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Abstract: The main task in wavelet analysis (decomposition and reconstruction) is 
to find a good wavelet function (mother wavelet) to perform an optimal decomposition. 
The goal of most wavelet researches is to create a set of basis functions and transforms 
that will give an informative, efficient and useful description of a signal. It is better if 
the wavelet function is adapted to the signal, because the computational costs can be 
reduced and more accurate analysis can be obtained. This paper presents a discrete 
wavelet function synthesizer, which starts from an arbitrary, discretized sequence, to 
obtain the reconstruction and decomposition filters. The pursued criterion (expected 
result) is to minimize the reconstruction error between a first or second order 
approximation and the original signal. 
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1. Introduction 

The analysis of an ECG signal has been used as a diagnostic tool to provide 
information on the  functions of the heart. The ECG is the graphical 
representation of variation in time of a potential difference between two points 
on a human body surface as a result of the activity of the heart. The wavelet 
transform is a recently developed signal processing technique, created to 
overcome the limits of the classical Fourier analysis, to deal with non-stationary 
signals like biomedical signals. The wavelet transform of a signal is calculated 
by taking the convolutive product between the biological signal and basis 
functions, measuring the similarity between them. The result of this product is a 
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set of coefficients. This set of coefficients indicates how similar is the signal 
relative to the basis functions. In the case of wavelet analysis, the basis 
functions are scaled (stretched or compressed) and translated versions of the 
same prototype function, called the mother wavelet  t . Theoretical 
knowledge about mathematical backgrounds of wavelet transform can be found 
in [1], [2], [3]. This paper briefly introduces a new method, using softcomputing 
elements to synthesize new wavelet functions in order to have with them an 
optimal decomposition structure. The expected result is to minimize the 
reconstruction error between a first order approximation and the original signal.  

2. Wavelet Decomposition and Reconstruction 

The wavelet transform is a decomposition of the signal as a combination of a set 
of basis functions, obtained by means of scaling  and translation b of a 
mother wavelet 

a
 t . The continuous wavelet transform (CWT) uses the 

dilation and translation of the mother wavelet function  . The CWT of signal 

 is defined as [1]:  tx
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where  is a scale factor which is proportional to the inverse of frequency and 
is the translation parameter. The scale factor and the translation parameter can 

be discretized, the usual choice is to follow a dyadic grid for them. The 
transform is then called the (dyadic) discrete wavelet transform (DWT).  
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For discrete time-signals, the dyadic discrete wavelet transform (DWT) is 
equivalent according to Mallat’s algorithm [1] to an octave filter bank, and can 
be implemented as a cascade of identical filter cells (low-pass and high-pass 
finite impulse response(FIR) filters) as shown in Fig. 1. 
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Figure1: FIR filter structure for dyadic scale decomposition. 
 
The decomposition procedure starts with passing signal (discrete sequence) 
through a half band digital low-pass filter HD with impulse response h(n). 
Filtering corresponds to the convolution of signal with the impulse response of 
the filter. A half band low-pass filter removes all frequencies that are above half 
of the highest frequency in the signal, but leaves the scale unchanged. Only the 
subsampling process changes the scale. In summary the low-pass filtering 
halves the resolution but leaves the scale unchanged. The signal is then 
subsampled by 2 since half of the number of samples is redundant. This 
operation doubles the scale (Fig.1). The operators HD and GD correspond to one 
stage in the wavelet decomposition, the spectrum of the signal is split in two 
equal parts, a low-pass (smoothed) and the high-pass part. The low-pass part 
can be split again and again until the number of bands created satisfies the 
computational demands. Thus, the discrete wavelet transformation can be 
summarized (after j stages) as 
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The output of the DWT consists of the remaining several times smoothed 
components, and all of the accumulated "detail" components [5].  
The reconstruction procedure is similar to decomposition. The signal at every 
level is upsampled by two, passed through the synthesis (low-pass and high-
pass) filters and then the filtered components are summed [4]. 
 

