time-frequency domain is also 
statistically significant. This is an important result. What is not within a 
significant area, is not considered in the results. Another important result in our 
analysis is the representation of the phase relationship between two recordings. 
In each cross-wavelet spectrum and cross-coherence spectrum the phase 
relationship is represented with arrows. A horizontal arrow to the right means 
that in that time frequency domain the two biological signals are in phase (if 
that domain is significant at 5% level and is not within COI domain). The 
opposite arrow orientation has the meaning of opposite phase correlation. The 
angle of arrows relative to horizontal line is showing the phase angle in that 
time frequency domain. Our application is calculating and is representing all 
these phase values. The definition of wavelet-cross-correlation and wavelet-
cross-coherence are defined in [5] and [6]. 

4. Results 

The following figures are slim examples from our recordings and their 
analysis. Fig. 2 is the amplitude/time representation of a channel signal as a 
recording on the right hand side of the Motor Cortex area when the left hand has 
been lifted two times during a 50 s recording session. This figure is showing 
also the application menu created for this WFT type of analysis. Fig. 3 is the 
WFT representation of the Fig. 2 recording in different frequency bands. The 
vertical axis is for the frequency, and the horizontal one is the time axis. The 
frequency bands for the different windows are 0.1 – 50 Hz for the top left, 0.1 – 
8 Hz for bottom left, 24 – 30 Hz top right window and finally 30 – 36 Hz for 
bottom right window. The frequency bands are representative for biological 
events. A color-code represents the intensity of a time-frequency domain for 
that WFT decomposition (the corresponding color-code is represented at the 
right hand side of each window). The shape within each window is 
characteristic for a real time motion recorded as EMG+EEG. Fig. 4 is similar 
with Fig. 3 but it is represented in 3D for a better visual understanding of the 
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significant domains contained in this time-series decomposition. Based on these 
figures, it can be concluded that a ‘shape’ in time-frequency domain is related to 
an arm motion in time domain. The automatic identification of these domains 
(peaks) in time-frequency decomposition it must be related to the corresponding 
arm motion what has happened in time domain. For this peak identification one 
can use a pattern recognition procedure. 
 

 
Figure 2: A recorded (right hand side Motor Cortex) amplitude/time representation. 

 
Figure 3: The wavelet Fourier transform (WFT) in four different frequency bands. 

As it was mentioned, the same hand lifting time event recording has been 
done on both cortical sides. The left cortical side recording and decomposition 
with WFT is not represented here, but it has a similar configuration. Fig. 5 is 
the difference in time-frequency domain of the two side signals. It is visible that 
the two side recordings are not the same as it is known from theory. This 
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analysis is WFT, and here the COI and significance test was not used. As it was 
mentioned, the WFT is very sensitive to the window length (T) used in 
decomposition of the time signal [7], [8]. In the spectrum, not controllable 
frequency interference is present, but the method is powerful enough to be 
usable in detection and classification of not very sensitive types of motor 
actions. 
 

 
Figure 4: The 3D representation of figure 3 WFT decomposition. 

 
Figure 5: The difference of the two channels recording decomposition by WFT. 

A most sensitive procedure is the use of Morlet type of Wavelet transform 
(WT) with the representation of COI and with significance test of biological 
events based on wavelet Cross-correlation and wavelet Cross-Coherence [5], 
[9]. These results are more accurate and with higher resolution in time 
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frequency in comparison with the previous WFT analysis. The amount of 
calculation is higher than in case of WFT but optimizing the procedures on 
hardware based processor units, this method should be very powerful. 

 

 
Figure 6: The two channels (Ch1, Ch2) amplitude/time representation of the recordings. 

The bottom figure is showing the two superimposed signals. The green highlights are 
the eye movement time sequences (sample size on vertical). 

Fig. 6 is representing left-right movement of eye balls with a relax time 
between them. It is visible the time sequence of left and right hand cortical side 
EMG+EEG. The whole recording length is about 100 seconds. The high 
amplitude signals in 25-37 seconds interval in Ch2 recording is an extra EMG, a 
noise from the experiment point of view. The time sequence is containing three 
eye movement events. These are between (12, 25) sec, (39, 55) sec and finally 
(71, 85) seconds. These are highlighted by green line segments. In the third 
(bottom) window it is visible that the Ch1 and Ch2 recordings are in opposite 
phase. But this will be obvious from cross correlations calculated and 
represented in Fig. 9. 

The next two figures (Fig. 7 and Fig. 8) are the representation of Morlet WT 
of these channel recordings. The COI and the significant areas are represented. 
Domains of the signal within these closed contours are significant, outside are 
not significant (should not be considered biological events). We are considering 
the two parallel lines delimiting roughly the (0.75 – 1.5) Hz frequency interval. 
Within these limits we can consider the events of eye movement left-right-left 
in the detected time intervals. It is very obvious the presence of significant 
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domains, and they can be easily identified. In Fig. 8, in 25 sec to 37 sec interval, 
the EMG ‘noise’ is there, but the basic components are present also at much 
higher frequency domains. 

 

 
Figure 7: Morlet WT of Ch1 recording with localization of eye left-right movement. 

 
Figure 8: Morlet WT of Ch2 recording with localization of eye left-right movement. 

It is very important to discuss, what Fig. 9 represents. The COI is present as 
the not significant domain, but also a phase relationship between the two signals 
is calculated. The arrows’ orientation within the significant area is to the left 
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(0.75 – 1.5Hz). This means that the correlation between the two channels, in 
this frequency band is in opposition. In the recordings with half way eye 
movement (left to middle, or right to middle) the phase shift is not opposite but 
is around of 90/270 degrees. These phase events permit the detection of the 
direction of eye movements. Fig. 9 bottom image is the normalized version of 
the same cross-correlation, the so-called cross-coherence between the two 
channels. This information about the interrelation of the two recordings is more 
relevant to characterize the ERO contained visual evoked potentials. 

 

 

 
Figure 9: The cross-correlation (up) and the cross-coherence of the  

two channels signals. 

The same analysis has been made also for the up-down eye movement 
direction. The results are very similar with the left-right movement conclusions, 
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and are not presented in this paper, but can be considered for technical 
applications based on EEG+MEG recordings. The cross-coherence matrix is 
processed to extract the information (signals) for further control tasks. 

 
5. Conclusions 

 
Every characteristic information of EROs (extracted numeric values of the 

processed VEPs) is usable for further signal processing tasks. Detecting motion 
related, EEG+MEG signal configuration, the possibly extracted information is 
usable in external system control tasks. The sensitivity of the electrodes is not 
the subject of this paper. It is obvious that with a much higher sensitivity of 
electrodes, it should be possible to record much more detailed signals with 
deeper correlations. The ideas used in this study are at the beginning of more 
event sensitive identification and complicated command possibilities [8], [10], 
[11]. We must also consider the effect of so called grid cells in the cortical area 
which display regular responses to the position in a virtual, internal 2-D space. 
This study should be possible using multichannel (>2) recordings, a next step in 
our research. 
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