 
 

Figure 2: FIR filter structure for dyadic scale reconstruction. 
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The filters must satisfy certain requirements to enable perfect reconstruction 
from the two output signals after downsampling, and to yield an orthogonal 
underlying wavelet basis. To end up with a corresponding mother wavelet  t  
having compact support, the filters (HD,GD,HR,GR) must be finite impulse 
response (FIR) filters [5]. All the filters are intimately related to the sequence 

which defines the dilation (or refinement) relation   ZnwW n  ,
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If  is compactly supported, the sequence   ZnwW n  ,  can be viewed as a 

filter, and from this we can define four FIR filters of length 2N organized as in 
Fig. 3. GR and HR are quadrature mirror filters (qmf) [3], HD is obtained from 
HR by flipping its coefficients. HD and GD are also quadrature mirror filters [3]. 
 

 
 

Figure 3: FIR filter synthesis according to the perfect reconstruction conditions. 
 
 

3. Method and materials 

The wavelet functions are obtained using an artificial neural network based 
function synthesizer. The basis function (wavelet) sequence is synthesized 
following the algorithm presented in Fig. 4. The main criteria for these filters 

are: low-pass FIR filter of 2N length, with norm 2 ; the low-pass and high-
pass structures are obtained from this arbitrary sequence. 
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Figure 4: Function synthesizer. 

 
The calculation of the error   is performed comparing the reconstructed 

function (from first average components) with the signal. The approximation 
error is defined as a difference between the signal x  and the function 
reconstructed from  average components only. Anx

 normwavelet    (6) 

    2XDWTIDWTXwavelet    (7) 

  22)(  Wnormnorm  (8) 

The criterion-function was defined as: 

 
i

ii w
ww


 , (9) 

where μ is the learning rate and 
iw


 is the variation of error. The used test 

signal is from MIT-BIH Arrhythmia Database. 

4. Results 

The test signal is from MIT-BIH database; we used only a short sequence and 
several existing wavelet functions. The resulted wavelet sequence is presented 
in Fig. 4, the analyzed signal and its average and detail components are 
presented in Fig. 5. 
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Figure 4: The resulted wavelet function. 
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Figure 5: The analyzed signal sequence and its first average and detail components. 
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Figure 6: The obtained wavelet sequence compared to other similar functions 
 

5. Conclusions 
 
The main advantage of the presented method is that the analyzing discrete 
wavelet can be adapted to the signal. Using filter banks it’s possible to obtain a 
discrete wavelet transform of a sequence without specifying any function. The 
obtained functions gave better or almost the same results in decomposition, 
reconstruction as the existing functions. Using adapted wavelet functions 
reduces the computational costs and gives a more accurate multiresolution 
analysis. 

References 

[1] Mallat, S.: A wavelet tour of signal processing Academic Press London 2001. 
[2] Aldroubi, A., Unser, M.: Wavelets in Medicine and Biology. CRC Press New York 1996 
[3] Misiti, M., Misiti, Y., Oppenheim, G., Poggi, J-M.: WaveletToolbox. For Use with Matlab. 

User’s Guide. Version 2.The MathWorks Inc 2000 
[4] Coifman, R.R.: M.V Wickerhauser: Entropy-based algorithms for best basis selection IEEE 

Trans. on Inf. Theory, 1992, vol. 38, 2, pp. 713–718. 
[5] Burrus, S. C., Gopinath, R..A., Guo, H., Introduction to wavelets and Wavelet Transforms 
[6] Karel, JMH, Peeters, RLM, Westras, RL, moermans, KMS, Haddad, S.A.P., Serdijn, W.A.: 

Optimal wavelet design for cardiac signal processing. Proceedings of the 2005 IEEE 
Engineering in Medicine and Biology 27th Annual Conference Shanghai, China, September 
1-4, 2005 

 






